Two-body Hadronic B Decays at NNLO in QCD Factorization

李新强

华中师范大学

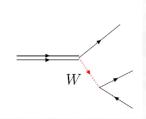
In collaboration with G. Bell, M. Beneke, T. Huber, and S. Krankl

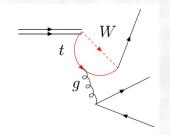
Based on JHEP 04 (2020), JHEP 09 (2016) 112, PLB 750 (2015) 348, NPB 832 (2010) 109

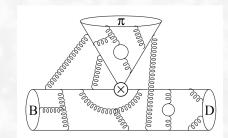
2023年度中国科学院理论物理前沿重点实验室年会,2023/06/01,北京

Outline

- □ Introduction & motivation
- ☐ Theoretical framework & QCDF for hadronic B decays
- □ NNLO QCD corrections to the hadronic matrix elements







- **□** Summary
- M. Beneke, T. Huber and Xin-Qiang Li, "NNLO vertex corrections to non-leptonic B decays: Tree amplitudes," Nucl. Phys. B 832 (2010) 109 [arXiv:0911.3655 [hep-ph]].
- T. Huber, S. Kränkl and Xin-Qiang Li, "Two-body non-leptonic heavy-to-heavy decays at NNLO in QCD factorization," JHEP **09** (2016) 112 [arXiv:1606.02888 [hep-ph]].
- G. Bell, M. Beneke, T. Huber and Xin-Qiang Li, "Two-loop current-current operator contribution to the non-leptonic QCD penguin amplitude," Phys. Lett. B **750** (2015) 348-355 [arXiv:1507.03700 [hep-ph]].
- G. Bell, M. Beneke, T. Huber and Xin-Qiang Li, "Two-loop non-leptonic penguin amplitude in QCD factorization," JHEP **04** (2020) 055 [arXiv:2002.03262 [hep-ph]].

Introduction & Motivation

B physics and B decays

□ B physics: productions & decays of various b hadrons.

B-mesons					b-baryons					
	$B_d = (\bar{b}d)$	$B^+ = (\bar{b}u)$	$B_s = (\bar{b}s)$	$B_c^+ = (\bar{b}c)$		$\Lambda_b = (udb)$	$\Xi_b^0 = (usb)$	$\Xi_b^- = (dsb)$	$\Omega_b^- = (ssb)$	
Mass (GeV)	'	` ′	\ /	\ / /	Mass (GeV)				6.0480(19)	
Lifetime (ps)	1.519(4)	1.638(4)	1.510(4)	0.510(9)	Lifetime (ps)	1.471(9)	1.480(30)	1.572(40)	$1.64\binom{+18}{-17}$	

□ b-hadron weak decays: at the quark level, all governed by flavor-changing charged-currents mediated by *W*-boson.

$$egin{aligned} \mathcal{L}_{ ext{CC}} &= -rac{ extbf{8}}{\sqrt{2}} J_{ ext{CC}}^{\mu} W_{\mu}^{\dagger} + ext{h.c.} \ & \ J_{ ext{CC}}^{\mu} &= (ar{
u}_{e}, ar{
u}_{\mu}, ar{
u}_{ au}) \gamma^{\mu} \left(egin{aligned} e_{ ext{L}} \ \mu_{ ext{L}} \ au_{ ext{L}} \end{array}
ight) \ & \ + (ar{u}_{ ext{L}}, ar{c}_{ ext{L}}, ar{t}_{ ext{L}}) \gamma^{\mu} oldsymbol{V}_{ ext{CKM}} \left(egin{aligned} d_{ ext{L}} \ s_{ ext{L}} \ b_{ ext{L}} \end{array}
ight) \end{aligned}$$

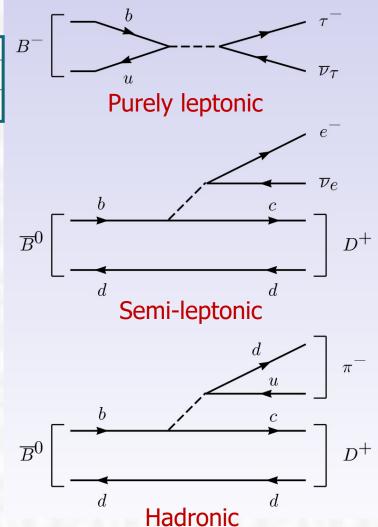
 $g: SU(2)_L$ gauge coupling

 V_{CKM} : CKM matrix for quark mixing

$$\boldsymbol{V_{CKM}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

□ Classification of b-hadron weak decays: three classes;

purely leptonic, semi-leptonic, hadronic

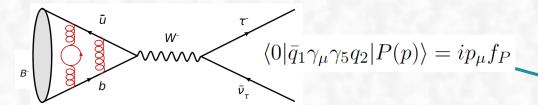


Interplay between weak & strong forces

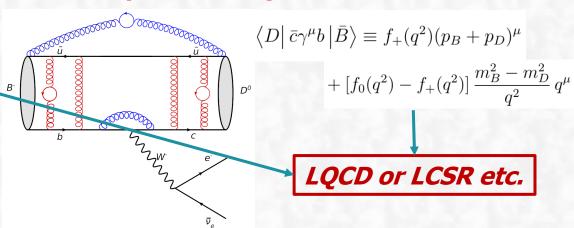
□ QCD effect always matters: in real world, quarks confined inside hadrons and no free quarks;

the simplicity of weak interactions overshadowed by the complexity of strong interactions!

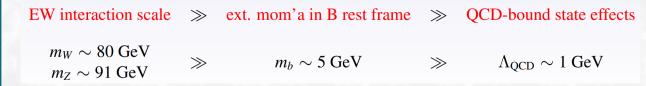
□ Purely leptonic decays: decay constant



☐ Hadronic decays: hadronic matrix elements



multi-scale problem with highly hierarchical scales!

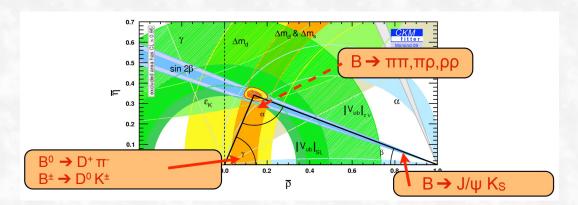


the most complicated case, but very important!

 D^{+}

Why hadronic B decays

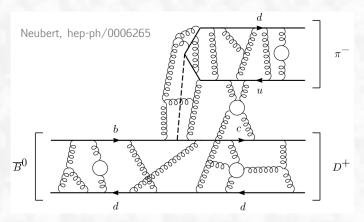
□ direct access to the CKM parameters,especially to the three angles of UT.



- □ deep insight into the hadron structures: especially exotic hadronic states.
- □ deepen our understanding of the origin & mechanism of CPV.

☐ further insight into strong-interaction effects involved in hadronic decays.

factorization? strong phase origin?...



CP category	Hadronic system										
	K^0	K^{\pm}	Λ	D^0	D^{\pm}	D_s^{\pm}	Λ_c^+	B^0	B^{\pm}	B_s^0	Λ_b^0
decay		8	8	⊘	8	×	8	©	©	②	8
mixing	%			8				8		8	
decay/mixing interf.	Ø			8				©		Ø	

although very complicated but necessary both theoretically and experimentally!

Observed

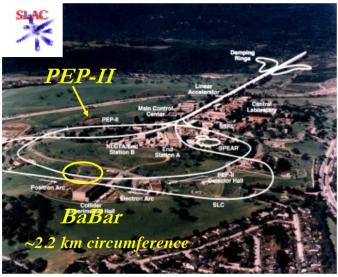
Several observations

Not observed (yet)

Exp. status of B physics

 \square B-factories (e^+e^-): Belle and BaBar

\square Hadron colliders ($p\overline{p}$): CDF & D0 @ Tevatron



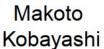
3.5 GeV e^{+} 8 GeV e^{-}

3.1 GeV e^{+} 9 GeV e^{-}

https://www-d0.fnal;
https://www-cdf.fnal.gov/gov/

Observation of B_s mixing

Nobel Prize 2008 for



Toshihide Maskawa

BaBar & Belle confirmed the KM mechanism of CPV in the SM!

The Physics of the B Factories

BaBar and Belle Collaborations • A.J. Bevan (Queen Mary, U. of London) Jun 24, 2014

928 pages

Published in: *Eur.Phys.J.C* 74 (2014) 3026

e-Print: 1406.6311 [hep-ex]

Exp. status of B physics

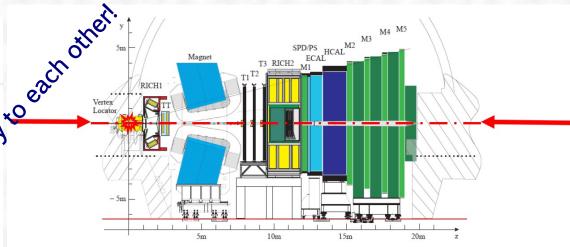
\square Super B-factories (e^+e^-): Belle II

7.4 m CsI(TI) EM calorimeter: waveform sampling electronics, pure Csl for end-caps 4 layers DS Si Vertex Detector → 2 layers PXD (DEPFET), 4 lavers DSSD PID system Time-of-Propagation counter Central Drift Chamber: smaller cell size. prox. focusing Aerogel RICH long lever arm (forward)

[E. Kou et al. [Belle II], PTEP 2019 (2019) 123C01]

LHCb & Belle II: the two currently running experiments aimed at heavy flavor physics!

□ Hadron colliders (pp): LHCb @LHC



[R. Aaij et al. [LHCb Collaboration], arXiv:1808.08865]

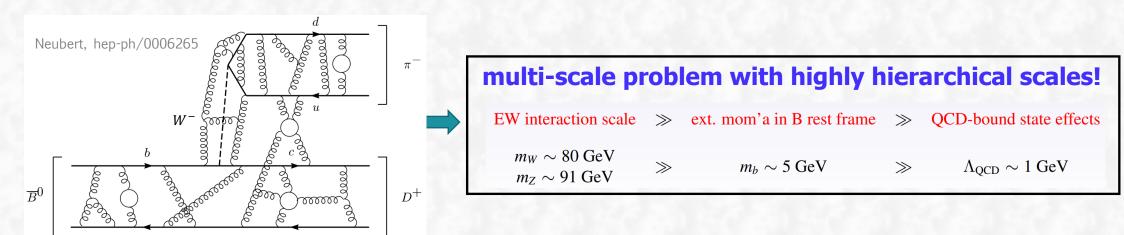
Two main goals among others:

- Check if there are any extra new CP-violation mechanisms beyond the KM?
- Check if there are new particles/interactions that are sensitive to flavor structures?

Theoretical framework & QCDF for hadronic B decays

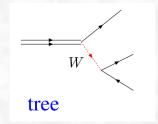
Effective Hamiltonian for hadronic B decays

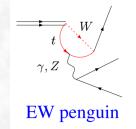
□ For hadronic B decays: typical multi-scale problem; **EFT** formalism more suitable!



- □ Starting point $\mathcal{H}_{eff} = -\mathcal{L}_{eff}$: obtained after integrating out heavy d.o.f. $(m_{W,Z,t} \gg m_b)$; [Buras, Buchalla, Lautenbacher '96; Chetyrkin, Misiak, Munz '98]
- \square Wilson coefficients C_i : all physics above m_b ;

$$\mathcal{L}_{\text{eff}} = -\frac{G_F}{\sqrt{2}} \sum_{p=u,c} V_{pb} V_{pD}^* \Big(C_1 \mathcal{O}_1 + C_2 \mathcal{O}_2 + \sum_{i=\text{pen}} C_i \mathcal{O}_{i,\text{pen}} \Big)$$





perturbatively calculable & NNLL program now complete; [Gorbahn, Haisch '04; Misiak, Steinhauser '04]

Hadronic matrix elements

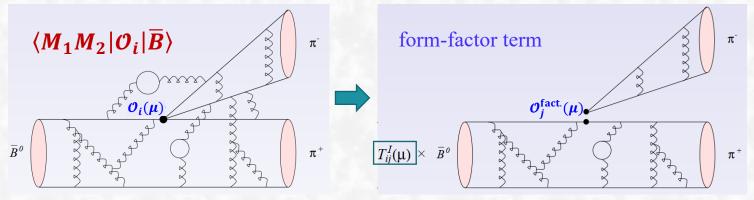
 \square For a typical two-body decay $\overline{B} \rightarrow M_1 M_2$:

$$\mathcal{A}(\overline{B} \to M_1 M_2) = \sum_{i} [\lambda_{\text{CKM}} \times C_i \times \langle M_1 M_2 | \mathcal{O}_i | \overline{B} \rangle]$$

- $\square \langle M_1 M_2 | \mathcal{O}_i | \overline{B} \rangle$: depending on spin & parity of $M_{1,2}$; final-state rescattering introduces strong phases, and hence non-zero direct CPV; A quite difficult, multi-scale, strong-interaction problem!
- \square Different methods proposed for dealing with $\langle M_1 M_2 | \mathcal{O}_i | \overline{B} \rangle$:
 - Dynamical approaches based on factorization theorems: PQCD, QCDF, SCET, · · · Keum, Li, Sanda, Lü, Yang '00; Beneke, Buchalla, Neubert, Sachrajda, '00; Bauer, Flemming, Pirjol, Stewart, '01; Beneke, Chapovsky, Diehl, Feldmann, '02]
- Symmetries of QCD: Isospin, U-Spin, V-Spin, and flavour SU(3) symmetries, · · · Zeppenfeld, '81;

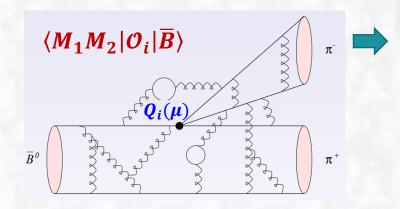
London, Gronau, Rosner, He, Chiang, Cheng et al.

 \square QCDF: systematic framework to all orders in α_s , but limited by $\Lambda_{\rm OCD}/m_b$ corrections. [BBNS '99-'03]



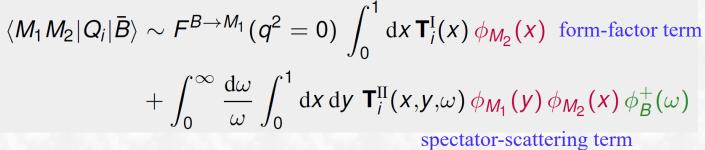
QCDF formula

□ QCDF formula: [BBNS '99-'03]



☐ How to proof the QCDF:

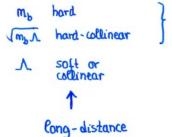
- based on diagrammatic factorization;
 [BBNS '99-'03]
- method of regions; [Beneke, Smirnov '97]
- heavy-quark & collinear expansion for
 hard processes [Lepage, Brodsky '80]



Scales and factorization



Scales (Mr. vitegraled out)



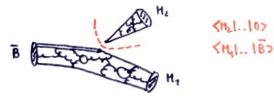
for large mb
ds is small
at these scales

perturbation theory
applies!

 $\longrightarrow {\langle M_1 \rangle \over \langle M_1 \rangle \langle M_2 \rangle$

Factorization utilizes the heavy quark and collinear expansion (N_{m_h}, N_E)

Want to show - at leading order in 1/mb - that the long-distance contributions look like



or even

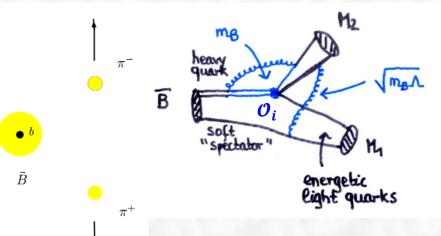
< M21.. 107 < M21.. 107 < 01.. 182

 $\langle M_1 M_2 | Q_i | \bar{B} \rangle$ to simpler $\langle M | j_{\mu} | \bar{B} \rangle$ (form factors),

 $\langle M|j_{\mu}|0\rangle$, $\langle 0|j_{\mu}|\bar{B}\rangle$ (decay constants & LCDAs)

Soft-collinear factorization from SCET

☐ For a two-body decay: simple kinematics, but complicated dynamics with several typical modes;



- low-virtuality modes:
- * HQET fields: $p-m_b v \sim \mathcal{O}(\Lambda)$
- \star soft spectators in B meson: $p_s^\mu \sim \Lambda \ll m_b, \quad p_s^2 \sim {\cal O}(\Lambda^2)$
- ★ collinear quarks and gluons in pion:
 - $E_c \sim m_b, \quad p_c^2 \sim {\cal O}(\Lambda^2)$

- high-virtuality modes:
 - \star hard modes: $(ext{heavy quark} + ext{collinear})^2 \sim \mathcal{O}(m_b^2)$
 - \star hard-collinear modes: $(\mathsf{soft} + \mathsf{collinear})^2 \sim \mathcal{O}(m_b \Lambda)$

- **SCET:** a very suitable framework for studying factorization and re-summation for processes involving energetic & light particles/jets; [Bauer et al. '00; Beneke et al. '02]
- □ From SCET point of view: introduce different fields/modes for different momentum regions, and SCET diagrams must reproduce precisely QCD diagrams in collinear & soft momentum region;
 - L

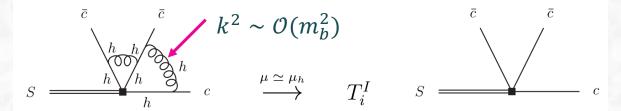
achieve soft-collinear factorization & hence QCDF formula via QFT machinery [Beneke, 1501.07374]

Soft-collinear factorization from SCET

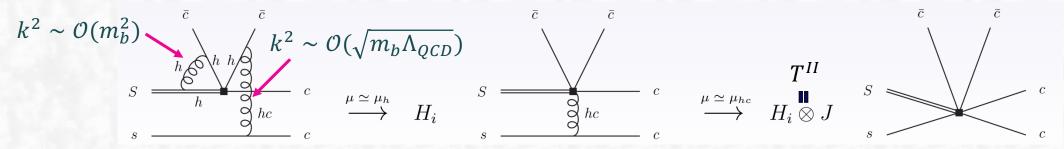
 \square **QCDF formula from SCET:** hard kernels $T^{I,II}$ = matching coefficients from QCD to SCET.

$$\langle M_1 M_2 | Q_i | \bar{B} \rangle = F^{BM_1}(0) \int_0^1 du \, T_i^I(u) \Phi_{M_2}(u) + \int_0^\infty d\omega \int_0^1 du dv \, T_i^{II}(\omega, u, v) \Phi_B(\omega) \Phi_{M_1}(v) \Phi_{M_2}(u) \qquad \qquad \boxed{ \mathbf{QCD - SCET} = \mathbf{T}^{I,II} }$$

□ For T^I : only hard scale involved, one-step matching from QCD \rightarrow SCET_I(hc, c, s)!



□ For T^{II} : two scales involved, two-step matching from QCD \rightarrow SCET_I(hc, c, s) \rightarrow SCET_{II}(c, s)!



□ SCET formalism reproduces exact QCDF result, but more apparent & efficient; [Beneke, 1501.07374]

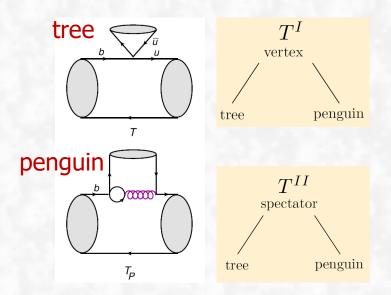
$$\langle M_1 M_2 | Q_i | \bar{B} \rangle = T^I(\mu_h) * \phi_{M_2}(\mu_h) f_+^{BM_1}(0) + H_i(\mu_h) * U_{\parallel}(\mu_h, \mu_{hc}) * J(\mu_{hc}) * \phi_{M_2}(\mu_h) * \phi_{M_1}(\mu_{hc}) * \phi_B(\mu_{hc})$$

NNLO QCD corrections to hadronic matrix elements

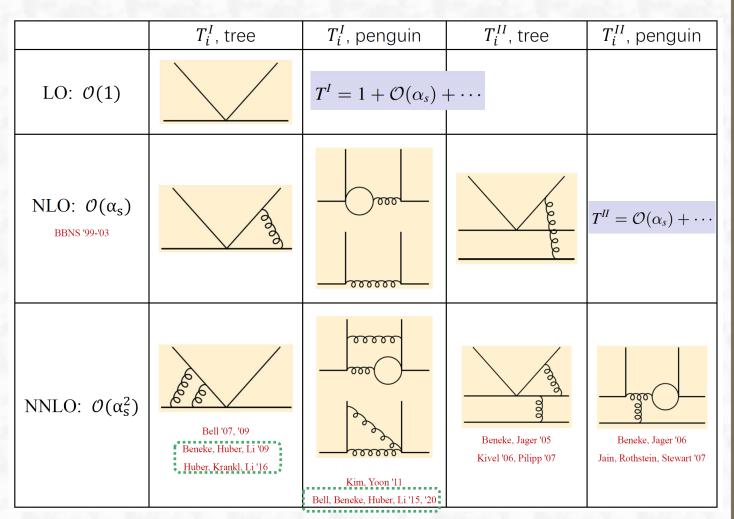
Status of NNLO calculation of $T^I & T^{II}$

 \square For each Q_i insertion, both tree & penguin topologies relevant for charmless decays.

$$\langle M_1 M_2 | Q_i | \overline{B} \rangle \simeq F^{B \to M_1} \, \underline{T_i^I} \otimes \phi_{M_2}$$
$$+ \underline{T_i^{II}} \otimes \phi_B \otimes \phi_{M_1} \otimes \phi_{M_2}$$

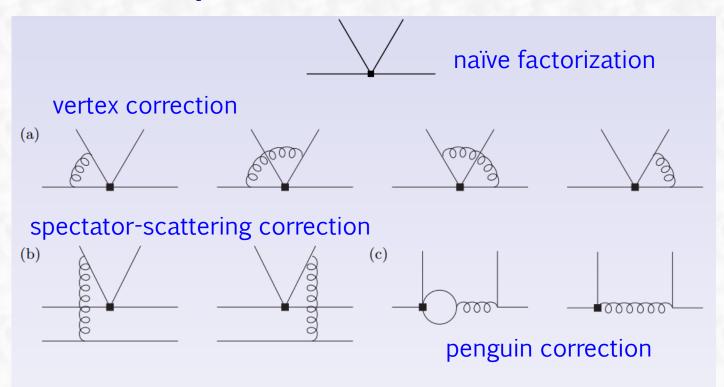


□ For tree & penguin topologies, both contribute to T^I & T^{II} .

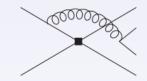


Phenomenological analyses based on NLO

□ Various analyses based on NLO hard kernels.



annihilation correction



□ complete sets of final states:

- $B \to PP, PV$: [Beneke, Neubert, hep-ph/0308039; Cheng, Chua, 0909.5229, 0910.5237;]
- $B \rightarrow VV$: [Beneke, Rohrer, Yang, hep-ph/0612290; Cheng, Yang, 0805.0329; Cheng, Chua, 0909.5229, 0910.5237;]
- $B \to AP, AV, AA$: [Cheng, Yang, 0709.0137, 0805.0329;]
- $B \rightarrow SP, SV$: [Cheng, Chua, Yang, hep-ph/0508104, 0705.3079; Cheng, Chua, Yang, Zhang, 1303.4403;]
- $B \rightarrow TP, TV$: [Cheng, Yang, 1010.3309;]

very successful but also with some problems phenomenologically. !

Phenomenological successes based on NLO

☐ Successes at NLO:

- For color-allowed tree- & penguin-dominated decay modes, branching ratios usually quantitatively OK;
- Dynamical explanation of intricate patterns of penguin interference seen in PP, PV, VP and VV modes;

$$PP \sim a_4 + r_{\chi}a_6, \quad PV \sim a_4 \approx \frac{PP}{3}$$
 $VP \sim a_4 - r_{\chi}a_6 \sim -PV$
 $VV \sim a_4 \sim PV$
 $r_{\chi} = \frac{2m_L^2}{m_b \ (m_q + m_S)}$
 $r_{\chi} = \frac{2m_L^2}{m_b \ (m_q + m_S)}$

$$r_{\chi} = \frac{2m_L^2}{m_b \ (m_q + m_s)}$$

$$\Longrightarrow \operatorname{Br}(B^{\pm,0} \to \eta^{(\prime)}K^{(*)\pm,0})$$

- Qualitative explanation of polarization puzzle in $B \rightarrow VV$ decays, due to the large weak annihilation;
- Strong phases start at $o(\alpha_s)$, dynamical explanation of smallness of direct CP asymmetries;

☐ Some problems encountered at NLO:

- Factorization of power correction generally broken, due to endpoint divergence;
- Could not account for some data, such as large Br($B^0 \to \pi^0 \pi^0$) and $\Delta A_{CP}(\pi K)$;
- ➤ How important the higher-order pert. corr.? Fact. theorem is still established for them?
- \triangleright As strong phases start at $\mathcal{O}(\alpha_s)$, NNLO is only NLO to them; quite relevant for A_{CP} ?

Tree-dominated B decays

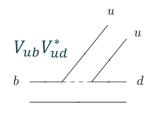
 \square $B \rightarrow \pi\pi$ decay amplitudes in QCDF:

$$\sqrt{2} \langle \pi^{-} \pi^{0} | \mathcal{H}_{eff} | B^{-} \rangle = \lambda_{u} \left[\alpha_{1}(\pi \pi) + \alpha_{2}(\pi \pi) \right] A_{\pi \pi}$$

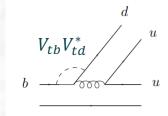
$$\langle \pi^{+} \pi^{-} | \mathcal{H}_{eff} | \bar{B}^{0} \rangle = \left\{ \lambda_{u} \left[\alpha_{1}(\pi \pi) + \alpha_{4}^{u}(\pi \pi) \right] + \lambda_{c} \alpha_{4}^{c}(\pi \pi) \right\} A_{\pi \pi}$$

$$- \langle \pi^{0} \pi^{0} | \mathcal{H}_{eff} | \bar{B}^{0} \rangle = \left\{ \lambda_{u} \left[\alpha_{2}(\pi \pi) - \alpha_{4}^{u}(\pi \pi) \right] - \lambda_{c} \alpha_{4}^{c}(\pi \pi) \right\} A_{\pi \pi}$$

$$V_{ub}V_{ud}^*$$
 $\stackrel{d}{\stackrel{u}{=}}$ $\stackrel{u}{\stackrel{u}{=}}$ colour-allowed tree α_1



colour-suppressed tree α_2



QCD penguins α_4

 $\boldsymbol{b} \to \boldsymbol{u}\overline{\boldsymbol{u}}\boldsymbol{d}$: $\lambda_u = V_{ub}V_{ud}^* \sim \boldsymbol{\mathcal{O}}(\lambda^3) \sim \lambda_c = V_{cb}V_{cd}^* \sim \boldsymbol{\mathcal{O}}(\lambda^3)$ α_4 loop-suppressed vs $\alpha_{1,2}$

 \square α_2 at NLO: large cancellation between 1-loop vertex correction & LO result; also dominated by

spectator-scattering;

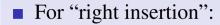
$$\pi) = 0.220 - [0.179 + 0.077i]_{\text{NLO}} + \left[\frac{r_{\text{sp}}}{0.485}\right] \left\{ [0.123]_{\text{LOsp}} + [0.072]_{\text{tw3}} \right\} r_{\text{sp}} = \frac{9f_{M_1}\hat{f}_B}{m_b f_+^{B\pi}(0)\lambda_B}$$

$$r_{\rm sp} = \frac{9f_{M_1}\hat{f}_B}{m_b f_+^{B\pi}(0)\lambda_B}$$

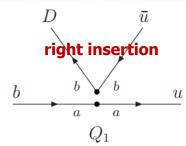
making α_2 sensitive to NNLO corrections, and large effect possible!

Hard kernel T^I at NNLO

□ QCD → SCETI matching calculation:

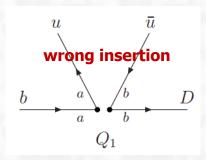


$$\langle Q_i \rangle = T_i \langle O_{\text{QCD}} \rangle + \sum_{a>1} H_{ia} \langle O_a \rangle$$
 $b \downarrow b$ u



■ For "wrong insertion":

$$\langle Q_i \rangle = \widetilde{T}_i \, \langle O_{ ext{QCD}}
angle + \widetilde{H}_{i1} \langle \widetilde{O}_1 - O_1
angle + \sum_{a>1} \widetilde{H}_{ia} \langle \widetilde{O}_a
angle$$



\square Master formula for T^I : right insertion

$$\begin{split} T_i^{(0)} &= A_{i1}^{(0)} \,, \\ T_i^{(1)} &= A_{i1}^{(1)\text{nf}} + Z_{ij}^{(1)} \, A_{j1}^{(0)} \,, \\ T_i^{(2)} &= A_{i1}^{(2)\text{nf}} + Z_{ij}^{(1)} \, A_{j1}^{(1)} + Z_{ij}^{(2)} \, A_{j1}^{(0)} + Z_{\alpha}^{(1)} \, A_{i1}^{(1)\text{nf}} + \, (-i) \, \delta m^{(1)} \, A_{i1}^{\prime (1)\text{nf}} \\ &- T_i^{(1)} \big[C_{FF}^{(1)} + Y_{11}^{(1)} - Z_{ext}^{(1)} \big] - \sum_{b>1} H_{ib}^{(1)} \, Y_{b1}^{(1)} \,. \end{split}$$

☐ On-shell matrix elements at NNLO: full QCD side

$$\langle Q_{i} \rangle = \left\{ A_{ia}^{(0)} + \frac{\alpha_{s}}{4\pi} \left[A_{ia}^{(1)} + Z_{ext}^{(1)} A_{ia}^{(0)} + Z_{ij}^{(1)} A_{ja}^{(0)} \right] \right.$$

$$+ \left. \left(\frac{\alpha_{s}}{4\pi} \right)^{2} \left[A_{ia}^{(2)} + Z_{ij}^{(1)} A_{ja}^{(1)} + Z_{ij}^{(2)} A_{ja}^{(0)} + Z_{ext}^{(1)} A_{ia}^{(1)} + Z_{ext}^{(2)} A_{ia}^{(0)} \right.$$

$$+ Z_{ext}^{(1)} Z_{ij}^{(1)} A_{ja}^{(0)} + Z_{\alpha}^{(1)} A_{ia}^{(1)} + (-i) \delta m^{(1)} A_{ia}^{(1)} \right] + \mathcal{O}(\alpha_{s}^{3}) \right\} \langle O_{a} \rangle^{(0)}$$

☐ On-shell matrix elements at NNLO: SCET side

$$\langle O_a \rangle = \left\{ \delta_{ab} + \frac{\hat{\alpha}_s}{4\pi} \left[M_{ab}^{(1)} + Y_{ext}^{(1)} \, \delta_{ab} + Y_{ab}^{(1)} \right] + \left(\frac{\hat{\alpha}_s}{4\pi} \right)^2 \left[M_{ab}^{(2)} + Y_{ac}^{(1)} M_{cb}^{(1)} + Y_{ab}^{(1)} + Y_{ext}^{(1)} \, M_{ab}^{(1)} + Y_{ext}^{(2)} \, \delta_{ab} + Y_{ext}^{(1)} \, Y_{ab}^{(1)} + \hat{Z}_{\alpha}^{(1)} M_{ab}^{(1)} \right] + \mathcal{O}(\alpha_s^3) \right\} \langle O_b \rangle^{(0)}$$

\square Master formula for T^{I} : wrong insertion

$$\begin{split} \widetilde{T}_{i}^{(0)} &= \widetilde{A}_{i1}^{(0)} \,, \\ \widetilde{T}_{i}^{(1)} &= \widetilde{A}_{i1}^{(1) \text{nf}} + Z_{ij}^{(1)} \, \widetilde{A}_{j1}^{(0)} + \underbrace{\widetilde{A}_{i1}^{(1) \text{f}} - A_{21}^{(1) \text{f}} \, \widetilde{A}_{i1}^{(0)}}_{\mathcal{O}(\epsilon)} - \underbrace{\left[\widetilde{Y}_{11}^{(1)} - Y_{11}^{(1)}\right] \, \widetilde{A}_{i1}^{(0)}}_{\mathcal{O}(\epsilon)} \,, \\ \widetilde{T}_{i}^{(2)} &= \widetilde{A}_{i1}^{(2) \text{nf}} + Z_{ij}^{(1)} \, \widetilde{A}_{j1}^{(1)} + Z_{ij}^{(2)} \, \widetilde{A}_{j1}^{(0)} + Z_{\alpha}^{(1)} \, \widetilde{A}_{i1}^{(1) \text{nf}} \\ &\quad + (-i) \, \delta m^{(1)} \, \widetilde{A}_{i1}^{\prime(1) \text{nf}} + Z_{ext}^{(1)} \, \left[\widetilde{A}_{i1}^{(1) \text{nf}} + Z_{ij}^{(1)} \, \widetilde{A}_{j1}^{(0)}\right] \\ &\quad - \widetilde{T}_{i}^{(1)} \left[C_{FF}^{(1)} + \widetilde{Y}_{11}^{(1)}\right] - \sum_{b>1} \widetilde{H}_{ib}^{(1)} \, \widetilde{Y}_{b1}^{(1)} \\ &\quad + \left[\widetilde{A}_{i1}^{(2) \text{f}} - A_{21}^{(2) \text{f}} \, \widetilde{A}_{i1}^{(0)}\right] + (-i) \, \delta m^{(1)} \left[\widetilde{A}_{i1}^{\prime(1) \text{f}} - A_{21}^{\prime(1) \text{f}} \, \widetilde{A}_{i1}^{(0)}\right] \\ &\quad + (Z_{\alpha}^{(1)} + Z_{ext}^{(1)}) \left[\widetilde{A}_{i1}^{(1) \text{f}} - A_{21}^{(1) \text{f}} \, \widetilde{A}_{i1}^{(0)}\right] \\ &\quad - \left[\widetilde{M}_{11}^{(2)} - M_{11}^{(2)}\right] \widetilde{A}_{i1}^{(0)} \\ &\quad - (C_{FF}^{(1)} - \xi_{45}^{(1)}) \left[\widetilde{Y}_{11}^{(1)} - Y_{11}^{(1)}\right] \widetilde{A}_{i1}^{(0)} - \left[\widetilde{Y}_{11}^{(2)} - Y_{11}^{(2)}\right] \widetilde{A}_{i1}^{(0)} \,. \end{split}$$

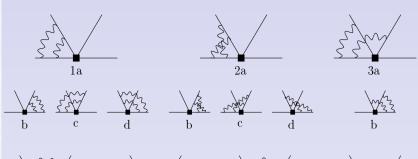
Two-loop QCD diagrams

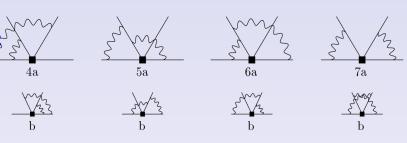
□ Relevant two-loop non-factorizable Feynman diagrams

in full QCD: $\widetilde{A}_{i1}^{(2)nf}$

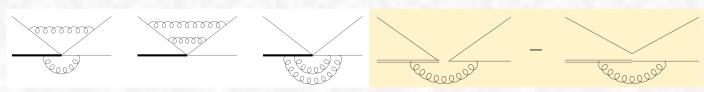
- totally ~ 70 diagrams;
- reeds modern multi-loop

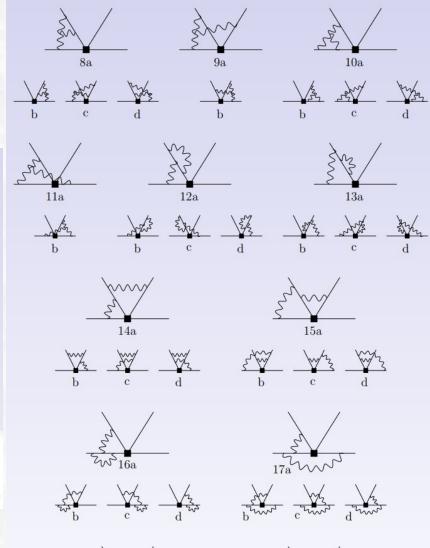
 Feynman diagrams techniques
- IBP reduction, Mellin-Barnes representation, Differential equations, ...





□ Complicated counter-terms from SCET operators:





Final results for $\alpha_{1,2}$

\square Tree amplitudes $\alpha_{1,2}$, after convolution with LCDAs:

$$\alpha_i(M_1M_2) = \sum_{i} C_j V_{ij}^{(0)} + \sum_{l \ge 1} \left(\frac{\alpha_s}{4\pi}\right)^l \left[\frac{C_F}{2N_c} \sum_{i} C_j V_{ij}^{(l)} + P_i^{(l)}\right] + \cdots$$

■ Numerical results including the NNLO corrections:

$$\alpha_{1}(\pi\pi) = 1.009 + [0.023 + 0.010 i]_{NLO} + [0.026 + 0.028 i]_{NNLO}$$

$$- \left[\frac{r_{sp}}{0.445} \right] \left\{ [0.014]_{LOsp} + [0.034 + 0.027 i]_{NLOsp} + [0.008]_{tw3} \right\}$$

$$= 1.000^{+0.029}_{-0.069} + (0.011^{+0.023}_{-0.050})i$$

$$\alpha_{2}(\pi\pi) = 0.220 - [0.179 + 0.077 i]_{NLO} - [0.031 + 0.050 i]_{NNLO}$$

$$+ \left[\frac{r_{sp}}{0.445} \right] \left\{ [0.114]_{LOsp} + [0.049 + 0.051 i]_{NLOsp} + [0.067]_{tw3} \right\}$$

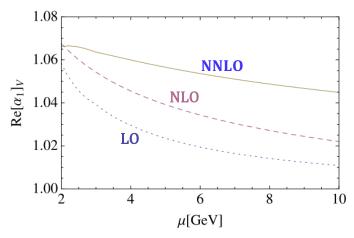
$$= 0.240^{+0.217}_{-0.125} + (-0.077^{+0.115}_{-0.078})i$$

\square For tree amplitudes $\alpha_{1,2}$, cancellation between T^I & T^{II} ;

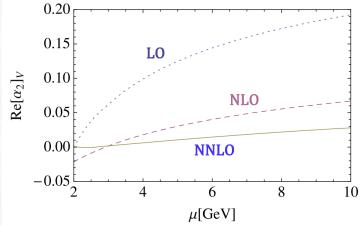
$$\langle M_1 M_2 | \mathcal{O}_i | \bar{B} \rangle \simeq F^{B \to M_1} \, T_i^I \otimes \phi_{M_2} + T_i^{II} \otimes \phi_B \otimes \phi_{M_1} \otimes \phi_{M_2}$$

$$V_{1j}^{(0)} = \int_{0}^{1} du \, T_{j}^{(0)} \phi_{M}(u), \qquad \frac{C_{F}}{2N_{c}} V_{1j}^{(l)} = \int_{0}^{1} du \, T_{j}^{(l)}(u) \phi_{M}(u),$$

$$V_{2j}^{(0)} = \int_{0}^{1} du \, \widetilde{T}_{j}^{(0)} \phi_{M}(u), \qquad \frac{C_{F}}{2N_{c}} V_{2j}^{(l)} = \int_{0}^{1} du \, \widetilde{T}_{j}^{(l)}(u) \phi_{M}(u).$$



Scale-dependence much reduced!



Penguin-dominated B decays

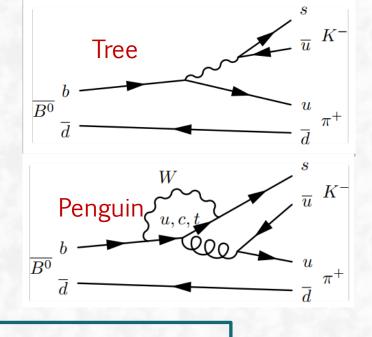
 \square $B \to \pi K$ decay amplitudes: mediated by $b \to sq\bar{q}$ transitions;

$$\begin{split} &\sqrt{2}\,\mathcal{A}_{B^-\to\pi^0K^-} = A_{\pi\,\overline{K}}\big[\delta_{pu}\,\alpha_1 + \hat{\alpha}_4^{\,p}\big] + A_{\,\overline{K}\pi}\big[\delta_{pu}\alpha_2 + \delta_{pc}\,\tfrac{3}{2}\alpha_{3,\mathrm{EW}}^{\,c}\big],\\ &\mathcal{A}_{\,\overline{B}^{\,0}\to\pi^+K^-} = A_{\pi\,\overline{K}}\big[\delta_{pu}\,\alpha_1 + \hat{\alpha}_4^{\,p}\big], \end{split}$$

$$\lambda_u = V_{ub}V_{us}^* \sim \mathcal{O}(\lambda^4) \ll \lambda_c = V_{cb}V_{cs}^* \sim \mathcal{O}(\lambda^2)$$
 Penguin-dominated!

□ In QCDF, strong phases generated firstly at NLO;

$$A_{\mathrm{CP}} = [c \times \alpha_s]_{\mathrm{NLO}} + \mathcal{O}(\alpha_s^2, \Lambda/m_b)$$



NNLO is only NLO for Acp,

large effects still possible

To predict accurately direct CPV, we must calculate both tree & penguin up to NNLO;

 \square Driven by the current exp. data on $B \to \pi K$;

$$egin{aligned} \Delta A_{CP}(\pi K) &= A_{CP}ig(B^-
ightarrow \pi^0 K^-ig) - A_{CP}(\overline{B}{}^0
ightarrow \pi^+ K^-) \ &= (\mathbf{11.5} \pm \mathbf{1.4})\% \quad ext{differs from 0 by $\sim 8\sigma$} \end{aligned}$$

 ΔA_{CP} puzzle

Penguin topologies with various insertions

□ Effective Hamiltonian including penguin operators:

[BBL '96; CMM '98]

$$\mathcal{H}_{\text{eff}} = \frac{4G_F}{\sqrt{2}} \sum_{p=u,c} V_{pD}^* V_{pb} \left(C_1 Q_1^p + C_2 Q_2^p + \sum_{i=3}^{10} C_i Q_i + C_{7\gamma} Q_{7\gamma} + C_{8g} Q_{8g} \right) + \text{h.c.}$$

$$Q_1^p = (\bar{p}_L \gamma^\mu T^A b_L) (\bar{D}_L \gamma_\mu T^A p_L),$$

$$Q_2^p = (\bar{p}_L \gamma^\mu b_L) (\bar{D}_L \gamma_\mu p_L),$$

current-current operators

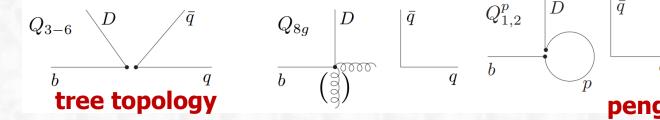
$$\begin{aligned} Q_3 &= (\bar{D}_L \gamma^\mu b_L) \sum_q (\bar{q} \gamma_\mu q), \\ Q_4 &= (\bar{D}_L \gamma^\mu T^A b_L) \sum_q (\bar{q} \gamma_\mu T^A q), \\ Q_5 &= (\bar{D}_L \gamma^\mu \gamma^\nu \gamma^\rho b_L) \sum_q (\bar{q} \gamma_\mu \gamma_\nu \gamma_\rho q), \\ Q_6 &= (\bar{D}_L \gamma^\mu \gamma^\nu \gamma^\rho T^A b_L) \sum_q (\bar{q} \gamma_\mu \gamma_\nu \gamma_\rho T^A q). \end{aligned}$$

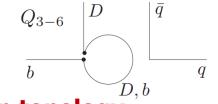
QCD penguin operators

$$Q_{8g} = \frac{-g_s}{32\pi^2} \,\overline{m}_b \,\bar{D}\sigma_{\mu\nu} (1+\gamma_5) G^{\mu\nu} b,$$

chromo-magnetic dipole operators

□ Various operator insertions:





 Q_{3-6} D q q

penguin topology

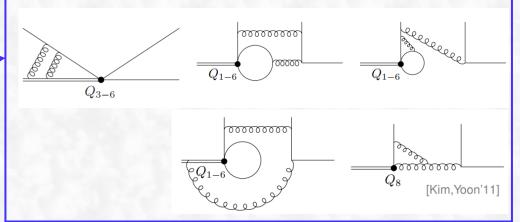
(i) Dirac structure of Q_i , (ii) color structure of Q_i , (iii) types of contraction, and (iv) quark mass in the fermion loop

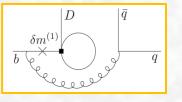
T^I up to NNLO

\square Master formulae for T^I :

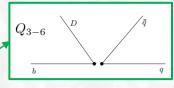
$$\begin{split} \frac{1}{2}\,\widetilde{T}_{i}^{(2)} &= \widetilde{A}_{i1}^{(2)\mathrm{nf}} + Z_{ij}^{(1)}\,\widetilde{A}_{j1}^{(1)} + Z_{ij}^{(2)}\,\widetilde{A}_{j1}^{(0)} + Z_{\alpha}^{(1)}\,\widetilde{A}_{i1}^{(1)\mathrm{nf}} \\ &+ \left(-i \right)\delta m^{(1)}\,\widetilde{A}_{i1}^{\prime(1)\mathrm{nf}} + Z_{\mathrm{ext}}^{(1)}\left[\widetilde{A}_{i1}^{(1)\mathrm{nf}} + Z_{ij}^{(1)}\,\widetilde{A}_{j1}^{(0)} \right] \\ &- \frac{1}{2}\,\widetilde{T}_{i}^{(1)}\left[C_{FF}^{(1)} + \widetilde{Y}_{11}^{(1)} \right] - \sum_{b>1}\widetilde{H}_{ib}^{(1)}\,\widetilde{Y}_{b1}^{(1)} \\ &+ \left[\widetilde{A}_{i1}^{(2)\mathrm{f}} - A_{31}^{(2)\mathrm{f}}\,\widetilde{A}_{i1}^{(0)} \right] + \left(-i \right)\delta m^{(1)}\left[\widetilde{A}_{i1}^{\prime(1)\mathrm{f}} - A_{31}^{\prime(1)\mathrm{f}}\,\widetilde{A}_{i1}^{(0)} \right] \\ &+ \left(Z_{\alpha}^{(1)} + Z_{\mathrm{ext}}^{(1)} \right)\left[\widetilde{A}_{i1}^{(1)\mathrm{f}} - A_{31}^{(1)\mathrm{f}}\,\widetilde{A}_{i1}^{(0)} \right] \\ &- \left[\widetilde{M}_{11}^{(2)} - M_{11}^{(2)} \right]\widetilde{A}_{i1}^{(0)} \\ &- \left[\widetilde{M}_{11}^{(2)} - \xi_{45}^{(1)} \right)\left[\widetilde{Y}_{11}^{(1)} - Y_{11}^{(1)} \right]\widetilde{A}_{i0}^{(0)} - \left[\widetilde{Y}_{11}^{(2)} - Y_{11}^{(2)} \right]\widetilde{A}_{i1}^{(0)} \\ &- \sum_{b>1} \widetilde{A}_{ib}^{(0)}\,\widetilde{M}_{b1}^{(2)} - \sum_{b>1} \widetilde{A}_{ib}^{(0)}\,\widetilde{Y}_{b1}^{(2)} \right]. \end{split}$$

~ 100 two-loop Feynman diagrams





non-vanishing fermion-tadpole contraction of four-quark operators



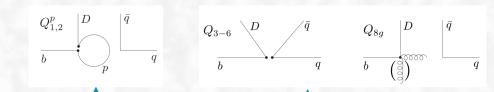
tree-level matching of Q_i involves already evanescent SCET operators

□ Complication during calculations:

- (i) fermion loop with either m=0, $m=m_c$ or $m=m_b$.
- (ii) genuine 2-loop two-scale problem: \bar{u} , $z_c = m_c^2/m_b^2$.
- (iii) threshold at $\bar{u} = 4z_c$ introduces strong phase.

Final results for a_4^p

☐ Final numerical results:



$$a_{4}^{u}(\pi\bar{K})/10^{-2} = -2.87 - [0.09 + 0.09i]_{V_{1}} + [0.49 - 1.32i]_{P_{1}} - [0.32 + 0.71i]_{P_{2}, Q_{1,2}} + [0.33 + 0.38i]_{P_{2}, Q_{3-6,8}} + \left[\frac{r_{\rm sp}}{0.434}\right] \left\{ [0.13]_{\rm LO} + [0.14 + 0.12i]_{\rm HV} - [0.01 - 0.05i]_{\rm HP} + [0.07]_{\rm tw3} \right\}$$

$$= (-2.12^{+0.48}_{-0.29}) + (-1.56^{+0.29}_{-0.15})i,$$

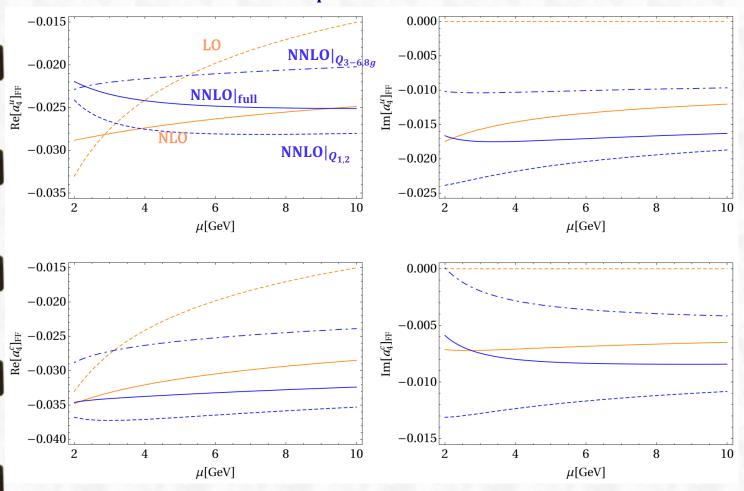
$$Q_{3-6} \downarrow_{D,b} \uparrow_{q} \downarrow_{Q_{3-6}} \downarrow_{Q_{3-6}} \uparrow_{q} \downarrow_{Q_{3-6}} \uparrow_{Q_{3-6}} \uparrow_{$$

$$\begin{aligned} a_4^{c}(\pi\bar{K})/10^{-2} &= -2.87 - [0.09 + 0.09i]_{V_1} + [0.05 - 0.62i]_{P_1} - [0.77 + 0.50i]_{P_2, Q_{1,2}} + [0.33 + 0.38i]_{P_2, Q_{3-6,8}} \\ &+ \left[\frac{r_{\rm sp}}{0.434} \right] \left\{ [0.13]_{\rm LO} + [0.14 + 0.12i]_{\rm HV} + [0.01 + 0.03i]_{\rm HP} + [0.07]_{\rm tw3} \right\} \\ &= (-3.00^{+0.45}_{-0.32}) + (-0.67^{+0.50}_{-0.39})i \,. \end{aligned}$$

- individual NNLO contributions from $Q_{1,2}^p$ and $Q_{3-6,8g}$ are significant.
- strong cancellation between NNLO corrections from $Q_{1,2}^p$ and $Q_{3-6,8g}$.

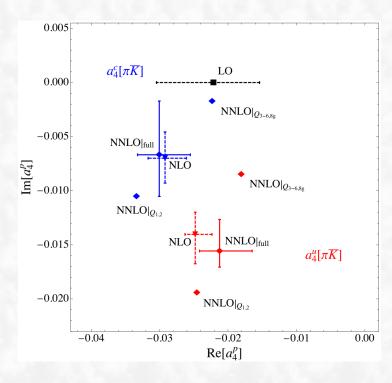
Scale dependence of a_4^p

\square Scale dependence of a_4^p : only form-factor term;



- Scale dependence negligible, especially for $\mu > 4$ GeV.

□ Results at different orders:



- Total NNLO effects small.
- Theoretical uncertainty is larger at NNLO than at NLO.

$B_q^0 o D_q^{(*)-} L^+$ class-I decays

 \square At quark-level, mediated by $b \rightarrow c\overline{u}d(s)$;

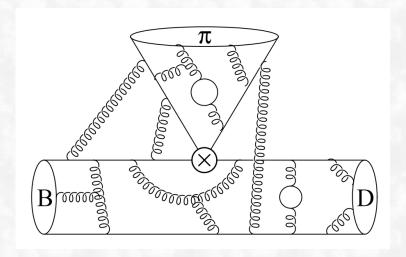
all four flavors different from each other, no penguin operators & no penguin topologies!

□ For class-I decays: QCDF formula much simpler; only the form-factor term at leading power;

[Beneke, Buchalla, Neubert, Sachrajda '99-'03; Bauer, Pirjol, Stewart '01]

$$\langle D_q^{(*)+}L^-|\mathcal{Q}_i|\bar{B}_q^0\rangle = \sum_j F_j^{\bar{B}_q \to D_q^{(*)}}(M_L^2)$$

$$\times \int_0^1 du \, T_{ij}(u)\phi_L(u) + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}}{m_b}\right)$$



$$egin{aligned} \mathcal{Q}_2 &= ar{d}\gamma_\mu (1-\gamma_5) u \ ar{c}\gamma^\mu (1-\gamma_5) b \ \mathcal{Q}_1 &= ar{d}\gamma_\mu (1-\gamma_5) \emph{\emph{T}}^{m{A}} u \ ar{c}\gamma^\mu (1-\gamma_5) \emph{\emph{T}}^{m{A}} b \end{aligned}$$

- only color-allowed tree topology a_1 ;
- ii) spectator & annihilation power-suppressed;
- ii) annihilation absent in $B_{d(s)}^0 \to D_{d(s)}^- K(\pi)^+$ etc.;
- iv) they are theoretically simpler and cleaner!

☐ Hard kernel T: both NLO and NNLO results known;

[Beneke, Buchalla, Neubert, Sachrajda '01; Huber, Kränkl, Li '16]

$$T = T^{(0)} + \alpha_s T^{(1)} + \alpha_s^2 T^{(2)} + O(\alpha_s^3)$$

Calculation of T^I

☐ Matching QCD onto SCET_I: [Huber, Kränkl, Li '16]

 m_c also heavy, must keep m_c/m_b fixed as $m_b \to \infty$, thus needing two sets of SCET operator basis.

$$\langle \mathcal{Q}_i \rangle = \hat{T}_i \langle \mathcal{Q}^{\text{QCD}} \rangle + \hat{T}'_i \langle \mathcal{Q}'^{\text{QCD}} \rangle + \sum_{a>1} \left[H_{ia} \langle \mathcal{O}_a \rangle + H'_{ia} \langle \mathcal{O}'_a \rangle \right]$$

□ Renormalized on-shell QCD amplitudes:

$$\langle \mathcal{Q}_{i} \rangle = \left\{ A_{ia}^{(0)} + \frac{\alpha_{s}}{4\pi} \left[A_{ia}^{(1)} + Z_{ext}^{(1)} A_{ia}^{(0)} + Z_{ij}^{(1)} A_{ja}^{(0)} \right] \right. \quad \text{on QCD side}$$

$$+ \left(\frac{\alpha_{s}}{4\pi} \right)^{2} \left[A_{ia}^{(2)} + Z_{ij}^{(1)} A_{ja}^{(1)} + Z_{ij}^{(2)} A_{ja}^{(0)} + Z_{ext}^{(1)} A_{ia}^{(1)} + Z_{ext}^{(2)} A_{ia}^{(0)} + Z_{ext}^{(1)} Z_{ij}^{(1)} A_{ja}^{(0)} + (-i)\delta m_{b}^{(1)} A_{ia}^{*(1)} + (-i)\delta m_{c}^{(1)} A_{ia}^{**(1)} + Z_{\alpha}^{(1)} A_{ia}^{(1)} \right] + \mathcal{O}(\alpha_{s}^{3}) \left. \right\} \langle \mathcal{O}_{a} \rangle^{(0)}$$

$$+ (A \leftrightarrow A') \langle \mathcal{O}_{a}' \rangle^{(0)} .$$

□ Renormalized on-shell SCET amplitudes:

$$\begin{split} \langle \mathcal{O}_{a} \rangle &= \left\{ \delta_{ab} + \frac{\hat{\alpha}_{s}}{4\pi} \left[M_{ab}^{(1)} + Y_{ext}^{(1)} \delta_{ab} + Y_{ab}^{(1)} \right] \quad \text{on SCET side} \right. \\ &+ \left. \left(\frac{\hat{\alpha}_{s}}{4\pi} \right)^{2} \left[M_{ab}^{(2)} + Y_{ext}^{(1)} M_{ab}^{(1)} + Y_{ac}^{(1)} M_{cb}^{(1)} + \hat{Z}_{\alpha}^{(1)} M_{ab}^{(1)} + Y_{ext}^{(2)} \delta_{ab} \right. \\ &+ \left. \left. \left(Y_{ext}^{(1)} Y_{ab}^{(1)} + Y_{ab}^{(2)} \right) \right] + \mathcal{O}(\hat{\alpha}_{s}^{3}) \right\} \langle \mathcal{O}_{b} \rangle^{(0)} \,, \end{split}$$

physical operators and factorizes into FF*LCDA.

$$\mathcal{O}_{1} = \bar{\chi} \frac{\rlap/m_{-}}{2} (1 - \gamma_{5}) \chi \quad \bar{h}_{v'} \rlap/m_{+} (1 - \gamma_{5}) h_{v} ,$$

$$\mathcal{O}_{2} = \bar{\chi} \frac{\rlap/m_{-}}{2} (1 - \gamma_{5}) \gamma_{\perp}^{\alpha} \gamma_{\perp}^{\beta} \chi \quad \bar{h}_{v'} \rlap/m_{+} (1 - \gamma_{5}) \gamma_{\perp,\beta} \gamma_{\perp,\alpha} h_{v} ,$$

$$\mathcal{O}_{3} = \bar{\chi} \frac{\rlap/m_{-}}{2} (1 - \gamma_{5}) \gamma_{\perp}^{\alpha} \gamma_{\perp}^{\beta} \gamma_{\perp}^{\gamma} \gamma_{\perp}^{\delta} \chi \quad \bar{h}_{v'} \rlap/m_{+} (1 - \gamma_{5}) \gamma_{\perp,\delta} \gamma_{\perp,\gamma} \gamma_{\perp,\beta} \gamma_{\perp,\alpha} h_{v}$$

$$\mathcal{O}'_{1} = \bar{\chi} \frac{\rlap/m_{-}}{2} (1 - \gamma_{5}) \chi \quad \bar{h}_{v'} \rlap/m_{+} (1 + \gamma_{5}) h_{v} ,$$

$$\mathcal{O}'_{2} = \bar{\chi} \frac{\rlap/m_{-}}{2} (1 - \gamma_{5}) \gamma_{\perp}^{\alpha} \gamma_{\perp}^{\beta} \chi \quad \bar{h}_{v'} \rlap/m_{+} (1 + \gamma_{5}) \gamma_{\perp,\alpha} \gamma_{\perp,\beta} h_{v} ,$$

$$\mathcal{O}'_{3} = \bar{\chi} \frac{\rlap/m_{-}}{2} (1 - \gamma_{5}) \gamma_{\perp}^{\alpha} \gamma_{\perp}^{\beta} \gamma_{\perp}^{\gamma} \gamma_{\perp}^{\delta} \chi \quad \bar{h}_{v'} \rlap/m_{+} (1 + \gamma_{5}) \gamma_{\perp,\alpha} \gamma_{\perp,\beta} \gamma_{\perp,\gamma} \gamma_{\perp,\delta} h_{v}$$

evanescent operators and must be renormalized to zero.

■ Master formulas for hard kernels:

$$T = T^{(0)} + \alpha_s T^{(1)} + \alpha_s^2 T^{(2)} + O(\alpha_s^3)$$

$$\begin{split} \hat{T}_i^{(0)} &= A_{i1}^{(0)} \\ \hat{T}_i^{(1)} &= A_{i1}^{(1)nf} + Z_{ij}^{(1)} A_{j1}^{(0)} \\ \hat{T}_i^{(2)} &= A_{i1}^{(2)nf} + Z_{ij}^{(1)} A_{j1}^{(1)} + Z_{ij}^{(2)} A_{j1}^{(0)} + Z_{\alpha}^{(1)} A_{i1}^{(1)nf} - \hat{T}_i^{(1)} \left[C_{FF}^{\mathrm{D}(1)} + Y_{11}^{(1)} - Z_{\mathrm{ext}}^{(1)} \right] \\ &- C_{FF}^{\mathrm{ND}(1)} \hat{T}_i^{\prime(1)} + (-i) \delta m_b^{(1)} A_{i1}^{*(1)nf} + (-i) \delta m_c^{(1)} A_{i1}^{**(1)nf} - \sum_{b \neq 1} H_{ib}^{(1)} Y_{b1}^{(1)} \,. \end{split}$$

Decay amplitudes for $B_q^0 \rightarrow D_q^- L^+$

\square Color-allowed tree amplitude a_1 :

$$a_1(D^+L^-) = \sum_{i=1}^2 C_i(\mu) \int_0^1 du \left[\hat{T}_i(u,\mu) + \hat{T}'_i(u,\mu) \right] \Phi_L(u,\mu),$$

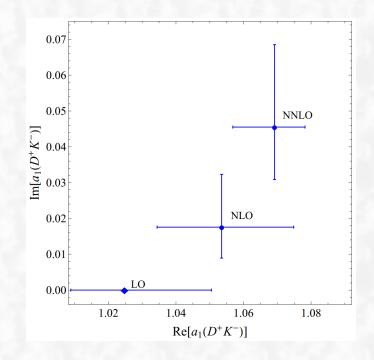
$$a_1(D^{*+}L^-) = \sum_{i=1}^2 C_i(\mu) \int_0^1 du \left[\hat{T}_i(u,\mu) - \hat{T}'_i(u,\mu) \right] \Phi_L(u,\mu),$$

□ Numerical result:

$$a_1(D^+K^-) = 1.025 + [0.029 + 0.018i]_{NLO} + [0.016 + 0.028i]_{NNLO}$$

= $(1.069^{+0.009}_{-0.012}) + (0.046^{+0.023}_{-0.015})i$,

- both NLO and NNLO add always constructively to LO result!
- NNLO corrections quite small in real (2%), but rather large in imaginary part (60%).
- □ For different decay modes: *quasi-universal*, with small process dependence from *non-factorizable correction*.



$$a_1(D^+K^-) = (1.069^{+0.009}_{-0.012}) + (0.046^{+0.023}_{-0.015})i,$$

$$a_1(D^+\pi^-) = (1.072^{+0.011}_{-0.013}) + (0.043^{+0.022}_{-0.014})i,$$

$$a_1(D^{*+}K^-) = (1.068^{+0.010}_{-0.012}) + (0.034^{+0.017}_{-0.011})i$$

$$a_1(D^{*+}\pi^-) = (1.071^{+0.012}_{-0.013}) + (0.032^{+0.016}_{-0.010})i.$$

Non-leptonic/semi-leptonic ratios

Non-leptonic/semi-leptonic ratios: [Bjorken '89; Neubert, Stech '97; Beneke, Buchalla, Neubert, Sachrajda '01]

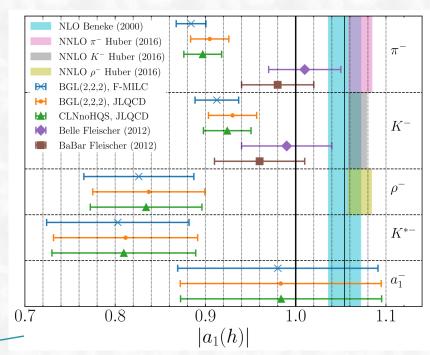
$$R_{(s)L}^{(*)} \equiv \frac{\Gamma(\bar{B}_{(s)}^0 \to D_{(s)}^{(*)+}L^-)}{d\Gamma(\bar{B}_{(s)}^0 \to D_{(s)}^{(*)+}\ell^-\bar{\nu}_\ell)/dq^2\mid_{q^2=m_L^2}} = 6\pi^2 |V_{uq}|^2 f_L^2 |a_1(D_{(s)}^{(*)+}L^-)|^2 X_L^{(*)}$$

free from uncertainties from $V_{cb} \& B_{d,s} \to D_{d,s}^{(*)}$ form factors.

□ Updated predictions vs data: [Huber, Kränkl, Li '16; Cai, Deng, Li, Yang '21]

☐ Latest Belle data: 2207.00134

$R_{(s)L}^{(*)}$	LO	NLO	NNLO	Exp.	Deviation (σ)
R_{π}	1.01	$1.07^{+0.04}_{-0.04}$	$1.10^{+0.03}_{-0.03}$	0.74 ± 0.06	5.4
R_{π}^*	1.00	$1.06^{+0.04}_{-0.04}$	$1.10^{+0.03}_{-0.03}$	0.80 ± 0.06	4.5
$R_{ ho}$	2.77	$2.94^{+0.19}_{-0.19}$	$3.02^{+0.17}_{-0.18}$	2.23 ± 0.37	1.9
R_K	0.78	$0.83^{+0.03}_{-0.03}$	$0.85^{+0.01}_{-0.02}$	0.62 ± 0.05	4.4
R_K^*	0.72	$0.76^{+0.03}_{-0.03}$	$0.79^{+0.01}_{-0.02}$	0.60 ± 0.14	1.3
R_{K^*}	1.41	$1.50^{+0.11}_{-0.11}$	$1.53_{-0.10}^{+0.10}$	1.38 ± 0.25	0.6
$R_{s\pi}$	1.01	$1.07^{+0.04}_{-0.04}$	$1.10^{+0.03}_{-0.03}$	0.72 ± 0.08	4.4
R_{sK}	0.78	$0.83^{+0.03}_{-0.03}$	$0.85^{+0.01}_{-0.02}$	0.46 ± 0.06	6.3



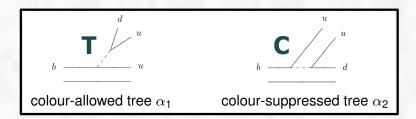
 $|a_1(\overline{B} \to D^{*+}\pi^-)| = 0.884 \pm 0.004 \pm 0.003 \pm 0.016 \ [1.071^{+0.020}_{-0.016}];$

15% lower than SM $|a_1(\overline{B} \to D^{*+}K^-)| = 0.913 \pm 0.019 \pm 0.008 \pm 0.013 [1.069^{+0.020}_{-0.016}];$

Status of NNLO calculation of $T^I \& T^{II}$

- \square Complete NNLO calculation for T^I & T^{II} at leading power in QCDF/SCET now complete;
- □ Soft-collinear factorization at 2-loop level established via explicit calculations;
- \square For tree amplitudes, cancellation between T^I & T^{II} ;

$$\langle M_1 M_2 | \mathcal{O}_i | \bar{B} \rangle \simeq F^{B \to M_1} \, T_i^I \otimes \phi_{M_2} + T_i^{II} \otimes \phi_B \otimes \phi_{M_1} \otimes \phi_{M_2}$$



$$\alpha_{1}(\pi\pi) = 1.009 + [0.023 + 0.010 i]_{NLO} + [0.026 + 0.028 i]_{NNLO}$$

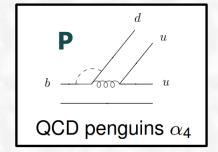
$$- \left[\frac{r_{sp}}{0.445}\right] \left\{ [0.014]_{LOsp} + [0.034 + 0.027 i]_{NLOsp} + [0.008]_{tw3} \right\}$$

$$= 1.000^{+0.029}_{-0.069} + (0.011^{+0.023}_{-0.050})i$$

$$= 0.220 - [0.179 + 0.077 i]_{NLO} - [0.031 + 0.050 i]_{NNLO}$$

$$+ \left[\frac{r_{sp}}{0.445}\right] \left\{ [0.114]_{LOsp} + [0.049 + 0.051 i]_{NLOsp} + [0.067]_{tw3} \right\}$$

$$= 0.240^{+0.217}_{-0.125} + (-0.077^{+0.115}_{-0.078})i$$



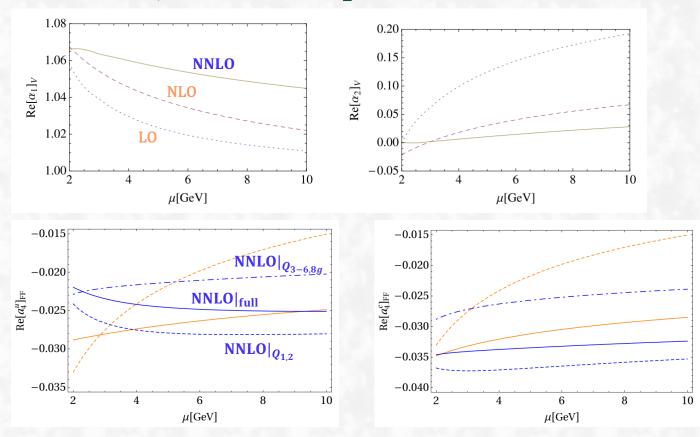
$$a_4^{u}(\pi \bar{K})/10^{-2} = -2.87 - [0.09 + 0.09i]_{V_1} + [0.49 - 1.32i]_{P_1} - [0.32 + 0.71i]_{P_2, Q_{1,2}} + [0.33 + 0.38i]_{P_2, Q_{3-6,8}}$$

$$+ \left[\frac{r_{\rm sp}}{0.434} \right] \left\{ [0.13]_{\rm LO} + [0.14 + 0.12i]_{\rm HV} - [0.01 - 0.05i]_{\rm HP} + [0.07]_{\rm tw3} \right\}$$

$$= (-2.12^{+0.48}_{-0.29}) + (-1.56^{+0.29}_{-0.15})i,$$

Scale dependence of $a_{1,2}$ and a_4^p

- □ Phen., NNLO corrections have no much effects compared to the NLO predictions; [w.i.p]
- ☐ The scale dependence much reduced for $a_{1,2}$ & a_4^p : only form—factor term
 - > scale dependence negligible, especially for $\mu > 4$ GeV.



☐ More precise than NLO results, and hence welcome for precision data @ LHCb & Belle II;

Factorization also valid? New sources of strong phases?

 \square Main issue in QCDF/SCET: sub-leading power-corrections $\sim \Lambda_{QCD}/m_b \simeq 0.2$ unknown!

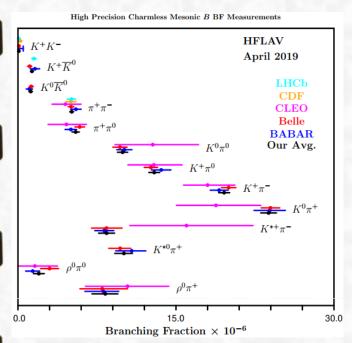
Summary

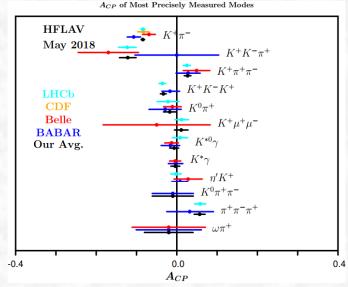
- □ With exp. and theor. progress, we are now entering a precision era for flavour physics!
- □ Within QCDF/SCET framework, NNLO QCD corrections to color-allowed, color-suppressed tree & leading-power penguin amplitudes complete, factorization at 2-loop established.
- □ Due to delicate cancellation, NNLO corrections small; some puzzles still remain:
 - ightharpoonup long-standing $\operatorname{Br}(\bar{B}^0 \to \pi^0 \pi^0)$ and $\Delta A_{CP}(\pi K) = A_{CP}(B^- \to \pi^0 K^-) A_{CP}(\bar{B}^0 \to \pi^+ K^-)$;
 - ightharpoonup for class-I $B_q^0 o D_q^{(*)-}L^+$ decays, $\mathcal{O}(4-5\sigma)$ discrepancies observed in branching ratios;
 - sub-leading power corrections in QCDF/SCET need to be considered!
 - ightharpoonup Sub-leading color-octet matrix elements $\langle M_1 M_2 \big| [\bar{u}_c T^A h_v]_{\Gamma_1} [\bar{s}_{\bar{c}} T^A u_{\bar{c}}]_{\Gamma_2}(u) \big| \bar{B} \rangle$; [w.i.p]
 - \triangleright improved treatments of annihilation amplitudes: SU(3)-breaking effects & flavor-dependence of the building blocks $A_{1,2}^i$; [w.i.p] Thank You for your attention!

Backup

Precision era of B physics

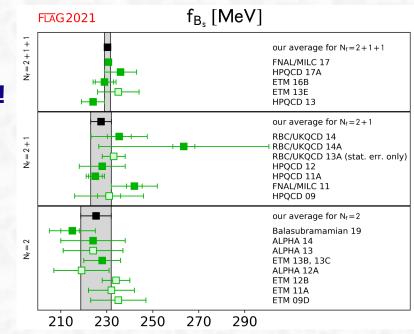
☐ More precise data from these B-dedicated experiments!

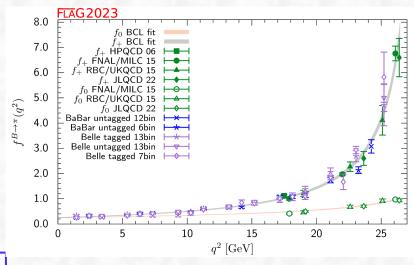




https://hflav.web.cern.ch/

□ Lattice QCD & LCSR etc. also provide more precise results for the non-pert. hadronic parameters!





http://flag.unibe.ch/2021/

Local operators for hadronic B decays

☐ Three steps for Wilson coefficients:

 \square Local operators \mathcal{O}_i :

• Calculation of matching coefficients c_i in fixed-order perturbation theory:

$$C_i(m_W) = c_i^{(0)} + \frac{\alpha_s}{4\pi} c_i^{(1)} + \dots$$

← SM! + New Physics?

• Perturbative calculation of anomalous dimensions γ_{ij} of operators in H_{eff}

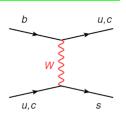
$$\gamma_{ij} = \gamma_{ij}^{(0)} + \frac{\alpha_s}{4\pi} \gamma_{ij}^{(1)} + \dots$$

 \leftarrow QCD (+QED)

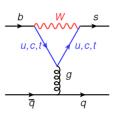
• Use renormalization group to sum large logarithms $\ln \frac{m_b}{m_{WL}}$:

$$C_i(m_W) o C_i(m_b) = \left[rac{lpha_s(m_b)}{lpha_s(m_W)}
ight]^{-\gamma_{ij}^{(0)}/2eta_0} C_j(m_W) + \dots$$
 \longleftarrow RGE

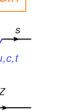
charged current



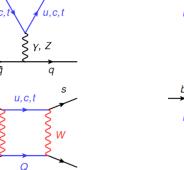
QCD-penguin



EW-penguin



electro- & chromo-man

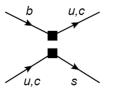


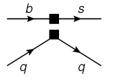
Relevant Feynman diagrams in full theory

□ Decay amplitude for a given decay:

$$\mathcal{A}(\bar{B} \to f) = \sum_{i} \left[\lambda_{\text{CKM}} \times C \times \langle f | \mathcal{O} | \bar{B} \rangle_{\text{QCD+QED}} \right]_{i}$$

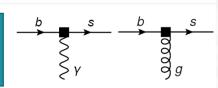
hadronic matrix elements at m_h

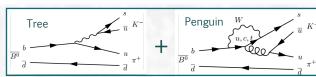




LHS: four-quark operators;

RHS: magnetic operators;





□ CKM factors $\lambda_p^{(D)} \equiv V_{pb}V_{pD}^*$: - for $b \to d$, $\lambda_u^{(d)} \sim \lambda_c^{(d)} \sim \lambda^3$, tree-dominated, like $\bar{B}^0 \to \pi^+ \pi^-$

-for $b \to s$, $\lambda_u^{(s)} \sim \lambda^4 \ll \lambda_c^{(s)} \sim \lambda^2$, penguin-dominated, like $\bar{B}^0 \to \pi^+ K^ \Longrightarrow$ interference induces CPV!

Charmless two-body hadronic B decays

 \square Long-standing puzzles in $\text{Br}(\overline{B}^0 \to \pi^0 \pi^0)$ and $\Delta A_{CP}(\pi K) = A_{CP}(\pi^0 K^-) - A_{CP}(\pi^+ K^-)$: [HFLAV '23]

$$Br(B^0 \to \pi^0 \pi^0) = (0.3 - 0.9) \times 10^{-6}$$

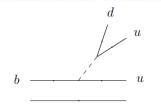
$$\Delta A_{CP}(\pi K) = (11.5 \pm 1.4)\%$$

differs from 0 by $\sim 8\sigma$

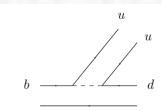
□ Decay amplitudes in QCDF:

$$-\mathcal{A}_{\overline{B}^0 \to \pi^0 \pi^0} = A_{\pi\pi} \left[\delta_{pu} (\alpha_2 - \beta_1) - \hat{\alpha}_4^p - 2\beta_4^p \right]$$

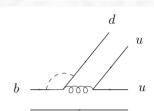
□ Dominant topologies: LP NNLO known

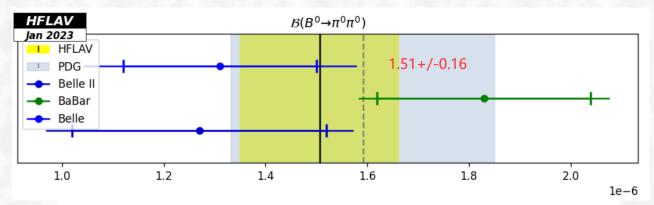


colour-allowed tree α_1



colour-suppressed tree α_2 QCD penguins α_4





$$\sqrt{2} \mathcal{A}_{B^- \to \pi^0 K^-} = A_{\pi \overline{K}} \left[\delta_{pu} \alpha_1 + \hat{\alpha}_4^p \right] + A_{\overline{K}\pi} \left[\delta_{pu} \alpha_2 + \delta_{pc} \frac{3}{2} \alpha_{3, \text{EW}}^c \right],$$

$$\mathcal{A}_{\overline{B}^0 \to \pi^+ K^-} = A_{\pi \overline{K}} \left[\delta_{pu} \alpha_1 + \hat{\alpha}_4^p \right],$$

$$A_{\mathrm{CP}}(\pi^0 K^{\pm}) - A_{\mathrm{CP}}(\pi^{\mp} K^{\pm}) = -2\sin\gamma \left(\mathrm{Im}(r_{C}) - \mathrm{Im}(r_{T} r_{\mathrm{EW}})\right) + \dots$$

 α_2 always plays a key role here!

Find some mechanism to enhance α_{2} , may we explain both puzzles!

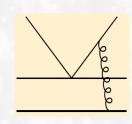
Power-suppressed colour-octet contribution

- \square Sub-leading power corrections to a_2 : spectator scattering or final-state interactions
- \square Every four-quark operator in $H_{\rm eff}$ has a colour-octet piece in QCD:

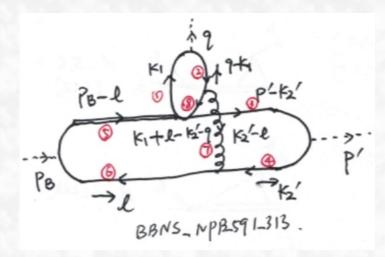
$$t_{ik}^a t_{jl}^a = \frac{1}{2} \delta_{il} \delta_{jk} - \frac{1}{2N_c} \delta_{ik} \delta_{jl},$$

$$Q_{1} = (\bar{u}_{i}b_{i})_{V-A} \otimes (\bar{s}_{j}u_{j})_{V-A} = \frac{1}{N_{c}}(\bar{s}_{i}b_{i})_{V-A} \otimes (\bar{u}_{j}u_{j})_{V-A} + 2(\bar{s}T^{A}b)_{V-A} \otimes (\bar{u}T^{A}u)_{V-A}$$

$$Q_2 = \left(\bar{u}_i b_j\right)_{V-A} \otimes \left(\bar{s}_j u_i\right)_{V-A} = \frac{1}{N_c} (\bar{u}_i b_i)_{V-A} \otimes \left(\bar{s}_j u_j\right)_{V-A} + 2(\bar{u} T^A b)_{V-A} \otimes (\bar{s} T^A u)_{V-A}$$



□ Three-loop correlators with colour-octet operator insertion:



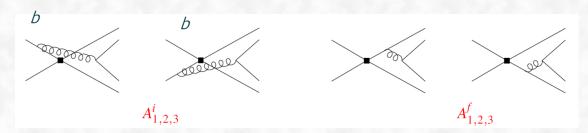
- The gluon propagator can be in the hard-collinear region;
 - → hard-spectator scattering contribution;
- \triangleright Can also be in the soft region; expected to be $\mathcal{O}(1/m_b)$;
 - can be non-zero at sub-leading power;
- \triangleright Other four regions suppressed by more powers of $1/m_b$;

Pure annihilation B decays

$$\mathcal{A}(\bar{B}_{s} \to \pi^{+}\pi^{-}) = B_{\pi\pi} \left[\delta_{pu} b_{1} + 2b_{4}^{p} + \frac{1}{2} b_{4,\text{EW}}^{p} \right]$$

$$\mathcal{A}(\bar{B}_{d} \to K^{+}K^{-}) = A_{\bar{K}K} \left[\delta_{pu} \beta_{1} + \beta_{4}^{p} + b_{4,\text{EW}}^{p} \right] + B_{K\bar{K}} \left[b_{4}^{p} - \frac{1}{2} b_{4,\text{EW}}^{p} \right]$$

$$= A_{\bar{K}K} \left[\delta_{pu} \beta_{1} + \beta_{4}^{p} \right] + B_{K\bar{K}} \left[b_{4}^{p} \right]$$



□ Both involve the building blocks $b_1 = \frac{c_F}{N_c^2} C_1 A_1^i$ & $b_4^p = \frac{c_F}{N_c^2} [C_4 A_1^i + C_6 A_2^i]$:

$$A_1^i: (\mathbf{V} - \mathbf{A}) \otimes (\mathbf{V} - \mathbf{A})$$

 $A_2^i: (\mathbf{V} - \mathbf{A}) \otimes (\mathbf{V} + \mathbf{A})$

$$A_1^i(M_1M_2) = \pi \alpha_s \int_0^1 dx dy \left\{ \Phi_{M_2}(x) \Phi_{M_1}(y) \left[\frac{1}{y(1-x\bar{y})} + \frac{1}{\bar{x}^2 y} \right] + r_{\chi}^{M_1} r_{\chi}^{M_2} \Phi_{m_2}(x) \Phi_{m_1}(y) \frac{2}{\bar{x}y} \right\},$$

$$A_2^i(M_1M_2) = \pi \alpha_s \int_0^1 dx dy \left\{ \Phi_{M_2}(x) \Phi_{M_1}(y) \left[\frac{1}{\bar{x}(1-x\bar{y})} + \frac{1}{\bar{x}y^2} \right] + r_{\chi}^{M_1} r_{\chi}^{M_2} \Phi_{m_2}(x) \Phi_{m_1}(y) \frac{2}{\bar{x}y} \right\},$$

□ With the asymptotic LCDAs, we have $A_1^i = A_2^i$: [BBNS '99-'03]

$$A_1^i(M_1M_2) = \pi\alpha_s \left\{ 18X_A - 18 - 6(9 - \pi^2) + r_\chi^{M_1} r_\chi^{M_2} \left(2X_A^2\right) \right\},$$

$$A_2^i(M_1M_2) = \pi\alpha_s \left\{ 18X_A - 18 - 6(9 - \pi^2) + r_\chi^{M_1} r_\chi^{M_2} \left(2X_A^2\right) \right\},$$

$$X_{A} = \left(1 + \mathcal{O}_{A} e^{i\varphi_{A}}\right) \ln\left(m_{B} / \Lambda_{h}\right),\,$$

 $\Lambda_h = 0.5 \text{GeV}, \circlearrowleft_A \leq 1 \text{ and an arbitrary phase } \varphi_A$

Ways to improve the modelling of annihilations

 \square With universal X_A and different scenarios, we have: [BBNS '03]

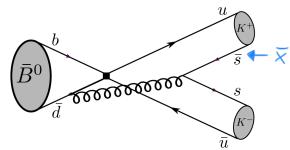
Mode	Theory	S1 (large γ)	S2 (large a ₂)	S3 $(\varphi_A = -45^\circ)$	S4 ($\varphi_A = -55^{\circ}$)	Exp.
$\overline{B}_s^0 \to \pi^+\pi^-$	$0.024^{+0.003+0.025+0.000+0.163}_{-0.003-0.012-0.000-0.021}$	0.027	0.032	0.149	0.155	0.671 ± 0.083
$\bar{B}^0 \to K^- K^+$	$0.013^{+0.005+0.008+0.000+0.087}_{-0.005-0.005-0.000-0.011}$	0.007	0.014	0.079	0.070	0.0803 ± 0.0147

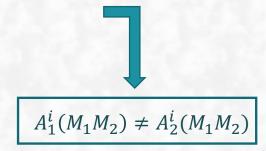
- □ Large SU(3)-flavor symmetry breaking or flavor-dependent $A_{1,2}^i$? [Wang, Zhu '03; Bobeth *et al.* '14; Chang, Sun *et al.* '14-15]
- **□** How to improve the situation:
- including higher Gegenbauer moments to include SU(3)-breaking effects;

$$\Phi_M(x,\mu) = 6x\bar{x}\left[1 + \sum_{n=1}^{\infty} a_n^M(\mu)\,C_n^{(3/2)}(2x-1)\right]$$
 due to G-parity, $a_{odd}^{\pi} = 0$, but $a_{odd}^{K} \neq 0$

- Making the parameter X_A to be flavor-dependent & depending on its origins; mediated by a soft strange quark (X_A^S) or a soft up or down quark (X_A^{ud}) ?
- > including the difference between the chirality factors to include SU(3)-breaking effects;

$$r_{\chi}^{\pi}(1.5\text{GeV}) = \frac{2m_{\pi}^2}{m_b(\mu)(m_u(\mu) + m_d(\mu))} \simeq 0.86, \qquad r_{\chi}^{K}(1.5\text{GeV}) = \frac{2m_K^2}{m_b(\mu)(m_u(\mu) + m_s(\mu))} \simeq 0.91$$





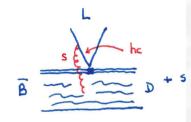
Power corrections

□ Leading soft power corrections:

After (tree-level) hard matching to SCET_I

$$H_{\text{eff}} = \underbrace{\left(C_1 + \frac{C_2}{N_c}\right)}_{q_1} \underbrace{\left[\bar{h}_c h_b\right]_{V-A} \left[\bar{\xi}_d \xi_u\right]_{V-A}}_{F^{B \to D} \times f_L} + 2C_2 \underbrace{\left[\bar{h}_c T^A h_b\right]_{V-A} \left[\bar{\xi}_d T^A \xi_u\right]_{V-A}}_{O_8 \to 0 \text{ at LP}}$$

$$C_1^{\text{BBL}}(xm_b) \sim 1.1$$
 $C_2^{\text{BBL}}(xm_b) \sim -0.3...-0.1$



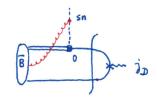
Leading soft power correction [BBNS, 2000]

$$\langle D^{+}\pi^{-}|O_{8}|\bar{B}_{d}\rangle_{\text{soft}} = -\underbrace{\int_{0}^{\infty}ds\,\langle D^{+}|\bar{c}\gamma^{\mu}(1-\gamma_{5})g_{s}\tilde{G}_{\mu\nu}(-sn)n^{\nu}b|\bar{B}_{d}\rangle}_{0}\int_{0}^{1}du\,\frac{f_{\pi}\Phi_{\pi}(u)}{8N_{c}u\bar{u}}$$

non-local $B \rightarrow D$ form factor

Estimate from light-cone sum rules [Bordone et al., 2020] in terms of twist-3 B-LCDAs

$$-(0.05 - 0.5)\%$$
 correction

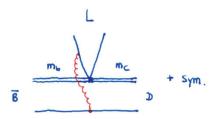


Beneke, talk @"Status and Prospects of Non-Leptonic B Decays", Siegen, May 31 - June 02, 2022

□ Semi-soft-collinear spectator scattering:

Alternative: semi-soft-collinear spectator scattering [BBNS, 2000]

- No spectator-scattering for class-I heavy-to-heavy, because of assumption: $m_c \sim m_b$ and small velocity transfer.
- Instead assume $m_b \gg m_c \gg \Lambda_{\rm QCD} \rightarrow$ spectator scattering is possible
- D meson is described by a (highly) asymmetric leading-twist LCDA $\Phi_D(u)$.



$$\frac{A_{\text{spec}}}{A_{\text{leading}}} \simeq \frac{2\pi\alpha_s}{3} \frac{C_2}{a_1} \frac{f_D f_B}{F^{B \to D}(0) m_B^2} \frac{m_B}{\lambda_B} \underbrace{\int dv \frac{\Phi_D(u)}{\bar{u}}}_{6.6 \text{ instead of } 3} \approx -3\%$$

Substantially larger than the soft correction, also negative

Must take seriously into account these power corrections in QCDF/SCET!