Lattice QCD study of Hadron Spectroscopy

刘柳明 中国科学院近代物理研究所

2023年度中国科学院理论物理前沿重点实验室年会 北京, 2023年6月1日

♦Introduction

- Spectroscopy on lattice • Scattering on lattice
- Preliminary results
 - Hidden charm pentaquarks
 - H-dibaryon

 \blacklozenge Write down an interpolating operator \mathcal{O} with certain quantum number, e.g. pion operator $\bar{u}\gamma_5 d$ Compute the correlation function $<0\left|\mathcal{O}(t)\mathcal{O}(0)^{\dagger}\right| 0> = \sum \frac{<0\left|\mathcal{O}\right| n > < n\left|\mathcal{O}\right| 0>}{2E_{n}} e^{-E_{n}t} \longrightarrow \propto e^{-E_{0}t}$

♦ At large t, fit the correlation function to an exponential. ♦ Usually only the ground state can be obtained.

Neutron-proton mass difference, Sz. Borsan et al., Science 347:1452-1455,2015

Spectroscopy on lattice

Excited states:

- \bullet build large basis of operators { $\mathcal{O}_1, \mathcal{O}_2, \cdots$ } with desired quantum numbers, construct the matrix of correlation function:
 - $C_{ij} = \langle 0 | \mathcal{O}_i \mathcal{O}_j^{\dagger} | 0$
- ◆ Solve the generalized eigenvalue problem(GEVP): $C_{ii}v_i^n(t)$
- Eigenvalues: $\lambda_n(t) \sim e^{-E_n t} (1 + e^{-\Delta E t})$

 $\Omega_n =$

Spectroscopy on lattice

$$0 > = \sum_{n} Z_i^n Z_j^{n*} e^{-E_n t}$$

$$= \lambda_n(t) C_{ij}^0 v_j^n(t)$$

• Optimal linear combinations of the operators to overlap on the n'th state:

$$= \sum_{i} v_i^n \mathcal{O}_i$$

An example: Charmonium spectrum (L. Liu et al. JHEP 1207 (2012) 126)

Spectroscopy on lattice

Lüscher's finite volume method:

Scattering on lattice

M. Lüscher, Nucl. Phys. B354, 531(1991)

An example: ρ resonance $\rightarrow \pi\pi$ scattering

M. Werner et. al., Eur.Phys.J.A 56 (2020) 2, 61

An example: ρ resonance $\rightarrow \pi\pi$ scattering

M. Werner et. al., Eur.Phys.J.A 56 (2020) 2, 61

An example: ρ resonance $\rightarrow \pi\pi$ scattering Breit-Wigner formula: $\tan \delta_1 = \frac{g_{\rho \pi \pi}^2}{6\pi} \frac{p^3}{E_{CM}(M_{\rho}^2 - E_{CM}^2)}, \qquad E_{CM} = 2\sqrt{m_{\pi}^2 + p^2}$

The width of ρ resonance: $\Gamma_{\rho} = \frac{2}{3} \frac{g_{\rho\pi\pi}^2}{4\pi} \frac{p^3}{M_{\rho}^2}$

M. Werner et. al., Eur.Phys.J.A 56 (2020) 2, 61

Scattering on lattice

Resonances/bound states are formally defined as poles in scattering amplitudes.

Scattering on lattice

- Challenges:
 - Coupled channels
 - Near-threshold exotic states
 - Multi-particle scattering
 - Control systematics

Precise determination of the finite-volume spectra (Distillation quark smearing method)

Large set of configurations with various parameters

Lattice spacing	Volume($L^3 \times T$)	M_{π} (MeV)	
~0.108fm	$24^3 \times 72$	290	
	$32^3 \times 64$	290	
	$32^3 \times 64$	220	
	$48^3 \times 96$	220	
	$48^3 \times 96$	140	
~0.080fm	$32^3 \times 96$	300	
	$48^3 \times 96$	300	
	$32^3 \times 64$	220	
	$48^3 \times 96$	220	
~0.055fm	$48^3 \times 144$	300	

Lattice QCD configurations

of confs
1000
1000
450
200
200
480
200
460
200
200

中国科学院近代物理研究所

L. Liu, M. Gong, W. Sun, P. Sun, W. Wang, Y.B. Yang

Lattice spacing	Volume($L^3 \times T$)	M_{π} (MeV)	# of confs
~0.108fm	$24^3 \times 72$	290	1000
	$32^3 \times 64$	290	1000
	$32^3 \times 64$	220	450
	$48^3 \times 96$	220	200
	$48^3 \times 96$	140	200
~0.080fm	$32^3 \times 96$	300	480
	$48^3 \times 96$	300	200
	$32^3 \times 64$	220	460
	$48^3 \times 96$	220	200
~0.055fm	$48^3 \times 144$	300	200

Σ_{c}	\bar{D} and $\Sigma_c \bar{D}^*$ scattering $(J^P = -$
•	Five operators:
	$\mathcal{O}_1 = \Sigma_c(\mathbf{p})\bar{D}(-\mathbf{p}) \ (\mathbf{p} = 0)$
	$\mathcal{O}_2 = \Sigma_c(\mathbf{p})\bar{D}(-\mathbf{p}) (\mathbf{p} = 1)$
	$\mathcal{O}_3 = \Sigma_c(\mathbf{p})\bar{D}(-\mathbf{p}) \ (\mathbf{p} = \sqrt{2})$
	$\mathcal{O}_4 = \Sigma_c(\mathbf{p})\bar{D}^*(-\mathbf{p}) (\mathbf{p} = 0)$
	$\mathcal{O}_5 = \Sigma_c(\mathbf{p})\bar{D}^*(-\mathbf{p}) (\mathbf{p} = 1)$

Lattice spacing	Volume($L^3 \times T$)	M_{π} (MeV)	
~0.108fm	$24^3 \times 72$	290	
	$32^3 \times 64$	290	
	$32^3 \times 64$	220	
	$48^3 \times 96$	220	
	$48^3 \times 96$	140	
~0.080fm	$32^3 \times 96$	300	
	$48^3 \times 96$	300	
	$32^3 \times 64$	220	
	$48^3 \times 96$	220	
~0.055fm	$48^3 \times 144$	300	

$$\Sigma_{c}\bar{D} \text{ and } \Sigma_{c}\bar{D}^{*} \text{ scattering}(J^{P} = -\frac{1}{2})$$

$$Five \text{ operators:}$$

$$\mathcal{O}_{1} = \Sigma_{c}(\mathbf{p})\bar{D}(-\mathbf{p}) (|\mathbf{p}| = 0)$$

$$\mathcal{O}_{2} = \Sigma_{c}(\mathbf{p})\bar{D}(-\mathbf{p}) (|\mathbf{p}| = 1)$$

$$\mathcal{O}_{3} = \Sigma_{c}(\mathbf{p})\bar{D}(-\mathbf{p}) (|\mathbf{p}| = \sqrt{2})$$

$$\mathcal{O}_{4} = \Sigma_{c}(\mathbf{p})\bar{D}(-\mathbf{p}) (|\mathbf{p}| = 0)$$

$$\mathcal{O}_{5} = \Sigma_{c}(\mathbf{p})\bar{D}^{*}(-\mathbf{p}) (|\mathbf{p}| = 1)$$

 $E^{free} = \sqrt{m_{\Sigma_c}^2 + \mathbf{p}^2 + \sqrt{m_{D^*}^2 + \mathbf{p}^2}}$ $E^{free} = \sqrt{m_{\Sigma_c}^2 + \mathbf{p}^2 + \sqrt{m_D^2 + \mathbf{p}^2}}$

 The finite-volume energies lie below the free energies, indicating rather strong attractive interactions. • Mixing between $\Sigma_c \overline{D}$ and $\Sigma_c \overline{D}^*$ is negligible.

Scattering amplitude:

$$T \sim \frac{1}{p \cot \delta - ip}$$

Bound state pole:

$$p = i |p_B|$$

Effective range expansion:

$$pcot\delta(p) = \frac{1}{a_0} + \frac{1}{2}r_0p^2 + \cdots$$

$$\Sigma_c \bar{D} : P_c(4312)$$

 $a_0 = -2.0(3)(2)$
 $E_B = 6(2)(2)$

Luscher's formula:

$$pcot\delta(p) = \frac{2Z_{00}(1;(\frac{pL}{2\pi})^2)}{L\sqrt{\pi}}$$

$$\Sigma_c \bar{D}^* : P_c(4440)$$

 $a_0 = -2.3(5)(E_B = 7(3)(1)M)$

Coupled channels: $\eta_c N, J/\psi N, \Lambda_c \overline{D}, \Lambda_c \overline{D}^*, \Sigma_c \overline{D}, \Sigma_c \overline{D}^*$

+ 15 operators: $\mathcal{O}_{1.2.3} = N(\mathbf{p})\eta_c(-\mathbf{p}) (|\mathbf{p}| = 0, 1, \sqrt{2})$ $\mathcal{O}_{4.5} = N(\mathbf{p})J/\psi(-\mathbf{p}) \ (|\mathbf{p}| = 0,1)$ $\mathcal{O}_{6,7,8} = \Lambda_c(\mathbf{p})\bar{D}(-\mathbf{p}) \ (|\mathbf{p}| = 0, 1, \sqrt{2})$ $\mathcal{O}_{9,10} = \Lambda_c(\mathbf{p})\bar{D}^*(-\mathbf{p}) (|\mathbf{p}| = 0,1)$ $\mathcal{O}_{11,12,13} = \Sigma_c(\mathbf{p})\bar{D}(-\mathbf{p}) (|\mathbf{p}| = 0, 1, \sqrt{2})$ $\mathcal{O}_{14,15} = \Sigma_c(\mathbf{p})\bar{D}^*(-\mathbf{p}) (|\mathbf{p}| = 0,1)$

◆Theoretical prediction of a deeply bound di-baryon with quark content uuddss. ♦No solid experimental evidence. ◆Controvertial lattice results.

- arXiv: 2108.09644(HALQCD), weekly attractive without a bound state. arXiv: 2103.01054, weakly bound, binding energy 4.56(1.13)(0.63)MeV.
- ullet
- arXiv: 1912.08630(HALQCD), virtual state. lacksquare
- arXiv:1805.03966, bound state with binding energy 19(10)MeV \bullet
- arXiv:1109.2889(NPLQCD), bound state with binding energy 13.2(1.8)(4.0)MeV
- arXiv:1012.5968(HALQCD), bound state with binding energy 30-40MeV

.

ΛΛ operators: $\mathcal{O} = \Lambda(\mathbf{p})\Lambda(-\mathbf{p}) (|\mathbf{p}| = 0, 1, \sqrt{2})$

H-dibaryon

- states.
- XYZ states, ρ resonance...

 Lattice QCD study of hadron spectroscopy has entered the era of precise determination of the properties of resonances and exotic

◆ We have setup the framework and methodology to systematically study hadron spectroscopy. Coupled channels, multi-particle scattering and nucleon related scattering remain to be challenging.

 Preliminary results on pentaquark and di-Lambda have been obtained. Other ongoing projects: T_{cc} , doubly-charmed baryon,

