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Motivation

▶ Hadronic states: Mesons, qq̄, Baryons, qqq, ….
▶ The intermediate states in the scatterings: Resonance, virtual

state(anti-bound), bound states.
▶ The intermediate state could be: |qq̄⟩+ |two hadrons⟩ · · · ?

E.g. DD̄∗ → χc1 → DD̄∗.
▶ Pure composite states: dynamically generated. How to

express them using the component states?
▶ Can we define the compositeness and elementariness for a

state?
▶ Dynamically generated state: How is it generated from

interaction?
▶ To study these theoretical problems, look at a solvable model

is instructive: Friedrichs-Lee model.



The simplest Friedrichs model[Friedrichs, Commun. Pure

Appl. Math.,1(1948),361, See O. Civitaresea, M. Gadella, Phys.Rep.396,41 for review]

Different models in the same spirit: Lee model [PR,95,1329(1954)],
Anderson model [PR,124,41(1961)], Jaynes Cummings, …

H = H0 + V

▶ Free Hamiltonian:bare discrete state |1⟩, a continuum state
|ω⟩, (set threshold=0 for simplicity)

H0 = ω0|1⟩⟨1|+
∫ ∞

0
ω|ω⟩⟨ω|dω

▶ Interaction vertex:

V = λ

∫ ∞

0
[f(ω)|ω⟩⟨1|+ f∗(ω)|1⟩⟨ω|]dω

▶ Orthonormal condition: ⟨1|1⟩ = 1, ⟨1|ω⟩ = 0, and
⟨ω|ω′⟩ = δ(ω − ω′)

Completeness: |1⟩⟨1|+
∫∞

0 dω|ω⟩⟨ω| = 1
This model is exactly solvable.



Eigenvalue equation:

H|Ψ(E)⟩ = (H0 + V)|Ψ⟩ = E|Ψ(E)⟩.

Solutions:
▶ Continuum: Eigenvalue E > 0, real

Solution: define inverse resolvent

η±(E) = E − ω0 − λ2
∫ ∞

0

f(ω)f∗(ω)
E − ω ± iϵdω

|Ψ±(E)⟩ = |E⟩+ λ
f∗(E)
η±(E)

[
|1⟩+ λ

∫ ∞

0

f(ω)
E − ω±iϵ |ω⟩dω

]
▶ S-matrix:

S(E,E′) = δ(E − E′)
(

1 − 2πiλf(E)f∗(E)
η+(E)

)
.

▶ Discrete states:The zero point of η(E) corresponds to
eigenvalues of the full Hamiltonian — discrete states.



Discrete state solutions:Bound states

ηI(E) = E − ω0 − λ2
∫ ∞

0

f(ω)f∗(ω)
E − ω

dω = 0

▶ Bound states: solutions on the first sheet real axis below the
threshold.

|zB⟩ = NB

(
|1⟩+ λ

∫ ∞

0

f(ω)
zB − ω

|ω⟩dω
)

where NB = (η′(zB))
−1/2 = (1 + λ2 ∫ dω |f(ω)|2

(zB−ω)2 )
−1/2, such that

⟨zB|zB⟩ = 1.
▶ Elementariness: Z = N2

B;
Compositeness: X = N2

Bλ
2 ∫ dω |f(ω)|2

(zB−ω)2 .
▶ Eg. If ω0 < 0 , there could be a bound state. In the weak

coupling limit, it → |1⟩,
▶ Eg. there could also be dynamically generated bound state

when the coupling is strong.



Discrete state solutions:Virtual states

▶ Virtual states: Solutions on the second sheet real axis below
the threshold.

|z±v ⟩ = N±
v

(
|1⟩+ λ

∫ ∞

0

f(ω)
[zv − ω]±

|ω⟩dω
)
, ⟨z̃±v | = ⟨z∓v | ,

where
N−

v = N+∗
v = (η′+(zv))−1/2 = (1 + λ2 ∫ dω |f(ω)|2

[(zv−ω)+]2 )
−1/2,

such that ⟨z̃±v |z±v ⟩ = 1. No probability explanation.
▶ Elementariness & compositeness not well-defined.

zv

zv



Discrete state solutions:Virtual states
▶ When ω0 < 0, a bound state generated from |1⟩ is always

accompanied with a virtual state for weak coupling, → |1⟩.
▶ Virtual states from the singularity of the vertex function,

(|zv⟩ ̸→ |1⟩, at λ→ 0)

ηI =z − ω0 − λ2
∫ ∞

0

|f(ω)|2
z − ω

dω, (G(ω) ≡ |f(ω)|2)

ηII(ω) =ηI(ω) + 2πiλ2 GII(ω) = ηI(ω)− 2λ2πi G(ω),

-4 -3 -2 -1
x

-6

-4

-2

2

4

η (x)

η II (x)

η I (x)

G(ω) ∼
√
ω

ω+3 G(ω) ∼
√
ωe−ω/Λ,



Discrete state solutions: Resonance

▶ Resonant states: ω0 > threshold, the discrete state becomes a
pair of solutions zR, z∗R, on the second sheet of the complex
plane. Ĥ|zR⟩ = zR|zR⟩

|zR⟩ = NR
(
|1⟩+ λ

∫ ∞

0
dω f(ω)

[zR − ω]+
|ω⟩

)
,

|z∗R⟩ = N∗
R

(
|1⟩+ λ

∫ ∞

0
dω f(ω)

[z∗R − ω]−
|ω⟩

)
,

Γ+

ω


1+ i γ



Discrete state solutions: Resonance
Resonant states:
▶ Normalization: ⟨zR|zR⟩ = 0, naïve argument, z∗R ̸= zR,

⟨zR|Ĥ|zR⟩ = zR⟨zR|zR⟩ = z∗R⟨zR|zR⟩ = 0

|zR⟩ is not in the Hilbert space — need rigged Hilbert space
description.

▶ Left eigenstates:⟨z̃R|Ĥ = ⟨z̃R|zR

⟨z̃R| = ⟨z∗R| = NR

(
⟨1|+ λ

∫ ∞

0
dω f(ω)

[zR − ω]+
⟨ω|

)
,

⟨z̃∗R| = ⟨zR| = N∗
R

(
⟨1|+ λ

∫ ∞

0
dω f(ω)

[z∗R − ω]−
⟨ω|

)
.

NR is a complex normalization parameter,
NR = (η′+(zR))

−1/2 = (1 + λ2 ∫ dω |f(ω)|2
[(zR−ω)+]2 )

−1/2 such that
⟨z̃R|zR⟩ = 1, [Sekihara,Hyodo,Jido,PTEP 2015 (2015) 063D04]

▶ Other physical proposal of “elementariness” and
“compositeness”: [Guo,Oller,PRD93,096001].



Discrete state solutions: Dynamically
generated Resonance

Dynamical resonance generated from the singularity of the vertex
function.
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G(ω) ∼
√
ω

ω2+a2 , a = 1.9, ω0 = 1

▶ G =
√
ωe−ω2/a2 case : Similar situation could happen.

▶ A caveat to using form factor put by hand to suppress the
high E contribution: The form factor may play an important
role in generating the dynamical state.



Bubble chain sum

▶ What Friedrichs model does:

η−1(ω) ∼

Similar to the UQM by Tönqvist [Z. Phys. C 68, 647 (1995)]

▶ Effective field theory bubble chain: Similar results about the
poles.



Other interesting things

▶ Higher order poles: [A. Mondragon and E
Hernandez,J.Phy.A26(1993),5595;A. Bohm et.al.JMP38(1997),6072;
I. E. Antoniou et.al.,JMP39(1997),2459; E. Hernández et.al.,
Int.J.Theo.Phys.,42(2003), 2167]

Hamiltonian:
can not be diagonalized exactly,
→ Jordan form

▶ Completeness relation: redefine the continuum states to
including the resonances into the completeness relation [T.
Petrosky et..al. Phys.A173(1991),175;ZX,Zhou,PRD94(2016)076006]



Generalization:[ZYZ&ZX,JMP.58(2017),062110;JMP58(2017), 072102]

Real world: interaction between |0; JM⟩ and |p1p2,S⟩
▶ Partial wave decomposition: |p1p2⟩ → |p, JM, lS⟩ ∼ |ω, l⟩

H = M0|0⟩⟨0|+
∑

l

∫
dω ω|ω, l⟩⟨ω, l|+

∑
l

∫
dωgl(ω)|0⟩⟨ω, l|+ h.c.

▶ Include more discrete states and more continuum states: No
direct coupled continuum channel.

▶ Separable interaction potential like in [E. Hernández et.al,
PRC29(1984),722;Aceti et.al., PRD86,(2012),014012;Sekihara,
PTEP(2015)063D04;Weinberg,PR131(1963),441;…]: solvable.

H =

D∑
i=1

Mi|i⟩⟨i|+
C∑

i=1

∫ ∞

ai
dω ω|ω; i⟩⟨ω; i|

+
C∑

i,j=1
vij

(∫ ∞

ai
dωfi(ω)|ω; i⟩

)(∫ ∞

aj
dωf∗j (ω)⟨ω; j|

)

+
D∑

j=1

C∑
i=1

[
u∗

ji|j⟩
(∫ ∞

ai
dωf∗i (ω)⟨ω; i|

)
+ uji

(∫ ∞

ai
dωfi(ω)|ω; i⟩

)
⟨j|

]

▶ Relativistic Friedrichs-Lee model.



Dynamically generated states
Study the near threshold behavior of the dynamically generated
states.
▶ No discrete bare states → dynamically generated discrete state

— Bound state (molecular state), resonances, or virtual state.
▶ Hamiltonian:

H =

∫
a

dω ω|ω⟩⟨ω| ± λ2
∫

a
dω

∫
a

dω′f(ω)f∗(ω′)|ω⟩⟨ω′| (1)

▶ Vertex function
f(ω) = (ω − a)(l+1/2)/2 exp{−(ω − a)/(2Λ)}.

▶ Discrete state pole position:

M±(E) = det M± = 1 ± λ2G(E) = 1 ± λ2
∫

a
dω |f(ω)|

2

ω − E = 0

▶ − sign: attractive.



Eg: dynamically generated states, attractive
potential

▶ S-wave: Strong coupling, a bound state → Weak coupling, a
virtual state

▶ P-wave: Strong coupling, A bound state
and a virtual state → Weak coupling, a pair of resonance poles.



Eg: D-wave dynamically generated states

Attractive coupling:

0.40 0.45 0.50 0.55

-0.10

-0.05

0.00

0.05

0.10

Coupling decreasing

The first sheet

0.3 0.4 0.5 0.6 0.7

-0.04

-0.02

0.00

0.02

0.04 Coupling decreasing
The second sheet

▶ The resonance poles merge at the threshold, and one becomes
a virtual state, the other becomes a bound states.



Near threshold poles for attractive potential: when coupling is
becoming stronger
▶ l ≥ 1: a virtual state and a bound state appear together.
▶ l = 0, one bound/virtual state near the threshold.
▶ Explained using the effective range expansion in [Taylor,

Scattering Theory; Hanhart et. al. PLB739(2014)375] and also using
Jost function in [ Hyodo,PRC90:055208(2014); ]



Dynamical v.s. Elementary

Elementary: originated from the bare discrete state
Dynamical: generated by interaction
▶ S-wave bound state:

Dynamical state: can have no acompanied virtual state.
Elementary state: always accompanied with a virtual state
pole at weak coupling
— Pole counting rule [D. Morgan, NPA543(1992),632;Baru et.al., Phys.
Lett. B586(2004),53;Ou Zhang,et.al., Phys.Lett.B680(2009),453]

▶ Higher partial wave , no such a difference: The dynamically
generated state if appears from the threshold (resonance pole
merging), it must acompanied with a virtual state.

▶ In weak coupling limit: The dynamically generated states do
not go to bare states, but towards the singular point of the
form factor.



Thoughts on Elementariness and
Compositeness

Whether we need the elementariness and compositeness for the
resonance:
▶ As long as it is unstable it is non-normalizable: The

elementariness and compositeness are not well-defined.
Narrow resonance, approximately defined.

▶ They are not physical observable: No experiment can really
prepare a pure resonance. Resonances only appear as the
intermediate states in the scattering.

▶ The only observable is the scattering cross section or the
events.



Friedrichs-QPC scheme
To study to hadron spectrum using nonrelativistic Friedrichs
model: Solve det[η(E)] = 0.
▶ Coupling vertex between the discrete state and continuum

f(ω): dynamically given.
▶ The interactions can be estimated using differnent models: we

will use the QPC (3P0) model.

⟨BC|T|A⟩ = δ3(Pf − Pi)MABC

T =− 3γ
∑
m

⟨1m1 − m|00⟩
∫

d3p3d3p4δ
3(p3 + p4)

× Ym
1 (

p3 − p4
2

)χ34
1−mϕ34

0 ω34
0 b†3(p3)d†

4(p4).

γ: the strength of creating a quark-antiquark pair.
[Blundell,Godfrey,PRD53(1996),3700]

▶ The bare mass and wave functions of A, B, C are GI’s results.
[Godfrey & Isgur, PRD32,189(1985)].

Effect: Including the hadron-hadron interactions into the GI model.



Application: 1−− charmonium

We consider the experimental data in √
s ∼ 3.73 − 5GeV from

e+e− → DD̄[PRD77,011103(2008)],
e+e− → DD̄∗, D∗D̄∗[PRD97,012002(2018)],
e+e− → DD̄π[PRL100,062001(2008)],
▶ ψ(3770), ψ(4040), ψ(4160), ψ(4415) are well established:
ψ(13D1), ψ(33S1), ψ(23D1), ψ(43S1), considered as bare
discrete state.

▶ ψ(4230), ψ(4360), ψ(4660) mainly appear in hidden-charm
channels, not included.
ψ(4230) → π+π−J/ψ,
ψ(4360), ψ(4660) → π+π−ψ(3686)



ψ(4230): 1−−

▶ Was observed in e+e− → π+π−J/ψ:
[BaBar,PRL95(2005),142001;Belle,PRL99(2007),182004]

▶ BES III: [PRL 118, 092001 (2017)]

two states √
s = 4222.0MeV, Γ = 44MeV; √s = 4320.0MeV,

Γ = 101MeV.
▶ Only appears in the hidden charm channels.



ψ(4160)
▶ First observed by The DASP collaboration, in analyzing the R

value,[Phys. Lett. B 76, 361(1978)]

▶ The most recent PDG: LHCb[PRL 111, 112003 (2013)]
B → ψ(4160) + K+ → µ+µ−K+

M = 4191 ± 5MeV,Γ = 70 ± 10MeV.

▶ Mostly in the open charm channels.
▶ ψ(4230) and ψ(4160) are close to each other.



Our scheme

Friedrichs model + QPC model.
▶ Bare discretes cc̄ states: GI wave function, with bare mass

parameters to be fitted.
A backgound bare ψ(2S) state, ψ(1D), ψ(3S), ψ(2D), ψ(4S).

▶ Coupling to continuum states: Quark pair creation strength,
γ, interaction vertices fρi(ω)
Continua: DD̄,DD̄∗,D∗D̄∗,DD̄∗

2(D̄π)
▶ Couplings to e+e−: geρ, phase, ϕeρ

Results: χ2/d.o.f ∼ 379/(293 − 15) = 1.36



Coupled channel Friedrichs model + QPC
Include more discrete states and more continuum states (No direct
coupling between continuum channels)

V =

D∑
ρ=1

C∑
i=1

∫ ∞

ai

dE[f∗ρi(E)|ρ⟩⟨E; i|+ fρi(E)|E; i⟩⟨ρ|].

Si,j =δij − 2πi
∑
ρ,λ

f∗ρj(E)[η−1]ρλfλi(E),

[η]ρλ ≡(E − Mρ)δρλ −
C∑

i=1

∫ ∞

ai

dE′ f
∗
ρi(E′)fλi(E′)

(E − E′)
.

Automatically satisfies the analyticity and coupled channel
Unitarity. Discrete State poles:

det[η] = 0

Scattering cross section:

σi(E) =
32π5α

E5 |
∑
ρλ

geρ[η
−1]ρλfλi|2,
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zII
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2 iGeV,

zIV
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2 iGeV.

PDG:

ψ(3770) : M = 3773.7 ± 0.4MeV,Γ = 27.2 ± 1MeV.
ψ(4040) : M = 4039 ± 1MeV,Γ = 80 ± 10MeV.
ψ(4160) : M = 4190 ± 5MeV,Γ = 70 ± 10MeV.
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▶ ψ(4160): pole at zIV
0,2 = 4.222 − 0.064

2 iGeV.
▶ Experiments: parameterized using Breit-Wigners

▶ Resonances with interference: Multiple solution
▶ Violation of unitarity: important for interfering resonances

▶ The pole position for ψ(4160) is close to the mass for
ψ(4230): not at the hill top , but at the half hillside.
ψ(4230): M = 4222.0MeV, Γ = 44MeV
Appears in weakly coupled channels.

▶ Conjecture: ψ(4160) and ψ(4230) could be the same state.
This may explain why ψ(4160) mostly appears in open-charm
channels but ψ(4230) in hidden-charm channels.

▶ Needs the R-value and other analysis to confirm.



Summary

▶ As an rigourously solvable model, Friedrichs model helps us in
understanding the resonances, virtual states, and bound states

▶ Resonances, virtual states: not normalizable as usual,
compositeness and elementariness not well-defined.

▶ How dynamical state is generated from the interaction
between the discrete state and the continuum.

▶ Friedrichs-QPC Scheme: interaction vertices from QPC,
Satisfying the unitary and analyticity. Can be used in real
hadronic physics.

▶ ψ(4160) and ψ(4230) could be the same state: different
appearance in the strong interfering channels and weak
interaction channels.



Thank you !



Backup

Fit parameters: results

Background ψ(1D) ψ(3S) ψ(2D) ψ(4S)
Bare mass 1.83 4.09 4.36 4.62 5.35

geρ 26.4 1.82 5.32 -3.68 -6.12
ϕeρ/

◦ 0(fixed) 35.2 -31.6 64.6 129.3
γ 4.48
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