# First Simultaneous Determination of Inclusive and Exclusive |Vub|





(lu.cao@desy.de)

### 



-14

\_1/

• CKM triangle provides a potent test of the Standard Model

 $V_{\rm CKM}V_{\rm CKM}^{\dagger} = \mathbf{1}$ 

### Nobel prize 2008: KM mechanism







- CKM triangle provides a potent test of the Standard Model
- Global fit constrained by unitarity condition => 3 mixing angles + CPV phase
  - The sides and angles need to be measured to over-constrain the triangle and test that it closes.
  - If there is CP violation the triangle remains open
  - All lengths involve *b* decays

$$V_{\text{CKM}} = \begin{pmatrix} |V_{ud}| & |V_{us}| & |V_{ub}| \\ |V_{cd}| & |V_{cs}| & |V_{cb}| \\ |V_{td}| & |V_{ts}| & |V_{tb}| \end{pmatrix} \approx \begin{pmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{pmatrix}$$

$$V_{\rm CKM}V_{\rm CKM}^{\dagger} = \mathbf{1}$$



- CKM matrix provides a potent test of SM
- Global fit constrained by unitarity condition => 3 mixing angles + CPV phase





•  $|V_{ub}|$  can be measured in semileptonic B decays with inclusive or exclusive channels (leptonic probe refers to larger uncertainty)



Exclusive 
$$|V_{ub}|$$
  
 $B \to \pi \ell \nu, \Lambda_b \to p \ell \nu, B_s \to K \ell \nu, \epsilon$   
 $\mathscr{B} \propto |V_{ub}|^2 f^2$   
Form factor  $f$  (LCSR, LQCD)

Inclusive 
$$|V_{ub}|$$
  
 $B \to X_u \ell \nu$ ,  $X_u = \pi, \rho, \omega, \eta^{(\prime)}$ , non-resonant contribution  
 $\mathscr{B} \propto |V_{ub}|^2 \left[ 1 + \frac{c_5(\mu) \langle O_5 \rangle(\mu)}{m_h^2} + \frac{c_6(\mu) \langle O_6 \rangle(\mu)}{m_h^3} + O(m_b^4) \right] \quad |V_{ub}| = \sqrt{\frac{\Delta \mathscr{B}}{\tau_B \cdot \Delta \Gamma}}$   
+ Shape Function / Fermi Motion (OPE)



 $K\ell
u$ , etc.



- $|V_{\mu b}|$  can be measured in semileptonic B decays with inclusive or exclusive processes (leptonic probe refers to larger uncertainty)
- Long-standing "Vxb-puzzle": discrepancy btw. inclusive and exclusive determinations



Exclusive 
$$|V_{ub}|$$
  
 $B \to \pi \ell \nu, \Lambda_b \to p \ell \nu, B_s \to$   
 $\mathscr{B} \propto |V_{ub}|^2 f^2$ 

Inclusive  $|V_{ub}|$  $B \to X_{\mu} \ell \nu$ ,  $X_{\mu} = \pi, \rho, \omega, \eta^{(\prime)}$ , non-resonant contribution  $\mathscr{B} \propto |V_{ub}|^2 \left[ 1 + \frac{c_5(\mu) \langle O_5 \rangle(\mu)}{m_h^2} + \frac{c_6(\mu) \langle O_6 \rangle(\mu)}{m_h^3} + O\left(m_b^4\right) \right] \qquad |V_{ub}| = \sqrt{\frac{\Delta \mathscr{B}}{\tau_B \cdot \Delta \Gamma}}$ + Shape Function / Fermi Motion (OPE)



$$|V_{ub}^{\text{excl.}}| = (3.51 \pm 0.12) \times 10^{-3} \sum \text{Ratio} = 0.84 \pm 0.04$$
$$|V_{ub}^{\text{incl.}}| = (4.19 \pm 0.16) \times 10^{-3} \sum \text{Ratio} = 3.7\sigma \text{ from unity!!}$$





- $|V_{\mu b}|$  can be measured in semileptonic B decays refers to larger uncertainty)
- inclusive and exclusive determinations



$$B \to X_u \ell \nu, \quad X_u = \pi \rho, \omega, \eta^{(\prime)}, \text{ non-resonant contribution}$$

$$\mathscr{B} \propto |V_{ub}|^2 \left[ 1 + \frac{c_5(\mu) \left( \cos \frac{1}{2} (\mu) + \frac{c_6(\mu) \left( \cos \frac{1}{2} (\mu) + 0 \right)}{m_h^3} + O\left(m_b^4\right)} \right] \quad |V_{ub}| = \sqrt{\frac{1}{\tau_B \cdot \Delta \Gamma}} + \text{Shape Function / Fermi Motion (OPE)}$$

$$|V_{ub}^{\text{excl.}}| = (3.51 \pm 0.12) \times 10^{-3} \sum \text{Ratio} = 0.84 \pm 0.04$$
$$|V_{ub}^{\text{incl.}}| = (4.19 \pm 0.16) \times 10^{-3} \sum \text{Ratio} = 3.7\sigma \text{ from unity!!}$$







## How about if we measure incl. $|V_{ub}|$ and excl. $|V_{ub}|$ at the same time?





Preliminary

Belle Preprint 2023-04, KEK Preprint 2022-53

### First Simultaneous Determination of Inclusive and Exclusive $|V_{ub}|$

(The Belle Collaboration)

The first simultaneous determination of the absolute value of the Cabibbo-Kobayashi-Maskawa matrix element  $V_{ub}$  using inclusive and exclusive decays is performed with the full Belle data set at the  $\Upsilon(4S)$  resonance, corresponding to an integrated luminosity of 711 fb<sup>-1</sup>. We analyze collision events in which one B meson is fully reconstructed in hadronic modes. This allows for the reconstruction of the hadronic  $X_u$  system of the semileptonic  $b \to u \ell \bar{\nu}_{\ell}$  decay. We separate exclusive  $B \to \pi \ell \bar{\nu}_{\ell}$  decays from other inclusive  $B \to X_u \ell \bar{\nu}_{\ell}$  and backgrounds with a two-dimensional fit, that utilizes the number of charged pions in the  $X_u$  system and the four-momentum transfer  $q^2$ between the B and  $X_u$  system. Combining our measurement with information from lattice QCD and QCD calculations of the inclusive partial rate as well as external experimental information on the shape of the  $B \to \pi \,\ell \,\bar{\nu}_{\ell}$  form factor, we determine  $|V_{ub}^{\text{excl.}}| = (3.78 \pm 0.23 \pm 0.16 \pm 0.14) \times 10^{-3}$ and  $|V_{ub}^{\text{incl.}}| = (3.90 \pm 0.20 \pm 0.32 \pm 0.09) \times 10^{-3}$ , respectively, with the uncertainties being the statistical error, systematic errors, and theory errors. The ratio of  $|V_{ub}^{\text{excl.}}| / |V_{ub}^{\text{incl.}}| = 0.97 \pm 0.12$  is compatible with unity.

### How about if we measure incl. $|V_{ub}|$ and excl. $|V_{ub}|$ at the same time?

### arXiv: 2303.17309

submitted to PRL



### **Reconstruction of** $B \rightarrow X_{\mu} \ell \nu$ **Decays**

- Using **full Belle** dataset of 711 fb<sup>-1</sup>
- Hadronic tagging with Neutral Networks (0.2%-0.3% efficiency)  $\bullet$
- Reconstruction strategy inherited from recent Belle's  $B \to X_{\mu} \ell \nu$ measurements (phase space region  $E_{\ell}^B > 1$  GeV)
  - $\Delta \mathscr{B}, |V_{ub}| @ PRD 104, 012008 (2021)$
  - Differential spectra @ PRL 127, 261801 (2021)





Can fully assign each final state particle to either the tag side or signal side

$$\Rightarrow$$
 Allows to reconstruct  $X_{u}$ 

### **Reconstructed kinematic variables**

Hadronic system *X*:

$$p_X = \sum_i (\sqrt{m_\pi^2 + |\mathbf{p_i}|^2}, \mathbf{p_i}) + \sum_i (E_i, \mathbf{k_i})$$
tracks
neutrals

Missing mass squared:

$$MM^2 = \left(P_{Y(4S)} - P_{\text{tag}} - P_X - P_\ell\right)^2$$
  $q^2 = \left(P_B - P_X\right)^2 = \left(P_l + P_l\right)^2$ 





### **Reconstruction of** $B \rightarrow X_{\mu} \ell \nu$ **Decays**

- Using **full Belle** dataset of 711 fb<sup>-1</sup>
- Hadronic tagging with Neutral Networks (0.2%-0.3% efficiency)  $\bullet$
- Reconstruction strategy inherited from recent Belle's  $B \to X_{\mu} \ell \nu$ measurements (phase space region  $E_{\ell}^{B} > 1$  GeV)
  - $\Delta \mathscr{B}, |V_{ub}| @ PRD 104, 012008 (2021)$
  - Differential spectra @ PRL 127, 261801 (2021)







Can fully assign each final state particle to either the tag side or signal side

$$\Rightarrow$$
 Allows to reconstruct  $X_{u}$ 

### **Reconstructed kinematic variables**

Hadronic system *X*:

$$p_X = \sum_i (\sqrt{m_\pi^2 + |\mathbf{p_i}|^2}, \mathbf{p_i}) + \sum_i (E_i, \mathbf{k_i})$$
tracks
neutrals

Missing mass squared:

$$MM^2 = \left(P_{Y(4S)} - P_{\text{tag}} - P_X - P_\ell\right)^2$$
  $q^2 = \left(P_B - P_X\right)^2 = \left(P_l + P_l\right)^2$ 





### **Reconstruction of** $B \rightarrow X_{\mu} \ell \nu$ **Decays**

- Using **full Belle** dataset of 711 fb<sup>-1</sup>
- Hadronic tagging with Neutral Networks (0.2%-0.3% efficiency)  $\bullet$
- Reconstruction strategy inherited from recent Belle's  $B \to X_{\mu} \ell \nu$ measurements (phase space region  $E_{\ell}^{B} > 1$  GeV)
  - $\Delta \mathscr{B}, |V_{ub}| @ PRD 104, 012008 (2021)$
  - Differential spectra @ PRL 127, 261801 (2021)







Can fully assign each final state particle to either the tag side or signal side

$$\Rightarrow$$
 Allows to reconstruct  $X_{u}$ 

### **Reconstructed kinematic variables**

Hadronic system *X*:

$$p_X = \sum_i (\sqrt{m_\pi^2 + |\mathbf{p_i}|^2}, \mathbf{p_i}) + \sum_i (E_i, \mathbf{k_i})$$
tracks
neutrals

Missing mass squared:

$$MM^2 = \left(P_{Y(4S)} - P_{\text{tag}} - P_X - P_\ell\right)^2$$
  $q^2 = \left(P_B - P_X\right)^2 = \left(P_l + P_l\right)^2$ 





### $B \rightarrow X_c \ell \nu$ Background Suppression

- Dominant background is from x50 higher  $b \rightarrow c \ell \nu$
- Use machine learning (BDT) to suppress backgrounds with 11 training features, e.g.  $MM^2$ ,#K±, #K<sub>s</sub>, etc.











### $B \rightarrow X_c \ell \nu$ Background Suppression

- Dominant background is from **x50 higher**  $b \rightarrow c \ell \nu$
- Use machine learning (BDT) to suppress backgrounds with **11 training features**, e.g. MM<sup>2</sup>,#K<sup>±</sup>, #K<sub>s</sub>, etc.





### Further Criteria to Enhance $B \rightarrow \pi \ell \nu$

- Additional selections on **thrust** of X in c.m.s to **increase significance** of  $B \to \pi \ell \nu$  $\bullet$ 
  - For single pion mode ( $\pi^0$ ,  $\pi^{\pm}$ ), a cut on thrust  $P_X^{\text{CMS}}$  to suppress high-multiplicity background
  - Selection optimized in Asimov fit to achieve high significance of single-pion modes & overall stable fit results

$$T = \max_{|n|=1} igg[rac{\sum_i |p_i.n]}{\sum_i |p_i|}$$











15

Extract signal in  $\mathbf{q}^2$ :  $\mathbb{N}_{\pi^{\pm}}$  for  $B \to \pi \ell \nu$  and other  $B \to X_{\mu} \ell \nu$  simultaneously ullet



2500 High  $M_X$  $N_{n^{\pm}} = 2$  $N_{n^{\pm}} \ge 3$  $\chi^2$ /ndf = 19.6/24 2.H 2000 (Y GeV 1500 [ *....* Ξ 1000 Events 500 0 5,10) 0,15) 5,20) [5, 10) 10, 15 2 

arXiv: 2303.17309



Extract signal in  $\mathbf{q}^2$ :  $\mathbb{N}_{\pi^{\pm}}$  for  $B \to \pi \ell \nu$  and other  $B \to X_u \ell \nu$  simultaneously ullet



arXiv: 2303.17309



Extract signal in  $\mathbf{q}^2$ :  $\mathbb{N}_{\pi^{\pm}}$  for  $B \to \pi \ell \nu$  and other  $B \to X_u \ell \nu$  simultaneously ullet



>**=3**  $\pi^{\pm}$ 2500 High  $M_X$  $N_{n^{\pm}} = 2$  $N_{n^{\pm}} \ge 3$  $\chi^2$ /ndf = 19.6/24 2000 (Y 1500 <sup>L</sup>.L Events ( $M_{\chi}$ 1000 500 0 5,10) 15) 15,20) [5, 10) 10, 15) ò  $\sim$  $\mathbf{N}_{\pi^{\pm}}$ 

High  $M_X$ 



Extract signal in  $q^2$ :  $\mathbb{N}_{\pi^{\pm}}$  for  $B \to \pi \ell \nu$  and other  $B \to X_{\mu} \ell \nu$  simultaneously ullet



 $2 \pi^{\pm}$ >**=3**  $\pi^{\pm}$ - -2500 High  $M_X$  $N_{n^{\pm}} = 2$  $N_{n^{\pm}} \ge 3$  $\chi^2$ /ndf = 19.6/24 2000 (Y GeV 1500 <sup>L</sup>.L High  $M_X$ Events ( $M_{\chi}$ 1000 500  $B \to X_c \ell \nu$  $B \to X \ell \nu$ Ω 5,10) 15) 5,20) [5, 10) 10, 15 ò  $\mathbf{N}_{\pi^{\pm}}$ 

arXiv: 2303.17309



Extract signal in  $q^2$ :  $\mathbb{N}_{\pi^{\pm}}$  for  $B \to \pi \ell \nu$  and other  $B \to X_{\mu} \ell \nu$  simultaneously ullet



 $2 \pi^{\pm}$ >**=3**  $\pi^{\pm}$ - -2500 High  $M_X$  $N_{n^{\pm}} = 2$  $N_{n^{\pm}} \ge 3$  $\chi^2$ /ndf = 19.6/24 2000 (Y GeV 1500 <sup>L</sup>.L High  $M_X$ Х М 1000 Events 500  $B \to X_c \ell \nu$  $R \rightarrow X.\ell\nu$ Ω 5,10) 0, 15) 20 0,1 ŝ  $\mathbf{N}_{\pi^{\pm}}$ 

arXiv: 2303.17309





$$-2\log \mathscr{L} = -2\log \prod_{i} \operatorname{Poisson}\left(\eta_{obs}, \eta_{pred} \cdot (1 + \eta_{obs})\right)$$



**Normalizations** can be linked with isospin relation, or floating separately (nominal: linked)

### Fitter corporates experimental observation of templates' normalisations $\eta$ and $B \to \pi \ell \nu$ form factor (FF) parameters $a^{+,0}$

$$(\epsilon \cdot \theta) + \theta \rho_{\theta}^{-1} \theta^{T} + \chi_{\text{FF}}^{2}$$

$$B 
ightarrow \pi^0 \ell 
u$$
  
 $B 
ightarrow \pi^+ \ell 
u$   
other  $B 
ightarrow X_u \ell 
u$   
all background

21

- impacts, (normalized to relative bin uncertainty  $\epsilon$ )

$$-2\log \mathscr{L} = -2\log \prod_{i} \operatorname{Poisson}\left(\eta_{obs}, \eta_{pred} \cdot (1 + \epsilon \cdot \theta)\right) + \theta \rho_{\theta}^{-1} \theta^{T} + \chi_{FF}^{2}$$



**Normalizations** can be linked with isospin relation, or floating separately (nominal: linked)

### Fitter corporates experimental observation of templates' normalisations $\eta$ and $B \to \pi \ell \nu$ form factor (FF) parameters $a^{+,0}$

Systematic uncertainties included via bin-wise Nuisance parameters  $\theta$  of each template for both of additives and multiplicative

$$B 
ightarrow \pi^0 \ell 
u$$
  
 $B 
ightarrow \pi^+ \ell 
u$   
other  $B 
ightarrow X_u \ell 
u$   
all background





- impacts, (normalized to relative bin uncertainty  $\epsilon$ )

$$-2\log \mathscr{L} = -2\log \prod_{i} \operatorname{Poisson}\left(\eta_{obs}, \eta_{pred} \cdot (1 + \eta_{obs})\right)$$



**Normalizations** can be linked with isospin relation, or floating separately (nominal: linked)

### Fitter corporates experimental observation of templates' normalisations $\eta$ and $B \to \pi \ell \nu$ form factor (FF) parameters $a^{+,0}$

Systematic uncertainties included via bin-wise Nuisance parameters  $\theta$  of each template for both of additives and multiplicative





23

## First Simultaneous Determination of Incl. & Excl. Vub

- impacts, (normalized to relative bin uncertainty  $\epsilon$ )

$$-2\log \mathscr{L} = -2\log \prod_{i} \operatorname{Poisson}\left(\eta_{obs}, \eta_{pred} \cdot (1 + \epsilon \cdot \theta)\right) + \theta \rho_{\theta}^{-1} \theta^{T} + \chi_{FF}^{2}$$



**Normalizations** can be linked with isospin relation, or floating separately (nominal: linked)

Fitter corporates experimental observation of templates' normalisations  $\eta$  and  $B \to \pi \ell \nu$  form factor (FF) parameters  $a^{+,0}$ 

Systematic uncertainties included via bin-wise Nuisance parameters  $\theta$  of each template for both of additives and multiplicative

**Constraints on BCL parameters , input taken from** LQCD / LQCD+exp fits in FLAG Review 2021

$$\chi^2_{\rm FF} = (\mathbf{a}_{\rm obs} - \mathbf{a}_{\rm pred}) \mathrm{Cov}_{\rm FF}^{-1} (\mathbf{a}_{\rm obs} - \mathbf{a}_{\rm pred})^T$$

 $B \to \pi^0 \ell \nu$  $B \to \pi^+ \ell \nu$ other  $B \to X_{\mu} \ell \nu$ all background

**BCL** parameterization of  $B \rightarrow \pi \ell \nu$ decay form factors ( $N^+ = N^0 = 3$ ):

$$f_{+}(q^{2}) = \frac{1}{1 - q^{2}/m_{B^{*}}^{2}} \sum_{n=0}^{N^{+}-1} a_{n}^{+} \left[ z^{n} - (-1)^{n-N^{+}} \frac{n}{N^{+}} z^{N^{+}} \right]$$

$$f_0(q^2) = \sum_{n=0}^{N^0 - 1} a_n^0 z^n$$









- impacts, (normalized to relative bin uncertainty  $\epsilon$ )

$$-2 \log \mathcal{L} = -2 \log \prod_{i} \operatorname{Poisson} \left( \eta_{obs}, \eta_{pred} \cdot (1 + \epsilon \cdot \theta) \right) + \theta \rho_{\theta}^{-1} \theta^{T} + \chi_{FF}^{2}$$
Constraints on BCL parameters , input taken LQCD / LQCD+exp fits in FLAG Review 2021
  
Normalizations
can be linked with
isospin relation, or
floating separately
(nominal: linked)
  
B  $\rightarrow \pi^{0} \ell \nu$ 
described by BCL para.
  
Differential decay rates
  
Acceptance & reco. efficiency
  
Forward-folding q<sup>2</sup>



### Fitter corporates experimental observation of templates' normalisations $\eta$ and $B \to \pi \ell \nu$ form factor (FF) parameters $a^{+,0}$

Systematic uncertainties included via bin-wise Nuisance parameters  $\theta$  of each template for both of additives and multiplicative







- impacts, (normalized to relative bin uncertainty  $\epsilon$ )

$$-2 \log \mathcal{L} = -2 \log \prod_{i} \operatorname{Poisson} \left( \eta_{obs}, \eta_{pred} \cdot (1 + \epsilon \cdot \theta) \right) + \theta \rho_{\theta}^{-1} \theta^{T} + \chi_{FF}^{2}$$
Constraints on BCL parameters, input taken  
LOCD / LOCD+exp fits in FLAG Review 2021
  
Differential decay rates  
Acceptance & reco. efficiency  
Forward-folding q<sup>2</sup>
  
Differential decay rates  
Acceptance & reco. efficiency  
Forward-folding q<sup>2</sup>
  
B -  $\pi^{\theta}\ell\nu$   
all background
  
Differential decay rates  
Acceptance & reco. efficiency  
Forward-folding q<sup>2</sup>
  
B -  $\pi^{\theta}\ell\nu$   
all background
  
Constraints on BCL parameters, input taken  
LOCD / LOCD+exp fits in FLAG Review 2021
  
Differential decay rates  
Acceptance & reco. efficiency  
Forward-folding q<sup>2</sup>
  
B -  $\pi^{\theta}\ell\nu$   
all background
  
Constraints on BCL parameters, input taken  
LOCD / LOCD+exp fits in FLAG Review 2021
  
Differential decay rates  
Acceptance & reco. efficiency  
Forward-folding q<sup>2</sup>
  
B -  $\pi^{\theta}\ell\nu$   
all background
  
Constraints on BCL parameters, input taken  
LOCD / LOCD+exp fits in FLAG Review 2021
  
Differential decay rates  
Acceptance & reco. efficiency  
Forward-folding q<sup>2</sup>
  
B -  $\pi^{\theta}\ell\nu$   
all background
  
Constraints on BCL parameters, input taken  
LOCD / LOCD+exp fits in FLAG Review 2021
  
Differential decay rates  
Acceptance & reco. efficiency  
Forward-folding q<sup>2</sup>
  
Constraints on BCL parameters, input taken  
Constraints on BCL parameters, inp



### Fitter corporates experimental observation of templates' normalisations $\eta$ and $B \to \pi \ell \nu$ form factor (FF) parameters $a^{+,0}$

Systematic uncertainties included via bin-wise Nuisance parameters  $\theta$  of each template for both of additives and multiplicative





26

- impacts, (normalized to relative bin uncertainty  $\epsilon$ )

$$-2\log \mathscr{L} = -2\log \prod_{i} \operatorname{Poisson}\left(\eta_{obs}, \eta_{pred} \cdot (1 + \eta_{obs})\right)$$



**Normalizations** can be linked with isospin relation, or floating separately (nominal: linked)

### Fitter corporates experimental observation of templates' normalisations $\eta$ and $B \to \pi \ell \nu$ form factor (FF) parameters $a^{+,0}$

Systematic uncertainties included via bin-wise Nuisance parameters  $\theta$  of each template for both of additives and multiplicative





- impacts, (normalized to relative bin uncertainty  $\epsilon$ )

$$-2 \log \mathscr{L} = -2 \log \prod_{i} \operatorname{Poisson} \left( \eta_{obs}, \eta_{pred} \cdot (1 + \epsilon \cdot \theta) \right) + \theta \rho_{\theta}^{-1} \theta^{T} + \chi_{FF}^{2}$$
Constraints on BCL parameters , input taker  
LQCD / LQCD+exp fits in FLAG Review 2021  
Differential decay rates  
Acceptance & reco. efficiency  
Forward-folding q<sup>2</sup>  

$$Mormalizations
can be linked with
isospin relation, or
floating separately
(nominal: linked)
$$\mathscr{B} = \pi^{0}\ell\nu$$

$$B \to \pi^{+}\ell\nu$$
other  $B \to \chi_{u}\ell\nu$   
all background  

$$\mathscr{B}(B \to \chi_{u}\ell\nu) = \mathscr{B}(B \to \pi^{0}\ell\nu) + \mathscr{B}(B \to \pi^{+}\ell\nu) + \mathscr{B}(B \to \chi_{u}^{other}\ell\nu)$$

$$\mathscr{B}(B \to \chi_{u}\ell\nu) = \mathscr{B}(B \to \pi^{0}\ell\nu) + \mathscr{B}(B \to \pi^{+}\ell\nu) + \mathscr{B}(B \to \chi_{u}^{other}\ell\nu)$$

$$\mathscr{B}(B \to \chi_{u}\ell\nu) = \mathscr{B}(B \to \pi^{0}\ell\nu) + \mathscr{B}(B \to \pi^{+}\ell\nu) + \mathscr{B}(B \to \chi_{u}^{other}\ell\nu)$$

$$\mathscr{B}(B \to \chi_{u}\ell\nu) = \mathscr{B}(B \to \pi^{0}\ell\nu) + \mathscr{B}(B \to \pi^{+}\ell\nu) + \mathscr{B}(B \to \chi_{u}^{other}\ell\nu)$$

$$\mathscr{B}(B \to \chi_{u}\ell\nu) = \mathscr{B}(B \to \pi^{0}\ell\nu) + \mathscr{B}(B \to \pi^{+}\ell\nu) + \mathscr{B}(B \to \chi_{u}^{other}\ell\nu)$$

$$\mathscr{B}(B \to \chi_{u}\ell\nu) = \mathscr{B}(B \to \pi^{0}\ell\nu) + \mathscr{B}(B \to \pi^{+}\ell\nu) + \mathscr{B}(B \to \chi_{u}^{other}\ell\nu)$$

$$\mathscr{B}(B \to \chi_{u}\ell\nu) = \mathscr{B}(B \to \pi^{0}\ell\nu) + \mathscr{B}(B \to \pi^{+}\ell\nu) + \mathscr{B}(B \to \chi_{u}^{other}\ell\nu)$$

$$\mathscr{B}(B \to \chi_{u}\ell\nu) = \mathscr{B}(B \to \pi^{0}\ell\nu) + \mathscr{B}(B \to \pi^{+}\ell\nu) + \mathscr{B}(B \to \chi_{u}^{other}\ell\nu)$$

$$\mathscr{B}(B \to \chi_{u}\ell\nu) = \mathscr{B}(B \to \pi^{0}\ell\nu) + \mathscr{B}(B \to \pi^{+}\ell\nu) + \mathscr{B}(B \to \chi_{u}^{other}\ell\nu)$$

$$\mathscr{B}(B \to \chi_{u}\ell\nu) = \mathscr{B}(B \to \pi^{0}\ell\nu) + \mathscr{B}(B \to \pi^{+}\ell\nu) + \mathscr{B}(B \to \pi^{+}\ell\nu)$$

$$\mathscr{B}(B \to \chi_{u}\ell\nu) = \mathscr{B}(B \to \chi_{u}\ell\nu)$$

$$\mathscr{B}(B \to \chi_{u}\ell\nu) = \mathscr{B}(B \to \pi^{0}\ell\nu) + \mathscr{B}(B \to \pi^{+}\ell\nu) + \mathscr{B}(B \to \pi^{+}\ell\nu)$$

$$\mathscr{B}(B \to \chi_{u}\ell\nu) = \mathscr{B}(B \to \pi^{0}\ell\nu) + \mathscr{B}(B \to \pi^{+}\ell\nu)$$

$$\mathscr{B}(B \to \pi^{0}\ell\nu) = \mathscr{B}(B \to \pi^{0}\ell\nu)$$

$$\mathscr{B}(B \to \chi_{u}\ell\nu) = \mathscr{B}(B \to \pi^{0}\ell\nu) + \mathscr{B}(B \to \pi^{+}\ell\nu)$$

$$\mathscr{B}(B \to \pi^{0}\ell\nu) = \mathscr{B}(B \to \pi^{0}\ell\nu)$$

$$\mathscr{B}(B \to \chi_{u}\ell\nu) = \mathscr{B}(B \to \pi^{0}\ell\nu) + \mathscr{B}(B \to \pi^{+}\ell\nu)$$

$$\mathscr{B}(B \to \pi^{0}\ell\nu) = \mathscr{B}(B \to \pi^{0}\ell\nu)$$

$$\mathscr{B}(B \to \chi_{u}\ell\nu) = \mathscr{B}(B \to \pi^{0}\ell\nu)$$

$$\mathscr{B}(B \to \pi^{0}\ell\nu) = \mathscr{B}(B \to \pi^$$$$



### Fitter corporates experimental observation of templates' normalisations $\eta$ and $B \to \pi \ell \nu$ form factor (FF) parameters $a^{+,0}$

Systematic uncertainties included via bin-wise Nuisance parameters  $\theta$  of each template for both of additives and multiplicative















## **Exclusive and Inclusive** $V_{\mu b}$

- Various fit scenarios applied:
  - **Linked** or separate  $B \to \pi^+ \ell \nu, B \to \pi^0 \ell \nu$ lacksquare
  - Input BCL constraint: **LQCD + exp.** or **only LQCD**



**V**<sub>ub</sub> in combined scenario with **LQCD+exp** const.:

 $(3.78 \pm 0.23_{\text{stat}} \pm 0.16_{\text{syst}} \pm 0.14_{\text{theo}}) \times 10^{-3}$ Excl.

Incl.  $(3.90 \pm 0.20_{\text{stat}} \pm 0.32_{\text{syst}} \pm 0.09_{\text{theo}}) \times 10^{-3}$ 

Weighted average of excl. & incl.

 $(3.85 \pm 0.26) \times 10^{-3}$ 

arXiv: 2303.17309

### Ratio = $0.97 \pm 0.12$ Correlation: 0.10

CKM global fit (w/o  $|V_{ub}|$ ):  $(3.64 \pm 0.07) \times 10^{-3}$ , compatible within 0.8o





## **Exclusive and Inclusive** $V_{\mu b}$

- Various fit scenarios applied:
  - **Linked** or separate  $B \to \pi^+ \ell \nu, B \to \pi^0 \ell \nu$
  - Input BCL constraint: **LQCD + exp.** or **only LQCD**



**V**<sub>ub</sub> in combined scenario with **LQCD+exp** const.:

Excl.  $(3.78 \pm 0.23_{\text{stat}} \pm 0.16_{\text{syst}} \pm 0.14_{\text{theo}}) \times 10^{-3}$ 

Incl.  $(3.90 \pm 0.20_{\text{stat}} \pm 0.32_{\text{syst}} \pm 0.09_{\text{theo}}) \times 10^{-3}$ 

Weighted average of excl. & incl.

 $(3.85 \pm 0.26) \times 10^{-3}$ 

arXiv: 2303.17309



### Ratio = $0.97 \pm 0.12$ Correlation: 0.10

CKM global fit (w/o  $|V_{ub}|$ ):  $(3.64 \pm 0.07) \times 10^{-3}$ , compatible within 0.8o





## Fitted $B \rightarrow \pi \ell \nu$ Decay Form Factor

- Various fit scenarios applied:
  - **Linked** or separate  $B \to \pi^+ \ell \nu, B \to \pi^0 \ell \nu$ lacksquare
  - Input BCL constraint: **LQCD + exp.** or **only LQCD**



Points: subtract fitted other  $B \rightarrow X_{\mu} \ell \nu$  and background yields from data, and apply unfolding + eff. correction

arXiv: 2303.17309





## Fitted $B \rightarrow \pi \ell \nu$ Decay Form Factor

- Various fit scenarios applied:
  - **Linked** or separate  $B \to \pi^+ \ell \nu, B \to \pi^0 \ell \nu$ ullet
  - Input BCL constraint: **LQCD + exp.** or **only LQCD**



Points: subtract other  $B \rightarrow X_u \ell \nu$  and background in data, and apply unfolding + eff. correction

arXiv: 2303.17309



|             | LQCD +                 | exp.        | (linke  | ed $\pi^{0,\pm}$ | -)          |
|-------------|------------------------|-------------|---------|------------------|-------------|
|             | $ V_{ub}  \times 10^3$ | $a_{0}^{+}$ | $a_1^+$ | $a_{2}^{+}$      | $a_{0}^{0}$ |
| Central     | 3.783                  | 0.414       | -0.494  | -0.297           | 0.500       |
| Uncertainty | 0.308                  | 0.014       | 0.053   | 0.180            | 0.023       |
| $ V_{ub} $  | 1.000                  | -0.453      | -0.171  | 0.232            | -0.109      |
| $a_0^+$     |                        | 1.000       | 0.152   | -0.451           | 0.259       |
| $a_1^+$     |                        |             | 1.000   | -0.798           | -0.096      |
| $a_2^+$     |                        |             |         | 1.000            | 0.012       |
| $a_0^0$     |                        |             |         |                  | 1.000       |
| $a_1^0$     |                        |             |         |                  |             |

|             | Only L                 | QCD         | (linke  | ed $\pi^{0,\pm}$ | -)      |
|-------------|------------------------|-------------|---------|------------------|---------|
|             | $ V_{ub}  \times 10^3$ | $a_{0}^{+}$ | $a_1^+$ | $a_{2}^{+}$      | $a_0^0$ |
| Central     | 4.122                  | 0.406       | -0.615  | -0.550           | 0.494   |
| Uncertainty | 0.384                  | 0.012       | 0.082   | 0.401            | 0.020   |
| $ V_{ub} $  | 1.000                  | -0.419      | -0.486  | -0.328           | -0.191  |
| $a_0^+$     |                        | 1.000       | 0.274   | -0.177           | 0.255   |
| $a_1^+$     |                        |             | 1.000   | 0.371            | 0.109   |
| $a_2^+$     |                        |             |         | 1.000            | 0.200   |
| $a_0^0$     |                        |             |         |                  | 1.000   |
| $a_{1}^{0}$ |                        |             |         |                  |         |

**Only LQCD** 



0.0

0







### Summary

- Novel approach allows to measure inclusive and exclusive  $|V_{\mu b}|$  simultaneously
- Obtained  $|V_{ub}^{\text{excl.}}|/|V_{ub}^{\text{incl.}}|$  ratio is compatible with SM expectation but 1.6 $\sigma$  higher than current WA
- Future Belle II larger dataset will be helpful for improving the precision (e.g. single-pion mode)

$$|V_{ub}^{\text{excl.}}| = (3.78 \pm 0.23_{\text{stat}} \pm 0.16_{\text{syst}} \pm 0.14)$$
$$|V_{ub}^{\text{incl.}}| = (3.90 \pm 0.20_{\text{stat}} \pm 0.32_{\text{syst}} \pm 0.09)$$
$$|V_{ub}^{\text{excl.}}| = (4.12 \pm 0.30_{\text{stat}} \pm 0.18_{\text{syst}} \pm 0.16)$$
$$|V_{ub}^{\text{incl.}}| = (3.90 \pm 0.20_{\text{stat}} \pm 0.32_{\text{syst}} \pm 0.09)$$

Weighted average of excl. & incl. :

 $|V_{\mu b}| = (3.85 \pm 0.26) \times 10^{-5}$  $|V_{\mu b}| = (4.01 \pm 0.27) \times 10^{-10}$ 

 $A_{\text{theo}} \times 10^{-3}$  (LQCD + exp.)  $A_{\text{theo}} \times 10^{-3}$  (LQCD + exp.) **Ratio** =  $0.97 \pm 0.12$  $(5_{\text{theo}}) \times 10^{-3}$  (LQCD)  $(10^{-3}) \times 10^{-3}$  (LQCD) **Ratio** =  $1.06 \pm 0.14$ 

$$^{-3}$$
 (LQCD + exp.)  
 $^{-3}$  (LQCD)

CKM global fit (w/o  $|V_{ub}|$ ):  $(3.64 \pm 0.07) \times 10^{-3}$ , compatible within 0.8 $\sigma$  and 1.4 $\sigma$ , respectively







# THANK YOU







### Backup

• Prefit distributions



### Preliminary







### Various Inclusive Decay Rates



FIG. 4. The  $|V_{ub}|$  values obtained using the different theoretical inclusive decay rates are compared: GGOU versus BLNP (up) and GGOU versus DGE (low). The left column shows the fit with only LQCD constraints and the results from combined LQCD-experimental constraints are in the right column.



### More Details on Fit Results

- Setup 1-a: fit  $q^2 : N_{\pi^{\pm}}$  spectra with LQCD and external experimental constraint on the BCL form factor and shared  $B \to \pi \, \ell \, \bar{\nu}_{\ell}$  normalization based on the isospin relation.
- Setup 1-b: same as 1-a, but with only LQCD constraint for the form factor.
- Setup 2-a: separate normalizations of the  $B^0 \to \pi^- \ell^+ \nu_\ell$  and  $B^+ \to \pi^0 \ell^+ \nu_\ell$  decays and with LQCDexperimental constraint.
- Setup 2-b: same as 2-a, but with only LQCD constraint.



uncertainty of each pull shows the post-fit error normalized to the pre-fit constraint.

Preliminary

FIG. 7. The pulls of Nuisance parameters. From left to right, the results are shown for the setup 1-a, 1-b, 2-a and 2-b. The





### More Details on Fit Results



FIG. 6. The postfit  $q^2: N_{\pi^{\pm}}$  spectra with various setups. From top left to bottom right, the results are shown for the setup 1-a, 1-b, 2-a and 2-b. The uncertainties incorporate all post-fit uncertainties discussed in the main text.

Preliminary





### **Migration and Efficiency**



| Setup                           | $B^+ 	o \pi^0  \ell^+   u_\ell$ | $B^0 	o \pi^-  \ell^+   u_\ell$ | Other |
|---------------------------------|---------------------------------|---------------------------------|-------|
| 1-a                             | $78\pm11$                       | $147\pm21$                      |       |
| 1-b                             | $72\pm11$                       | $143\pm23$                      |       |
| 2-a                             | $80 \pm 14$                     | $141\pm31$                      |       |
| 2-b                             | $77\pm14$                       | $125\pm32$                      |       |
| $10^3 \cdot \epsilon_{\rm sig}$ | 0.30                            | 0.32                            |       |

TABLE I. The fitted yields for  $B^+ \to \pi^0 \ell^+ \nu_\ell$ ,  $B^0 \to \pi^- \ell^+ \nu_\ell$ , other  $B \to X_u \ell \bar{\nu}_\ell$  decays and backgrounds with various fitter setups. The uncertainties assigned to the fitted yields include the statistical and systematic impacts in the fitting procedure. The signal efficiencies  $\epsilon_{sig}$  are also listed.



Preliminary



## **Details on Systematic Uncertainties**

Main systematic uncertainties for the measured branching fractions are listed below

| Observable                            | Sources                         | Relative Error (%) |  |
|---------------------------------------|---------------------------------|--------------------|--|
| $\mathscr{B}(B 	o \pi \ell  u)$       | Tagging efficiency              | 4.0                |  |
|                                       | $B \to X_u \ell \nu$ modelling  | 3.5                |  |
|                                       | $B \to X_c \ell \nu$ background | 1.2                |  |
|                                       | $B \to X_u \ell \nu$ modelling  | 12.1               |  |
| $\mathscr{B}(B \to X_{\mu} \ell \nu)$ | $X_{u}$ fragmentation           | 5.3                |  |
|                                       | Tagging efficiency              | 4.0                |  |
|                                       | $B \to X_c \ell \nu$ background | 2.8                |  |



## Hybrid Model of $B \to X_{\mu} \ell \nu$

Hybrid MC is a **combination** of **resonances** (exclusive decays) and **non-resonant** contribution in the inclusive  $B \to X_{\mu} \ell \nu$ decays

EvtGen simulation:  $\bullet$ 

(1) exclusive modes  $B \to (\pi, \rho, \omega, \eta^{(\prime)}) \ell \nu$  with latest WA form factors & branching fractions

(2) fully inclusive  $B \to X_{\mu} \ell \nu$  (only non-resonant shapes, e.g. BLNP, GGOU)

Calculate hybrid weights to mix resonance & non-res. in **3D**  $\bullet$ binning of  $(q^2, E_{\ell}^B, M_X)$  to recover total  $\mathscr{B}(B \to X_{\mu} \ell \nu)$  in each bin

$$H_i = \frac{R_i}{R_i} + \omega_i N_i$$

Systematic uncertainties include the impact from exclusive FFs & BRs, total  $\mathscr{B}(B \to X_{\mu} \ell \nu)$ , inclusive models

