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1. Background

@ Higher-order radiative corrections are more important,
with the increasing precision of measurements at the
future colliders: GLIC, ILC, CEPC, FCC, HL-LHC - - -

@ One-loop Feynman integrals are well known analytically
in the time-space dimension D = 4 — 2e.
However, how to perform analytically multi-loop Feynman
integrals is still a challenge.

@ Considering Feynman integrals as the generalized
hypergeometric functions, one finds that the
D—module of a Feynman diagram is isomorphic to
Gel’fand-Kapranov-Zelevinsky (GKZ) D—module.
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2. Relevant research

@ Hypergeometric functions of some Feynman integrals are
obtained from Mellin-Barnes representations.

Feng, Chang, Chen, Gu, Zhang, NPB 927(2018)516 [arXiv:1706.08201]
Feng, Chang, Chen, Zhang, NPB 940(2019)130 [arXiv:1809.00295]
Gu, Zhang, CPC 43(2019)083102 [arXiv:1811.10429]

Gu, Zhang, Feng, IJMPA 35(2020)2050089.

@ Using GKZ hypergeometric system, we can obtain the
fundamental solution systems of Feynman integrals.

Feng, Chang, Chen, Zhang, NPB 953(2020)114952, [arXiv:1912.01726]
Feng, Zhang, Chang, PRD 106(2022)116025 [arXiv: 2206.04224]
Feng, Zhang, Dong, Zhou, EPJC 83(2023)314 [arXiv:2209.15194].
Zhang, Feng, JHEP 05(2023)075 [arXiv: 2303.02795].
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3. Generally strategy

@ We can derive GKZ hypergeometric systems of
Feynman integrals, basing on Mellin-Barnes
representations and Miller’s transformation. We can
formulate Feynman integrals as hypergeometric
functions on general compact manifold or
Grassmannian manifold.

@ Steps: (1) we write out the GKZ hypergeometric systems
satisfied by the Feynman integrals on general compact
manifold or proper Grassmannian manifold G, ,. (2)
fundamental solution systems are constructed in
neighborhoods of regular singularities of the GKZ
hypergeometric systems. The combination coefficients can
be determined from Feynman integrals with some special
kinematic parameters.
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m, q,

£
S

@ Feynman integral of the 3-loop vacuum diagram with 4
propagates is written as
U = ( A2 )6—35’ dq, d°q, d"q,
) K (2m)P (2m)P (2m)P
o 1
(g7 —m})(a; —m3)((q, + 4, + q,)*> — m3) (g5 — m3)
@ Zhang, Feng, GKZ hypergeometric systems of the three-loop vacuum
Feynman integrals, JHEP 05 (2023) 075 [arXiv:,2303.02795].

(2.1)
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@ Through Mellin-Barnes transformation

(AiE) 7 oo 3 .
G / ds,ds,ds, [ T](~m2) T (=s)T (0 +5)] 1y . 2.2)
—I100 1:1
where
IfI
_ / qul qu2 qu3 |
= (27T)D (27T)D (27T)D (q12)1+S1 (q?)l-i-b‘z ((ql + q, + q3)2)1+x3 (q% _ mf)

(2.3)
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ll. 3-loop vacuum on compact manifold

@ Using Feynman parametrization and Beta function,

B(m,n) = /ldxxml(l —x)" = W , (2.4)
0 m n
one can have
—i ési 1 \4— 3D+X:s 3 D
b= 7O ) G - rorae]
3 3
><F(3—D+Z:sl.) 4—37D+ 5) . (2.5)

i=1
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ll. 3-loop vacuum on compact manifold

@ Mellin-Barnes representation of the Feynman integral:

-4 2 3D j 3
—im drAi N6 [T m2\ s,
P p— ( ) / dsldszds3[H<m’2> F(—si)}
Lm

(2mi)3(4m)0 N m? —ico Pl

X[Hr(g—l—s] (3 - D+Z 4—7+ s.) . (2.6)

i=1

@ Itis well known that negative integers and zero are simple
poles of the function I'(z). As all s, contours are closed to
the right in corresponding complex planes, one finds that
the analytic expression of the the three-loop vacuum
integral can be written as the linear combination of
generalized hypergeometric functions.
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@ Taking the residue of the pole of I'(—s,), (i =1, 2, 3), we
can derive one linear independent term:

0o oo
63D Sn;

05 s () L A

n,=0n,=0n,=0

with x, = % (i=1, 2, 3).
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with

T4(a, b ’ Z Z ZAn nyy xl xz xs ) (2.9)

=0n,=0n;=0

3 3
Dla, + 3 n)T(a, + > n,)
Ay = = = : 2.10
v T i T, 4 )0, )G, ) T
where x = (x,,x,,x,),a = (a,,a,) and b = (b,, b,, b,) with

2773
3D D
a,=3-D ay=4-"7 by=b=b=2-. (211)
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ll. 3-loop vacuum on compact manifold

@ We can define auxiliary function
,(a, b ‘ X, u, v) = u’v’"%7T,(a, b ’ X) . (2.12)
Through Miller’s transformation,

19uj<1>4(a, b ‘ X, u, v) =a®,(a, b ‘ X, U, V),
9, ®,(a, b ‘ x,u,v)= (b —1)0,(a, b ‘ x, u, v), (2.13)

which naturally induces the notion of GKZ hypergeometric
system. Euler operators: v, = xkaxk.

12/40
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ll. 3-loop vacuum on compact manifold

@ Through the transformation

1
S (2.14)

Y
Mluzvk

5= 0 Lk = Vi Zsqu

J

we have GKZ hypergeometric system for the integral

A, U,®, =B,®, (2.15)
10000 1 1 1
01000 1 1 1

A, =001 00 -1 0 o0 |,
00010 0 -1 0
00001 0 0 -1

T _
I =@, . 9,),

—1,b,—1). (2.16)
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@ Correspondingly the dual matrix A, of A, is

-1 -1 1 0 0 1 0 O
A= -1 -1 010 0 1 0 |. (217
-1 -1 0 0 1 0 0 1
The row vectors of the matrix A, induce the integer
sublattice B which can be used to construct the formal
solutions in hypergeometric series.

@ Actually the integer sublattice B indicates that the solutions
of the system should satisfy the equations in Eq. (2.15)
and the following hyperbolic equations simultaneously

’e, 0, >’e, 00, o*e,  9*®

_ , - , = 2% (218
0z,0z,  0z,0z, 07,0z, 02,0z, 0z,0z,  0z,0z, ( )

14/40



II. 3-loop vacuum on compact manifold

ll. 3-loop vacuum on compact manifold

@ Defining the combined variables
252
e (2.19)
4% 4% %42,

we write the solutions as

(HZ )904 s ¥ ¥3) - (2.20)

Here @’ = (a,, a,, ---, o) denotes a sequence of
complex number such that
A,-d=B,, (2.21)
namely,
o t+o,+o, o, =—a,, o,+a +a,+o=—a,,

a,—o,=b -1, a,—a,=b,—-1, o, —a,=0b,—1.(2.22)

15/40



II. 3-loop vacuum on compact manifold

ll. 3-loop vacuum on compact manifold

@ To construct the hypergeometric series solutions of the
GKZ hypergeometric system in Eq. (2.15) together with
corresponding hyperbolic equations in Eq. (2.18) through
triangulation is equivalent to choose a set of the linear
independent column vectors of the matrix in Eq. (2.17)
which spans the dual space.

@ We denote the submatrix composed of the first, third, and
fourth column vectors of the dual matrix of Eq. (2.17) as

A, e
-1 1 0
A= -1 0 1 |]. (2.23)
-1 0 0

16/40
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ll. 3-loop vacuum on compact manifold

Taking 3 row vectors of the matrix B,,, as the basis of
integer lattice, one constructs the GKZ hypergeometric
series solutions in parameter space through choosing the
sets of column indices 7,  [1,8] (i = 1,--- , 8) which are
consistent with the basis of integer lattice B, .

17/40
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ll. 3-loop vacuum on compact manifold

@ We take the set of column indices I, = [2,5,6,7,8], i.e. the
implement J, = [1,8]\ I, = [1, 3,4]. The choice on the set
of indices implies the exponent numbers o, = a,, = o, = 0.
Through Eq. (2.22), one can have

o, =a,—a,, g =b +b,+b, —a, -3,
a=1-b,a,=1-b,, 0, =b,+b,—a, —2. (2.25)

6
Combined with Eq. (2.11), we can have

D D D

s= 5 = —1.(2.26)

-1, o

18/40
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@ According the basis of integer lattice B ,,, the
corresponding hypergeometric series solution with triple
independent variables is written as

o0 o0 o0
H X XA em () () ()"
<; o, n - I
[1’%4] 134
n, =0 n, =0 "3 =0 ZS ZS ZS ZS ZS ZS

oo o0

H TS dem (L) @) e

n,=0n,=0n,=0 : s Vs
with the coefficient is
c(l)](a,n) = {nllnzln3lf(l +a,+n)I(1+a, —n, —n, —n,)

(134
—1
«T(1+a, +m)C(1 +a, +n)T(1+a, —n, —n, — n3)} .
(2.28)

19/40



II. 3-loop vacuum on compact manifold

ll. 3-loop vacuum on compact manifold

@ And then, through Eq. (2.26), the corresponding
hypergeometric series solution can be written as

o0 9 =Y 3 S e ()" () (%)

n, =0n,=0n,=0 Y3 Y3
(2.29)
with the coefficient is
L8 +n +n,+n)T(1+n, +n,+n,)
nIn,'n, T8 +n)T(5 +n,)0(2 +n,)
Here, the convergent region is

c(l)] (a,n) =

[134

.(2.30)

E[134] = {(yw Y2 ys) 1< |y3’v |y1| < |y3| ‘yz| < |y3’} (2.31)

which shows that <I>f1131] (a, 7) is in neighborhood of regular
singularity co.
20/40
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ll. 3-loop vacuum on compact manifold

@ In a similar way, we can obtain other seven hypergeometric
solutions which are consistent with the basis of integer
lattice B,,,, and the convergent region is also =, , .

1347
@ The above eight hypergeometric series solutions @f& (o, 2)
whose convergent region is =, can constitute a

fundamental solution system.

@ Multiplying one of the row vectors of the matrix B ,, by -1,
the induced integer matrix can also be chosen as a basis of
the integer lattice space of certain hypergeometric series.

]

21/40
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ll. 3-loop vacuum on compact manifold

@ Taking 3 row vectors of the following matrix as the basis of
integer lattice,

B, =diag(—1,1,1) B,

13
-1 -1 00 1 0 0 1
=l o 0 10 -1 1 0 -1 |,(232

o 0 0 1 -1 0 1 -1

one obtains eight hypergeometric series solutions
<I>g) (a,z) (i=1,---,8) similarly. The convergent region is

34]

—_

Sy = {00 v W)l <L nl <L Iyl <1}, (2.33)

which shows that <I>[(I’24] (o, 7) are in neighborhood of regular

singularity 0 and can constitute a fundamental solution
system.

22/40
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ll. 3-loop vacuum on compact manifold

@ Taking 3 row vectors of the following matrix as the basis of
integer lattice,

B ., =diag(l,-1,1) B,
1 1 0O 0 -1 0 0 -1
=10 0 -1 O 1 -1 0 1 , (2.34)
o 0o 0o 1 -1 0 1 -1
one obtains eight hypergeometric series solutions

@ff) (o,2) (i=1,---,8) similarly. The convergent region is

34]

Esy = {00 20 v <Inls nl <Inls sl <[}, (2.35)

which shows that <I>[(24] (o, 7) are in neighborhood of regular
singularity co and can constitute a fundamental solution
system.

23/40
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ll. 3-loop vacuum on compact manifold

@ Taking 3 row vectors of the following matrix as the basis of
integer lattice,

)
1 1 o 0 -1 0 0 -1
=lo 01 0 -1 1 0 -1 |,(236)
0 00 -1 1 0 -1 1
one obtains eight hypergeometric series solutions

@ff)- (o,2) (i=1,---,8) similarly. The convergent region is

34)

=00 = (00 3 3|1 < b Il < Il bl < al} L (237)

which shows that <I>[(1’21] (o, 7) are in neighborhood of regular

singularity co and can constitute a fundamental solution
system.

24/40



II. 3-loop vacuum on compact manifold

[ll. 3-loop vacuum on compact manifold

@ i9-8th, 32GB:

SumLim = 15;

ParameterSub = {De »4-2:0.001, € -» 0.001, a; » 1,
a-»1,a3-»>1,a,->1,m;»>0.01, m; »0.02, m, » 10, m; » 0.04 };

NumericalSum[SeriesSolution, ParameterSub, SumLim] ;

Numerical result - -7.5628x10°

Time Taken 1.55064 seconds

| FIESTAEvaluate [MomentumRep, LoopMomenta, InvariantList, ParameterSub];
FIESTA Value - -7.56285x10°

Time Taken 160.037 seconds

@ i9-13th, 64GB:

SumLim = 153
ParameterSub = {De > 4-20.001, € »0.001, a; » 1,

a»1,a;51,2;51,m>0.01,m >0.02, m->10, m - 9.94};
NumericalSum[SeriesSolution, ParameterSub, SumLim];
Numerical result = -7.5628 x 10°

Time Taken 1.16336 seconds

FIESTAEvaluate[MomentumRep, LoopMomenta, InvariantList, ParameterSub];
FIESTA Value = -7.56285x 10°

Time Taken 53.2344 seconds

25/40
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lll. 1-loop self-energy on Grassmannian

1.m]2:mf:0

@ Adopting Feynman parametric representation, we get the
integral of zero virtual masses as

2-D/2 qu 1
AISE(p27O7O) = (AiE) / (

2m)P ¢*(q +p)?
re-o@) "
(47r)D/2 /O dt1t1D (p°t, —p) /
re-2)(x2)"" o
- (4m)D/2 /0 w, (NP2 7P (PP, + pPe,)P 2 (3.1)
with the homogeneous coordinate 7, = —1, the volume

element of projective line w, (1) = r,dt, — t,dt,.
@ Feng, Zhang, Chang, Feynman integrals of Grassmannians, PRD
106(2022)116025 [arXiv: 2206.04224].

26/40
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lll. 1-loop self-energy

@ The integral
1
A (p*,0,0) o /0 w, (PP )PP (3.2)

can be embedded in the subvariety of the Grassmannian
G, ., with splitting local coordinates as

1 0 2
A‘SE:< o 1 §2>. (3.3)

@ first row: integration variable z,, second row: z,,
first column: power function t”/2=2, second column: 22,
third column: (z, ,t, + z,,1,)2/272 = (t,p* + 1,p*)P/*72.

27/40
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1
AISE(pzaoaO) OC/ wz(t) D/2 2 2 D(p i +p t )D/zfz ’
0
satisfies the following GKZ-system

{191,1 + 191,3 }AISE =—Ag, {192,2 + 192,3}‘4155 =—Ag,

D
7‘91,1A|s5 = (5 - 2)AISE ) 192,2A135 =(2- D)AISE )
D
{191,3 + 792,3 }AISE = (E —2)A , (3.4)
where the Euler operator 9, ; = z,,0/0z, ;.
D _» _D
Exponent matrix: 2 0 2 . (3.5)
0 2-D D-3

28/40
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® G, , splitting local coordinates:

1 0 p2
Nm:( ),
0o 1 p?

@ One obtains solution of the GKZ-system

0.0 =€) )= ()"
(3.6)

29/40
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2. ml2 =0, mf #0

@ Adopting Feynman parametric representation

2-p/2 [ dPq 1
2 2\ 2
A (7, 0m) = <ARE) / (2m)P ¢*((q + p)> — m3)

ir'(2 — %)(AﬁE ld . PI25(1 11, — 1)
D/2 /0 fdt; (1,07 — m2)2- D2

. L \2-D/2
lF(2 - 7) (ARE / )tlD/z_ztf_D(;(l‘l +1, + t3) (3 7)
A .

()2 PP (am)PP (6 + 2?27

with homogeneous coordinate 7, = —1, volume element of
projective space w, (1) = t,dt,dt, — t,dt dt, + t,dt dt,.

30/40
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2. ml2 =0, mf #0

@ The integral
P2227D5(t 41, +1,)
A 2’07 2 / £ 2 1 2 3
ISE(p mz) X w%( ) (t3p2 4 t2m§>2_D/2

can be embedded in the subvariety of the Grassmannian
G, ., with splitting local coordinates as

1 0 O 1 0
A= 0o 1 0o 1 m® |. (38)
0 O 1 1 pf
@ first row: ¢, second row: ¢,, third row: ,,

first column: t?/z—z, second column: 22, third column:
12 = 1, fourth column represents the function 6(z, + 1, +1,),

fifth column: (z, i1, + 2,51, + 2,.51,)?/>2 = (t;m2 + 1,p*)P/>2,

9
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2. ml2 =0, mf #0

PP227P5 (1 41, 4 1)
2 2 | 2 1 2 3
AISE(p )0, mz) x /wS(t) ([3p2+[2m§)2—D/2 )
satisfies the following GKZ-system
{191,1 + 7‘91,4 }AISE = _AISE ) {192,2 +192,4 + 192,5 }AISE = _AISE ) (39)
D
{193,3 + 193,4 + 193,5 }A]SE = _A]SE ) q91,1AlSE = (E - Z)AISE ) 192,2A1SE ( ) ISE
D
193,3A155 =0, {191,4 + 192,4 + 193,4 }AISE =—Ag, {1925 + 19%5}"4155 = 5 - Z)AISE .
Exponent matrix:
2-2 0 0o 1-2 0
0 2—-D 0 a,, Q, , (3.10)
0 0 0 a, Qs
D D
Oy T 0y = D -3, Qs 4 + Q35 = -1, O,y 0y, = 2 2, Q, 5 + Q35 = 2 2.
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2. ml2 =0, mf #0

@ Dual space of the GKZ-system: 3 x 5 matrix (0,,,|E{") with
EW = 1 -1 . (3.11)

e Integer lattice (0, ,|nE!!) (n > 0) is compatible with two
choices of the exponents. Through

D D
Gyt =D=3 o, ta,; =—1, a,to,= 5 2, a5ty = 37 2,
the first choice is written as
D
&,y = 07 Q5 =D - 3, Oy = 5 —2, Q5 = 1-— E . (312)

33/40
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2. ml2 =0, mf #0

1 0 0 1 0
Splitting local coordinates: AY = 0 0 1 f
o o 1 1 p
0 0
Integer lattice (0,,, E(l)) nE3<1> = n —n
—n n
L2 0 0 1-2 0
Exponent matrix: 0 2-D 0 0 D -3
0 0 -2 1-2

Hypergeometric function:

> I'(—a,, +n) _
m 25 &35 “ % + ) 3,4 2\—n/ 2\n
w{1»2=3} ( (P Z F + o, + )P(l + a, s ¥+ n) (mz) (P )

- ID/zi G=bn

) . (3.13)

34/40
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lll. 1-loop self-energy on Grassmannian

2. ml2 =0, mf #0

e Forinteger lattice (0, , nE!") (n > 0), second choice is

written as
D
a, =0, o, = 5—1, Qa5 = 5—27 o
@ Adopting integer lattice and the corresponding exponents

matrices, we obtain hypergeometric function as
2 2 2
will;}@ 0, m;)
o

+n)'(—a,, +n)
~ Qs 2 3,5 — s 3,4 ) (p2)"
() Z —i—a“—l—n)l“(l—i-ais—i-n)( 2) ")

——1. (3.14)

3,4

n

2)0/2- 2ZF _2+”)<m2) , (3.15)
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2 _ 0 2
2. mi=0,m; #0
e Forinteger lattice (0, | —nE"Y) (n > 0), two possibilities:

D D

;=0 0,=D-3, a,, =1- ) —2; (3.16)
D
=0, =5 =2 0= -l a,=-1. (317)

@ Adopting integer lattice and exponents matrices, we obtain
two linear independent hypergeometric functions as

e I'(3—D+n) m2\n
3 2 2 2\D/2-2 .
wgl,)z,_z}(p ) Ov mz) ~ (P ) / ZT(;;) 5 (318)
n=0
(4) 2 2y (m) 5 m;
ion 7 0, m) ~ == > T (pz) (3.19)
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2. m2:0 mf#O

° det(A<{11)2 ) = 1, G,  splitting local coordinates

AW = o 1 o 1 m |. (3.20)

Convergent regions: |1/x| < 1, |x| < 1 (x = m/p*). Neighborhoods: x = oo, 0.
@ det(A) ) =p? G,. splitting local coordinates

{1,2,5}
1 0 0 1 0
o N\, n m 3.91
(A{l,z,s}) AT = 0 1 -7 1-— r 0 . (8.21)
0 0 il ol 1

Convergent regions: |1/(1 —1/x)]<1,]1—-1/x| < 1. Neighborhoods: x=0, 1.
1 1 1
) det(Ail)H}) m det(Aiz); 4}) =1, det(AEz)4 s}) fp ,
1
det(A'), ) =m3.
@ 24 fundamental solutions

37740
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lll. 1-loop self-energy on Grassmannian
3. ml2 # 0, mf #0

@ Adopting Feynman parametric representation
2-D/2 qu 1
A (02 2o = (Az > /
o) = (R @) (¢ = md)((g +p)? —m2)
1
o / di dt,5(t, + 1, — 1)(t,0,p* — t,m* — t,m*)P/>~2
0

1 277

e /w3 (08(t, + 1, + )22 (10,07 + t,t,m? + 1,t,m?)PP72 . (3.22)

@ The integral can be embedded in the subvariety of the
Grassmannian G, ., with splitting local coordinates as

1 00 1 1 p?
A= 0 1 0 1 1 m |. (3.23)
00 1 1 1 m
@ 72 fundamental solutions
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V. Summary

® Using Mellin-Barnes representation and Miller’s transformation, we
derive GKZ hypergeometric systems of Feynman integrals. In the
neighborhoods of origin 0 including infinity cc, we can obtain
analytical hypergeometric series solutions through GKZ-systems.

@ Feynman integrals also can be taken as functions on the
subvarieties of Grassmannians through homogenizing the
parametric representation. The GKZ-systems can be obtained in
splitting local coordinates. Fundamental solution systems in
neighborhoods of all regular singularities, using matrices of
integer lattice and exponent matrices.

@ multi-loop diagrams: the sizes of Grassmannians are too large to
construct the fundamental systems through Feynman parametric
representations. To efficiently derive the solution, we can embed
the integrals into the subvarieties of Grassmannians using
a-parametric representation.
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