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I. Introduction

1. Background

Higher-order radiative corrections are more important,
with the increasing precision of measurements at the
future colliders: CLIC, ILC, CEPC, FCC, HL-LHC · · ·

One-loop Feynman integrals are well known analytically
in the time-space dimension D = 4− 2ε.
However, how to perform analytically multi-loop Feynman
integrals is still a challenge.

Considering Feynman integrals as the generalized
hypergeometric functions, one finds that the
D−module of a Feynman diagram is isomorphic to
Gel’fand-Kapranov-Zelevinsky (GKZ) D−module.
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I. Introduction

2. Relevant research

Hypergeometric functions of some Feynman integrals are
obtained from Mellin-Barnes representations.
Feng, Chang, Chen, Gu, Zhang, NPB 927(2018)516 [arXiv:1706.08201]
Feng, Chang, Chen, Zhang, NPB 940(2019)130 [arXiv:1809.00295]
Gu, Zhang, CPC 43(2019)083102 [arXiv:1811.10429]
Gu, Zhang, Feng, IJMPA 35(2020)2050089.

Using GKZ hypergeometric system, we can obtain the
fundamental solution systems of Feynman integrals.
Feng, Chang, Chen, Zhang, NPB 953(2020)114952, [arXiv:1912.01726]
Feng, Zhang, Chang, PRD 106(2022)116025 [arXiv: 2206.04224]
Feng, Zhang, Dong, Zhou, EPJC 83(2023)314 [arXiv:2209.15194].
Zhang, Feng, JHEP 05(2023)075 [arXiv: 2303.02795].
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I. Introduction

3. Generally strategy

We can derive GKZ hypergeometric systems of
Feynman integrals, basing on Mellin-Barnes
representations and Miller’s transformation. We can
formulate Feynman integrals as hypergeometric
functions on general compact manifold or
Grassmannian manifold.
Steps: (1) we write out the GKZ hypergeometric systems
satisfied by the Feynman integrals on general compact
manifold or proper Grassmannian manifold Gk,n . (2)
fundamental solution systems are constructed in
neighborhoods of regular singularities of the GKZ
hypergeometric systems. The combination coefficients can
be determined from Feynman integrals with some special
kinematic parameters.
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II. 3-loop vacuum on compact manifold
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Feynman integral of the 3-loop vacuum diagram with 4
propagates is written as

U4 =
(

Λ2
RE

)6− 3D
2
∫

dDq1

(2π)D
dDq2

(2π)D
dDq3

(2π)D

× 1
(q2

1
− m2

1
)(q2

2
− m2

2
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2 − m2
3
)(q2
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4
)
.(2.1)

Zhang, Feng, GKZ hypergeometric systems of the three-loop vacuum
Feynman integrals, JHEP 05 (2023) 075 [arXiv: 2303.02795].
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II. 3-loop vacuum on compact manifold

Through Mellin-Barnes transformation

U4 =

(
Λ2

RE

)6− 3D
2

(2πi)3

∫ +i∞

−i∞
ds1ds2ds3

[ 3∏
i=1

(−m2
i
)si Γ(−si)Γ(1 + si)

]
Iq , (2.2)

where

Iq

≡
∫

dDq1

(2π)D
dDq2

(2π)D
dDq3

(2π)D
1

(q2
1
)1+s1 (q2

2
)1+s2 ((q1 + q2 + q3)

2)1+s3 (q2
3
− m2

4
)
.

(2.3)
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II. 3-loop vacuum on compact manifold

Using Feynman parametrization and Beta function,

B(m, n) =

∫ 1

0
dx xm−1(1− x)n−1 =

Γ(m)Γ(n)

Γ(m + n)
, (2.4)

one can have

Iq =
−i

(4π)
3D
2

(−)

3∑
i=1

si
( 1

m2
4

)4− 3D
2 +

3∑
i=1

si
[ 3∏

i=1

Γ(
D
2
− 1− si)Γ(1 + si)

−1
]

×Γ(3− D +

3∑
i=1

si)Γ(4− 3D
2

+

3∑
i=1

si) . (2.5)
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II. 3-loop vacuum on compact manifold

Mellin-Barnes representation of the Feynman integral:

U4 =
−im4

4

(2πi)3(4π)6

(4πΛ2
RE

m2
4

)6− 3D
2
∫ +i∞

−i∞
ds1ds2ds3

[ 3∏
i=1

(m2
i

m2
4

)si
Γ(−si)

]
×
[ 3∏

i=1

Γ(
D
2
− 1− si)

]
Γ(3− D +

3∑
i=1

si)Γ(4− 3D
2

+

3∑
i=1

si) . (2.6)

It is well known that negative integers and zero are simple
poles of the function Γ(z). As all si contours are closed to
the right in corresponding complex planes, one finds that
the analytic expression of the the three-loop vacuum
integral can be written as the linear combination of
generalized hypergeometric functions.

9 / 40



I. Introduction II. 3-loop vacuum on compact manifold III. 1-loop self-energy on Grassmannian IV. Summary

II. 3-loop vacuum on compact manifold

Taking the residue of the pole of Γ(−si), (i = 1, 2, 3), we
can derive one linear independent term:

U4 3
−im4

4

(4π)6

(4πΛ2
RE

m2
4

)6− 3D
2
∞∑

n1=0

∞∑
n2=0

∞∑
n3=0

(−)

3∑
i=1

ni
x

n1
1 x

n2
2 x

n3
3

×
[ 3∏

i=1

Γ(
D
2
− 1− ni)(ni !)

−1
]
Γ(3− D +

3∑
i=1

ni)

×Γ(4− 3D
2

+

3∑
i=1

ni) , (2.7)

with xi =
m2

i
m2

4
, (i = 1, 2, 3).
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II. 3-loop vacuum on compact manifold

U4 3
im4

4

(4π)6

(4πΛ2
RE

m2
4

)6− 3D
2 π3

sin3 πD
2

T4(a, b
∣∣∣ x) , (2.8)

with

T4(a, b
∣∣∣ x) =

∞∑
n1=0

∞∑
n2=0

∞∑
n3=0

An1 n2 n3
x

n1
1 x

n2
2 x

n3
3 , (2.9)

An1 n2 n3
=

Γ(a1 +
3∑

i=1
ni)Γ(a2 +

3∑
i=1

ni)

n1 !n2 !n3 !Γ(b1 + n1)Γ(b2 + n2)Γ(b3 + n3)
. (2.10)

where x = (x1 , x2 , x3), a = (a1 , a2) and b = (b1 , b2 , b3) with

a1 = 3− D, a2 = 4− 3D
2
, b1 = b2 = b3 = 2− D

2
. (2.11)
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II. 3-loop vacuum on compact manifold

We can define auxiliary function

Φ4(a, b
∣∣∣ x, u, v) = uavb−e3 T4(a, b

∣∣∣ x) . (2.12)

Through Miller’s transformation,

ϑuj
Φ4(a, b

∣∣∣ x, u, v) = ajΦ4(a, b
∣∣∣ x, u, v) ,

ϑvk
Φ4(a, b

∣∣∣ x, u, v) = (bk − 1)Φ4(a, b
∣∣∣ x, u, v) , (2.13)

which naturally induces the notion of GKZ hypergeometric
system. Euler operators: ϑxk

= xk∂xk
.

12 / 40



I. Introduction II. 3-loop vacuum on compact manifold III. 1-loop self-energy on Grassmannian IV. Summary

II. 3-loop vacuum on compact manifold

Through the transformation

zj =
1
uj

, z2+k = vk , z5+k =
xk

u1u2vk

, (2.14)

we have GKZ hypergeometric system for the integral

A4 · ~ϑ4Φ4 = B4Φ4 , (2.15)

A4 =


1 0 0 0 0 1 1 1
0 1 0 0 0 1 1 1
0 0 1 0 0 −1 0 0
0 0 0 1 0 0 −1 0
0 0 0 0 1 0 0 −1

 ,

~ϑ T
4

= (ϑz1
, · · · , ϑz8

) ,

B4
T = (−a1 , −a2 , b1 − 1, b2 − 1, b3 − 1) . (2.16)
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II. 3-loop vacuum on compact manifold

Correspondingly the dual matrix Ã4 of A4 is

Ã4 =

 −1 −1 1 0 0 1 0 0
−1 −1 0 1 0 0 1 0
−1 −1 0 0 1 0 0 1

 . (2.17)

The row vectors of the matrix Ã4 induce the integer
sublattice B which can be used to construct the formal
solutions in hypergeometric series.
Actually the integer sublattice B indicates that the solutions
of the system should satisfy the equations in Eq. (2.15)
and the following hyperbolic equations simultaneously

∂2Φ4

∂z1∂z2

=
∂2Φ4

∂z3∂z6

,
∂2Φ4

∂z1∂z2

=
∂2Φ4

∂z4∂z7

,
∂2Φ4

∂z1∂z2

=
∂2Φ4

∂z5∂z8

. (2.18)

14 / 40



I. Introduction II. 3-loop vacuum on compact manifold III. 1-loop self-energy on Grassmannian IV. Summary

II. 3-loop vacuum on compact manifold

Defining the combined variables

y1 =
z3z6

z1z2

, y2 =
z4z7

z1z2

, y3 =
z5z8

z1z2

, (2.19)

we write the solutions as

Φ4(z) =
( 8∏

i=1

z
αi
i

)
ϕ4(y1 , y2 , y3) . (2.20)

Here ~α T = (α1 , α2 , · · · , α8) denotes a sequence of
complex number such that

A4 · ~α = B4 , (2.21)

namely,

α1 + α6 + α7 + α8 = −a1 , α2 + α6 + α7 + α8 = −a2 ,

α3 − α6 = b1 − 1 , α4 − α7 = b2 − 1 , α5 − α8 = b3 − 1.(2.22)
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II. 3-loop vacuum on compact manifold

To construct the hypergeometric series solutions of the
GKZ hypergeometric system in Eq. (2.15) together with
corresponding hyperbolic equations in Eq. (2.18) through
triangulation is equivalent to choose a set of the linear
independent column vectors of the matrix in Eq. (2.17)
which spans the dual space.
We denote the submatrix composed of the first, third, and
fourth column vectors of the dual matrix of Eq. (2.17) as
Ã134 , i.e.

Ã134 =

 −1 1 0
−1 0 1
−1 0 0

 . (2.23)
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II. 3-loop vacuum on compact manifold

Obviously det Ã134 = −1 6= 0, and

B134 = Ã−1
134
· Ã4

=

 1 1 0 0 −1 0 0 −1
0 0 1 0 −1 1 0 −1
0 0 0 1 −1 0 1 −1

 . (2.24)

Taking 3 row vectors of the matrix B134 as the basis of
integer lattice, one constructs the GKZ hypergeometric
series solutions in parameter space through choosing the
sets of column indices Ii ⊂ [1, 8] (i = 1, · · · , 8) which are
consistent with the basis of integer lattice B134 .
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II. 3-loop vacuum on compact manifold

We take the set of column indices I1 = [2, 5, 6, 7, 8], i.e. the
implement J1 = [1, 8] \ I1 = [1, 3, 4]. The choice on the set
of indices implies the exponent numbers α1 = α3 = α4 = 0.
Through Eq. (2.22), one can have

α2 = a1 − a2 , α5 = b1 + b2 + b3 − a1 − 3,

α6 = 1− b1 , α7 = 1− b2 , α8 = b1 + b2 − a1 − 2 . (2.25)

Combined with Eq. (2.11), we can have

α2 =
D
2
− 1, α5 = −D

2
, α6 =

D
2
− 1, α7 =

D
2
− 1, α8 = −1 . (2.26)
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II. 3-loop vacuum on compact manifold

According the basis of integer lattice B134 , the
corresponding hypergeometric series solution with triple
independent variables is written as

Φ(1)
[134]

(α, z) =

8∏
i=1

z
αi
i

∞∑
n1=0

∞∑
n2=0

∞∑
n3=0

c(1)
[134]

(α,n)
(z1z2

z5z8

)n1
(z3z6

z5z8

)n2
(z4z7

z5z8

)n3

=

8∏
i=1

z
αi
i

∞∑
n1=0

∞∑
n2=0

∞∑
n3=0

c(1)
[134]

(α,n)
( 1

y3

)n1
(y1

y3

)n2
(y2

y3

)n3
, (2.27)

with the coefficient is

c(1)
[134]

(α,n) =
{

n1 !n2 !n3 !Γ(1 + α2 + n1)Γ(1 + α5 − n1 − n2 − n3)

×Γ(1 + α6 + n2)Γ(1 + α7 + n3)Γ(1 + α8 − n1 − n2 − n3)
}−1

.

(2.28)
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II. 3-loop vacuum on compact manifold

And then, through Eq. (2.26), the corresponding
hypergeometric series solution can be written as

Φ(1)
[134]

(α, z) = y
D
2−1

1 y
D
2−1

2 y−1
3

∞∑
n1=0

∞∑
n2=0

∞∑
n3=0

c(1)
[134]

(α,n)
( 1

y3

)n1
(y1

y3

)n2
(y2

y3

)n3
,

(2.29)

with the coefficient is

c(1)
[134]

(α,n) =
Γ(D

2 + n1 + n2 + n3)Γ(1 + n1 + n2 + n3)

n1 !n2 !n3 !Γ(D
2 + n1)Γ(D

2 + n2)Γ(D
2 + n3)

.(2.30)

Here, the convergent region is

Ξ
[134] = {(y1 , y2 , y3)

∣∣∣1 < |y3 |, |y1 | < |y3 |, |y2 | < |y3 |} , (2.31)

which shows that Φ(1)
[134]

(α, z) is in neighborhood of regular
singularity∞.
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II. 3-loop vacuum on compact manifold

In a similar way, we can obtain other seven hypergeometric
solutions which are consistent with the basis of integer
lattice B134 , and the convergent region is also Ξ

[134] .

The above eight hypergeometric series solutions Φ(i)
[134]

(α, z)
whose convergent region is Ξ

[134] can constitute a
fundamental solution system.
Multiplying one of the row vectors of the matrix B134 by -1,
the induced integer matrix can also be chosen as a basis of
the integer lattice space of certain hypergeometric series.
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II. 3-loop vacuum on compact manifold

Taking 3 row vectors of the following matrix as the basis of
integer lattice,

B
1̃34

= diag(−1, 1, 1) · B134

=

 −1 −1 0 0 1 0 0 1
0 0 1 0 −1 1 0 −1
0 0 0 1 −1 0 1 −1

 , (2.32)

one obtains eight hypergeometric series solutions
Φ(i)

[̃134]
(α, z) (i = 1, · · · , 8) similarly. The convergent region is

Ξ
[̃134]

= {(y1 , y2 , y3)
∣∣∣|y1 | < 1, |y2 | < 1, |y3 | < 1} , (2.33)

which shows that Φ(i)
[̃134]

(α, z) are in neighborhood of regular
singularity 0 and can constitute a fundamental solution
system.
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II. 3-loop vacuum on compact manifold

Taking 3 row vectors of the following matrix as the basis of
integer lattice,

B
13̃4

= diag(1,−1, 1) · B134

=

 1 1 0 0 −1 0 0 −1
0 0 −1 0 1 −1 0 1
0 0 0 1 −1 0 1 −1

 , (2.34)

one obtains eight hypergeometric series solutions
Φ(i)

[13̃4]
(α, z) (i = 1, · · · , 8) similarly. The convergent region is

Ξ
[13̃4]

= {(y1 , y2 , y3)
∣∣∣1 < |y1 |, |y2 | < |y1 |, |y3 | < |y1 |} , (2.35)

which shows that Φ(i)
[13̃4]

(α, z) are in neighborhood of regular
singularity∞ and can constitute a fundamental solution
system.
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II. 3-loop vacuum on compact manifold

Taking 3 row vectors of the following matrix as the basis of
integer lattice,

B
134̃

= diag(1, 1,−1) · B134

=

 1 1 0 0 −1 0 0 −1
0 0 1 0 −1 1 0 −1
0 0 0 −1 1 0 −1 1

 , (2.36)

one obtains eight hypergeometric series solutions
Φ(i)

[134̃]
(α, z) (i = 1, · · · , 8) similarly. The convergent region is

Ξ
[13̃4]

= {(y1 , y2 , y3)
∣∣∣1 < |y2 |, |y1 | < |y2 |, |y3 | < |y2 |} , (2.37)

which shows that Φ(i)
[134̃]

(α, z) are in neighborhood of regular
singularity∞ and can constitute a fundamental solution
system.
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III. 3-loop vacuum on compact manifold

i9-8th, 32GB:

i9-13th, 64GB:
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III. 1-loop self-energy on Grassmannian

1. m2
1

= m2
2

= 0

Adopting Feynman parametric representation, we get the
integral of zero virtual masses as

A1SE (p2, 0, 0) =
(

Λ2
RE

)2−D/2
∫

dDq
(2π)D

1
q2(q + p)2

=
iΓ(2− D

2 )
(

Λ2
RE

)2−D/2

(4π)D/2

∫ 1

0
dt1 tD/2−2

1
(p2t1 − p2)D/2−2

=
iΓ(2− D

2 )
(

Λ2
RE

)2−D/2

(4π)D/2

∫ 1

0
ω2(t)tD/2−2

1
t2−D

2
(p2t1 + p2t2)

D/2−2 ,(3.1)

with the homogeneous coordinate t2 = −1, the volume
element of projective line ω2(t) = t2dt1 − t1dt2 .
Feng, Zhang, Chang, Feynman integrals of Grassmannians, PRD
106(2022)116025 [arXiv: 2206.04224].
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III. 1-loop self-energy

1. m2
1

= m2
2

= 0

The integral

A1SE (p2, 0, 0) ∝
∫ 1

0
ω2(t)tD/2−2

1
t2−D

2
(p2t1 + p2t2)

D/2−2 , (3.2)

can be embedded in the subvariety of the Grassmannian
G2,3 , with splitting local coordinates as

A1SE =

(
1 0 p2

0 1 p2

)
. (3.3)

first row: integration variable t1 , second row: t2 ,
first column: power function tD/2−2

1
, second column: t2−D

2
,

third column: (z1,3 t1 + z2,3 t2)
D/2−2 = (t1p2 + t2p2)D/2−2.
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III. 1-loop self-energy on Grassmannian

1. m2
1

= m2
2

= 0

Splitting local coordinates: A1SE =

(
1 0 p2

0 1 p2

)
.

A1SE (p2, 0, 0) ∝
∫ 1

0
ω2 (t)tD/2−2

1 t2−D
2 (p2t1 + p2t2 )

D/2−2 ,

satisfies the following GKZ-system{
ϑ1,1 + ϑ1,3

}
A1SE = −A1SE ,

{
ϑ2,2 + ϑ2,3

}
A1SE = −A1SE ,

ϑ1,1 A1SE = (
D
2
− 2)A1SE , ϑ2,2 A1SE = (2− D)A1SE ,{

ϑ1,3 + ϑ2,3

}
A1SE = (

D
2
− 2)A1SE , (3.4)

where the Euler operator ϑi,j = zi,j∂/∂zi,j .

Exponent matrix:

(
D
2 − 2 0 1− D

2

0 2− D D− 3

)
. (3.5)
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III. 1-loop self-energy on Grassmannian

1. m2
1

= m2
2

= 0

Exponent matrix:( D
2 − 2 0 1− D

2
0 2− D D− 3

)
.

G2,3 splitting local coordinates:

A1SE =

(
1 0 p2

0 1 p2

)
.

One obtains solution of the GKZ-system

A1SE (p2, 0, 0) = C(0)
1SE

(
p2
)1−D/2(

p2
)D−3

= C(0)
1SE

(
p2
)D/2−2

.

(3.6)
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III. 1-loop self-energy on Grassmannian

2. m2
1

= 0, m2
2
6= 0

Adopting Feynman parametric representation

A1SE (p2, 0,m2
2
) =

(
Λ2

RE

)2−D/2
∫

dDq
(2π)D

1
q2((q + p)2 − m2

2
)

=
iΓ(2− D

2 )
(

Λ2
RE

)2−D/2

(−)2−D/2(4π)D/2

∫ 1

0
dt1dt3

tD/2−2
1

δ(t1 + t3 − 1)

(t3p2 − m2
2
)2−D/2

=
iΓ(2− D

2 )
(

Λ2
RE

)2−D/2

(−)2−D/2(4π)D/2

∫
ω3(t)

tD/2−2
1

t2−D
2

δ(t1 + t2 + t3)

(t3p2 + t2m2
2
)2−D/2 ,(3.7)

with homogeneous coordinate t2 = −1, volume element of
projective space ω3(t) = t1dt2dt3 − t2dt1dt3 + t3dt1dt2 .
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III. 1-loop self-energy on Grassmannian

2. m2
1

= 0, m2
2
6= 0

The integral

A1SE (p2, 0,m2
2
) ∝

∫
ω3(t)

tD/2−2
1

t2−D
2

δ(t1 + t2 + t3)

(t3p2 + t2m2
2
)2−D/2 ,

can be embedded in the subvariety of the Grassmannian
G3,5 , with splitting local coordinates as

A(1) =

 1 0 0 1 0
0 1 0 1 m2

2

0 0 1 1 p2

 . (3.8)

first row: t1 , second row: t2 , third row: t3 ,
first column: tD/2−2

1
, second column: t2−D

2
, third column:

t0
3

= 1, fourth column represents the function δ(t1 + t2 + t3),
fifth column: (z1,5 t1 + z2,5 t2 + z3,5 t3)

D/2−2 = (t2m2
2

+ t3p2)D/2−2.
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III. 1-loop self-energy on Grassmannian

2. m2
1

= 0, m2
2
6= 0

A1SE (p2, 0,m2
2 ) ∝

∫
ω3 (t)

tD/2−2
1 t2−D

2 δ(t1 + t2 + t3 )

(t3 p2 + t2 m2
2 )

2−D/2 ,

satisfies the following GKZ-system{
ϑ1,1 + ϑ1,4

}
A1SE = −A1SE ,

{
ϑ2,2 + ϑ2,4 + ϑ2,5

}
A1SE = −A1SE , (3.9){

ϑ3,3 + ϑ3,4 + ϑ3,5

}
A1SE = −A1SE , ϑ1,1 A1SE = (

D
2
− 2)A1SE , ϑ2,2 A1SE = (2− D)A1SE ,

ϑ3,3 A1SE = 0 ,
{
ϑ1,4 + ϑ2,4 + ϑ3,4

}
A1SE = −A1SE ,

{
ϑ2,5 + ϑ3,5

}
A1SE = (

D
2
− 2)A1SE .

Exponent matrix:
D
2 − 2 0 0 1− D

2 0

0 2− D 0 α2,4 α2,5

0 0 0 α3,4 α3,5

 , (3.10)

α2,4 + α2,5 = D− 3, α3,4 + α3,5 = −1, α2,4 + α3,4 =
D
2
− 2, α2,5 + α3,5 =

D
2
− 2.
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III. 1-loop self-energy on Grassmannian

2. m2
1

= 0, m2
2
6= 0

Dual space of the GKZ-system: 3× 5 matrix (03×3

∣∣∣E(1)
3

) with

E(1)
3

=

 0 0
1 −1
−1 1

 . (3.11)

Integer lattice (03×3

∣∣∣nE(1)
3

) (n ≥ 0) is compatible with two
choices of the exponents. Through

α2,4 + α2,5 = D− 3, α3,4 + α3,5 = −1, α2,4 + α3,4 =
D
2
− 2, α2,5 + α3,5 =

D
2
− 2,

the first choice is written as

α2,4 = 0, α2,5 = D− 3, α3,4 =
D
2
− 2, α3,5 = 1− D

2
. (3.12)
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III. 1-loop self-energy on Grassmannian

2. m2
1

= 0, m2
2
6= 0

Splitting local coordinates: A(1) =

 1 0 0 1 0

0 1 0 1 m2
2

0 0 1 1 p2

 .

Integer lattice (03×3

∣∣∣nE(1)
3 ): nE(1)

3 =

 0 0

n −n

−n n

 .

Exponent matrix:


D
2 − 2 0 0 1− D

2 0

0 2− D 0 0 D− 3

0 0 0 D
2 − 2 1− D

2

 .

Hypergeometric function:

ψ(1)
{1,2,3} ∼ (m2

2 )
α2,5 (p2)

α3,5

∞∑
n=0

Γ(−α2,5 + n)Γ(−α3,4 + n)

Γ(1 + α2,4 + n)Γ(1 + α3,5 + n)
(m2

2 )
−n(p2)n

∼ (m2
2 )

D−3(p2)1−D/2
∞∑

n=0

Γ(3− D + n)

n!

( p2

m2
2

)n
. (3.13)
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III. 1-loop self-energy on Grassmannian

2. m2
1

= 0, m2
2
6= 0

For integer lattice (03×3

∣∣∣nE(1)
3

) (n ≥ 0), second choice is
written as

α3,5 = 0, α2,4 =
D
2
− 1, α2,5 =

D
2
− 2, α3,4 = −1 . (3.14)

Adopting integer lattice and the corresponding exponents
matrices, we obtain hypergeometric function as

ψ(2)
{1,2,3}

(p2, 0, m2
2
)

∼ (m2
2
)α2,5 (p2)α3,5

∞∑
n=0

Γ(−α2,5 + n)Γ(−α3,4 + n)

Γ(1 + α2,4 + n)Γ(1 + α3,5 + n)
(m2

2
)−n(p2)n

∼ (m2
2
)D/2−2

∞∑
n=0

Γ(2− D
2 + n)

Γ(D
2 + n)

( p2

m2
2

)n
. (3.15)
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III. 1-loop self-energy on Grassmannian

2. m2
1

= 0, m2
2
6= 0

For integer lattice (03×3

∣∣∣− nE(1)
3

) (n ≥ 0), two possibilities:

α2,5 = 0, α2,4 = D− 3, α3,4 = 1− D
2
, α3,5 =

D
2
− 2 ; (3.16)

α3,4 = 0, α2,4 =
D
2
− 2, α2,5 =

D
2
− 1, α3,5 = −1 . (3.17)

Adopting integer lattice and exponents matrices, we obtain
two linear independent hypergeometric functions as

ψ(3)
{1,2,3}

(p2, 0, m2
2
) ∼ (p2)D/2−2

∞∑
n=0

Γ(3− D + n)

n!

(m2
2

p2

)n
; (3.18)

ψ(4)
{1,2,3}

(p2, 0, m2
2
) ∼

(m2
2
)D/2−1

p2

∞∑
n=0

Γ(2− D
2 + n)

Γ(D
2 + n)

(m2
2

p2

)n
.(3.19)
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III. 1-loop self-energy on Grassmannian

2. m2
1

= 0, m2
2
6= 0

det(A(1)
{1,2,3}) = 1, G3,5 splitting local coordinates

A(1) =

 1 0 0 1 0

0 1 0 1 m2
2

0 0 1 1 p2

 . (3.20)

Convergent regions: |1/x| ≤ 1, |x| ≤ 1 (x = m2
2/p2). Neighborhoods: x =∞, 0.

det(A(1)
{1,2,5}) = p2, G3,5 splitting local coordinates

(
A(1)
{1,2,5}

)−1
· A(1) =


1 0 0 1 0

0 1 −
m2

2
p2 1−

m2
2

p2 0

0 0 1
p2

1
p2 1

 . (3.21)

Convergent regions: |1/(1− 1/x)| ≤ 1, |1− 1/x| ≤ 1. Neighborhoods: x = 0, 1.
det(A(1)

{1,3,5}) = −m2
2 , det(A(1)

{2,3,4}) = 1, det(A(1)
{2,4,5}) = −p2,

det(A(1)
{3,4,5}) = m2

2 .
24 fundamental solutions
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III. 1-loop self-energy on Grassmannian

3. m2
1
6= 0, m2

2
6= 0

Adopting Feynman parametric representation

A1SE (p2,m2
1
,m2

2
) =

(
Λ2

RE

)2−D/2
∫

dDq
(2π)D

1
(q2 − m2

1
)((q + p)2 − m2

2
)

∝
∫ 1

0
dt1dt2δ(t1 + t2 − 1)(t1 t2p2 − t1m2

1
− t2m2

2
)D/2−2

∝
∫
ω3(t)δ(t1 + t2 + t3)t2−D

3
(t1 t2p2 + t1 t3m2

1
+ t2 t3m2

2
)D/2−2 . (3.22)

The integral can be embedded in the subvariety of the
Grassmannian G3,6 , with splitting local coordinates as

A(1S) =

 1 0 0 1 1 p2

0 1 0 1 1 m2
2

0 0 1 1 1 m2
1

 . (3.23)

72 fundamental solutions
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IV. Summary

Using Mellin-Barnes representation and Miller’s transformation, we
derive GKZ hypergeometric systems of Feynman integrals. In the
neighborhoods of origin 0 including infinity∞, we can obtain
analytical hypergeometric series solutions through GKZ-systems.

Feynman integrals also can be taken as functions on the
subvarieties of Grassmannians through homogenizing the
parametric representation. The GKZ-systems can be obtained in
splitting local coordinates. Fundamental solution systems in
neighborhoods of all regular singularities, using matrices of
integer lattice and exponent matrices.

multi-loop diagrams: the sizes of Grassmannians are too large to
construct the fundamental systems through Feynman parametric
representations. To efficiently derive the solution, we can embed
the integrals into the subvarieties of Grassmannians using
α-parametric representation.
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