

LLP scalar searches at FASER

Wei Su

2212.06186 (F. Kling, S. Li, S. Su, H.Song, WS)

outline

- Motivation: Brief introduction to LLP
- Method: Brief introduction to FASER
- General study
 - Production
 - Decay
 - Constraints
- Case study: 2HDM results

Motiva

LLP

ation:LLP	$\begin{array}{ccc} \text{mass} \rightarrow & \approx 2.3 \ \text{MeV/c}^2 \\ \text{charge} \rightarrow & 2/3 \\ \text{spin} \rightarrow & 1/2 \\ & & & $	≈1.275 GeV/c ² 2/3 1/2 Charm	≈173.07 GeV/c ² 2/3 1/2 top	0 1 gluon	a126 GeV/c² 0 Higgs boson		
	SYBOD *4.8 MeV/c² -1/3 1/2 down	≈95 MeV/c ² -1/3 S 1/2 Strange	≈4.18 GeV/c ² -1/3 1/2 bottom	0 1 photon			
	0.511 MeV/c ² -1 1/2 electron Vc ² 2.2 eV/c ² 0 1/2 electron neutrino	105.7 MeV/c ² -1 1/2 muon <0.17 MeV/c ² 0 1/2 1/2 muon neutrino	1.777 GeV/c ² -1 1/2 tau <15.5 MeV/c ² 0 1/2 1/2 tau neutrino	91.2 GeV/c ² 0 1 Z boson 80.4 GeV/c ² ±1 1 W boson	GAUGE BOSONS		
Weakly interact Light Particle	ing			Stron Heav	ngly interacting y Particle	g	Heavv
	IUTHUSLA			ATLAS		PC	,

FASER: ForwArd Search ExpeRiment

many hadrons: 10¹⁷ π, 10¹⁶ K, 10¹⁵ D, 10¹⁴ B with E~TeV

Production

PP → mesons → LLP + X, LLP → charged tracks + X

Data base: FORESEE : <u>2105.07077</u> F. Kling and S. Trojanowski,

Particle category	Particles	Generators						
	1 al ticles	EPOS-LHC	QGSJET II-04	SIBYLL 2.3c	Pythia 8.2			
Photons	γ	\checkmark	\checkmark	\checkmark				
Light hadrons	$ \begin{matrix} \pi^{0}, \pi^{+}, \eta, \eta', \omega, \rho, \phi, n, p \\ K^{+}, K_{L}, K_{S}, K^{*}_{0}, K^{*+}, \Lambda \end{matrix} $	\checkmark	✓	\checkmark				
Charm hadrons	$D^+, D^0, D_s^+, \Lambda_c$			\checkmark	\checkmark			
Beauty hadrons	$B^{0}, B^{+}, B_{s}, B_{c}^{+}, \Lambda_{b}$				\checkmark			
Heavy quarks	c, b				\checkmark			
Quarkonia	$J/\Psi,\psi(2S),\Upsilon(nS)$				\checkmark			
Weak bosons	W^+, Z, h				\checkmark			

Production

Data base: FORESEE

- the `distance` from the IP in meter (default: 480)
- the `length` in meter (default: 5)
- the `luminosity` in units of fb^-1 (default: 3000)
- the `selection` : (default: `np.sqrt(x.x**2 + x.y**2)< 1`)</pre>
- the decay `channels` which the detector can see

Particle enterory	Particlos	Generators						
	1 al ticles	EPOS-LH	IC QGSJET II-04	SIBYLL 2.3c	Pythia 8.2			
Photons	γ	\checkmark	\checkmark	\checkmark				
Light hadrons	$\begin{bmatrix} \pi^{0}, \pi^{+}, \eta, \eta', \omega, \rho, \phi, n, p \\ K^{+}, K_{L}, K_{S}, K_{0}^{*}, K^{*+}, \Lambda \end{bmatrix}$	\checkmark	\checkmark	\checkmark				
Charm hadrons	$D^+, D^0, D_s^+, \Lambda_c$			\checkmark	\checkmark			
Beauty hadrons	$B^{0}, B^{+}, B_{s}, B_{c}^{+}, \Lambda_{b}$				\checkmark			
Heavy quarks	c, b				\checkmark			
Quarkonia	$J/\Psi, \psi(2S), \Upsilon(nS)$				\checkmark			
Weak bosons	W^+, Z, h				\checkmark			

Production: CP even scalar

$$\mathcal{L} = -\frac{1}{2}m_{\phi}^{2}\phi^{2} - \sum_{f}\xi_{\phi}^{f}\frac{m_{f}}{v}\phi\bar{f}f + \xi_{\phi}^{W}\frac{2m_{W}^{2}}{v}\phi W^{\mu+}W_{\mu}^{-} + \xi_{\phi}^{Z}\frac{m_{Z}^{2}}{v}\phi Z^{\mu}Z_{\mu} + \xi_{\phi\phi}^{W}\frac{g^{2}}{4}\phi\phi W^{\mu+}W_{\mu}^{-} + \xi_{\phi\phi}^{Z}\frac{g^{2}}{8\cos^{2}\theta_{W}}\phi\phi Z^{\mu}Z_{\mu} + \xi_{\phi}^{g}\frac{\alpha_{s}}{12\pi v}\phi G_{\mu\nu}^{a}G^{a\mu\nu} + \xi_{\phi}^{\gamma}\frac{\alpha_{ew}}{4\pi v}\phi F_{\mu\nu}F^{\mu\nu} K \rightarrow \pi\phi, \ \eta^{(\prime)} \rightarrow \pi\phi, \ D \rightarrow X_{u}\phi, \ B \rightarrow X_{s}\phi \pi^{+} \rightarrow \ell\nu\phi \qquad K^{+} \rightarrow \ell\nu\phi \qquad \Upsilon \rightarrow \phi\gamma$$

meson	quark content	mass (MeV)
π^{\pm}	$u\overline{d}$	139.57018 ± 0.00035
π^0	$\frac{\mathrm{uu}-\mathrm{d}\overline{\mathrm{d}}}{\sqrt{2}}$ [a]	134.9766 ± 0.0006
η	$\frac{\mathrm{uu} + \mathrm{d}\overline{\mathrm{d}} - 2\mathrm{s}\overline{s}}{\sqrt{6}}$ [a]	547.853 ± 0.024
η'	$\frac{\mathrm{uu}+\mathrm{d}\overline{\mathrm{d}}+\mathrm{s}\overline{\mathrm{s}}}{\sqrt{3}}$ [a]	957.66 ± 0.24

Production: CP even scalar
Main contribution

$$K^{\pm}: 493.677 \pm 0.016 \text{ MeV}/K^{0}: 497.611 \pm 0.013 \text{ MeV}/K^{0}: 497.61$$

Production: CP odd scalar

$$\mathcal{L}_{A} = -\frac{1}{2}m_{A}^{2}A^{2} + \sum_{f=u,d,e} \xi_{A}^{f} \frac{im_{f}}{v} \bar{f}\gamma_{5}fA + \xi_{AA}^{W} \frac{g^{2}}{4}AAW^{\mu}W_{\mu}^{-} + \xi_{AA}^{Z} \frac{g^{2}}{8\cos^{2}\theta_{W}}AAZ^{\mu}Z_{\mu} + \xi_{A}^{g} \frac{\alpha_{s}}{4\pi v} AG_{\mu\nu}^{a} \tilde{G}^{a\mu\nu} + \xi_{A}^{\gamma} \frac{\alpha_{ew}}{4\pi v} AF_{\mu\nu} \tilde{F}^{\mu\nu}, \qquad (3.1)$$

CP-odd particle mixing production: contribute mainly at mass peak

$$A = O_{A3}\pi_{3} + O_{A8}\pi_{8} + O_{A9}\pi_{9} + O_{AA}A \qquad \qquad \mathcal{L}_{\chi} \ni -\frac{1}{2}(\pi_{3} \pi_{8} \pi_{9} A) \begin{pmatrix} m_{\pi}^{2} & 0 & 0 & \delta m_{3}^{2} \\ 0 & m_{\pi_{8}}^{2} & \Delta & \delta m_{8}^{2} \\ 0 & \Delta & m_{\pi_{9}}^{2} & \delta m_{9}^{2} \\ \delta m_{3}^{2} & \delta m_{8}^{2} & \delta m_{9}^{2} & \bar{m}_{A}^{2} \end{pmatrix} \begin{pmatrix} \pi_{3} \\ \pi_{8} \\ \pi_{9} \\ A \end{pmatrix}$$

 $\sigma_A \approx O_{A\pi^0}^2 \sigma_{\pi^0} + O_{A\eta}^2 \sigma_{\eta} + O_{A\eta'}^2 \sigma_{\eta'},$

Decay: CP even scalar

$$m_{\Phi} < 2 \text{ GeV}$$

$$F_{\pi\pi} = \frac{3G_F}{16\sqrt{2}\pi m_{\Phi}} \beta_{\pi} \left| \xi_{\Phi}^{gg} \frac{2}{27} (\Theta_{\pi} - \Gamma_{\pi} - \Delta_{\pi}) + \frac{m_u \xi_{\Phi}^u + m_d \xi_{\Phi}^d}{m_u + m_d} \Gamma_{\pi} + (\xi_{\Phi}^s) \Delta_{\pi} \right|^2$$

$$F_{KK} = \frac{G_F}{4\sqrt{2}\pi m_{\Phi}} \beta_K \left| \xi_{\Phi}^{gg} \frac{2}{27} (\Theta_K - \Gamma_K - \Delta_K) + \frac{m_u \xi_{\Phi}^u + m_d \xi_{\Phi}^d}{m_u + m_d} \Gamma_K + (\xi_{\Phi}^s) \Delta_K \right|^2$$

$$\Gamma_{\pi} = \left\langle \pi\pi \left| m_u \bar{u}u + m_d \bar{d}d \right| 0 \right\rangle, \quad \Delta_{\pi} = \left\langle \pi\pi \left| m_s \bar{s}s \right| 0 \right\rangle, \quad \Theta_{\pi} = \left\langle \pi\pi \left| \Theta_{\mu}^u \right| 0 \right\rangle$$
Leading order chiral perturbation theory

$$\Gamma_{\pi}^{0} = m_{\pi}^{2}, \qquad \Delta_{\pi}^{0} = 0, \qquad \Theta_{\pi}^{0} = s + 2m$$

$$\Gamma_{K}^{0} = \frac{1}{2}m_{\pi}^{2}, \qquad \Delta_{K}^{0} = m_{K}^{2} - \frac{1}{2}m_{\pi}^{2}, \qquad \Theta_{K}^{0} = s + 2m$$

Decay: CP odd scalar $A \to \pi \pi \pi$ $A \to \eta \pi \pi$ $A \to \eta' \pi \pi$ $A \to \eta \eta \pi$ Follow arXiv:1612.06538 $A \to KK\pi$ $A \to \gamma \pi \pi$ $A \to \eta \eta' \pi$ Hadronic decays into Tri-meson for $m_A \lesssim 1.3~{ m GeV}$ $A \to \eta' \eta' \pi$ Radiative Hadronic Decays for $m_A \lesssim 1.3~{ m GeV}$ $A \to \eta \eta \eta$ hadronic decays for 1.3 GeV $\lesssim m_A \lesssim 3$ GeV (Spectator Model) $A \to \eta \eta \eta \eta'$ $A \to \eta \eta' \eta'$ $A \to \eta' \eta' \eta'$ $A \to \eta K K$ $A \to \eta' K K$

Constraints

current experiments (typically considered)

SN1987a LEP $\overline{e}e \rightarrow Z^* \phi$ CHARM *dipoton* NA62 $K \rightarrow \pi \Phi$

E949 K⁺ $\rightarrow \pi^{+} + \overline{\nu} \nu$ KTeV K_L $\rightarrow \pi + \overline{\mu} \mu$ LHCb B \rightarrow K^(*)+ $\overline{\mu} \mu$ MicroBooNE $K^{+} \rightarrow \pi^{+} \chi (e^{+}e^{-})$

Case study: 2HDM

• Two Higgs Doublet Model

$$\Phi_{i} = \begin{pmatrix} \phi_{i}^{+} \\ (v_{i} + \phi_{i}^{0} + iG_{i})/\sqrt{2} \end{pmatrix}$$

$$v_{u}^{2} + v_{d}^{2} = v^{2} = (246 \text{GeV})^{2}$$

$$\tan \beta = v_{u}/v_{d}$$

$$Type \text{ II}$$

$$u, d, \text{I}$$

$$Type \text{ II}$$

$$u \quad d, \text{I}$$

$$Type \text{ II}$$

$$u \quad d, \text{I}$$

$$H^{0} = (\cos \alpha \sin \alpha) \begin{pmatrix} \phi_{1}^{0} \\ \phi_{2}^{0} \end{pmatrix},$$

$$A = -G_{1} \sin \beta + G_{2} \cos \beta$$

$$H^{\pm} = -\phi_{1}^{\pm} \sin \beta + \phi_{2}^{\pm} \cos \beta$$

$$H^{\pm} = -\phi_{1}^{\pm} \sin \beta + \phi_{2}^{\pm} \cos \beta$$

• Parameters (CP-conserving, Flavor Limit, Z_2 Symmetry)

Case study: 2HDM

Genearally: $cos(\beta - \alpha) = 0$

	ξ^u_H	ξ^d_H	ξ^ℓ_H	ξ^u_A	ξ^d_A	ξ^ℓ_A
Type-I	$\cot eta$	\coteta	\coteta	$\cot eta$	$-\coteta$	$-\coteta$
Type-II	$\cot eta$	- aneta	- aneta	$\cot eta$	aneta	aneta
Type-L	$\cot eta$	\coteta	- aneta	$\cot eta$	$-\coteta$	aneta
Type-F	$\cot eta$	- aneta	\coteta	$\cot eta$	aneta	$-\coteta$

Small couplings

- Type-I: easy at large $\tan \beta$ for both A and H
- A: impossible for other 3 types
- H: hard for other 3 types (fine-tunned)

Constraint and 2HDM

Benchmark Scenario: theoretical constraints, Z-pole direct search, invisible h decay

Light
$$H : \cos(\beta - \alpha) = \frac{1}{\tan \beta}, \ m_A = m_{H^{\pm}} = 600 \text{ GeV}, \ \lambda v^2 = 0 \text{ GeV}^2,$$

Light $A : \cos(\beta - \alpha) = 0, \ m_H = m_{H^{\pm}} = 90 \text{ GeV}, \ \lambda v^2 = 0 \text{ GeV}^2.$

$$\begin{aligned} \xi_A^f|_{\cos(\beta-\alpha)=0} &= 1/\tan\beta, \\ \xi_H^V &= c_{\beta-\alpha} &= 1/\tan\beta, \\ \xi_H^f &= c_{\beta-\alpha}(1-s_{\beta-\alpha}) \approx 1/(2\tan^3\beta) + \mathcal{O}(c_{\beta-\alpha}^5) \end{aligned}$$

Results: CP even

$$\begin{aligned} \xi_H^V &= c_{\beta-\alpha} = 1/\tan\beta, \\ \xi_H^f &= c_{\beta-\alpha}(1-s_{\beta-\alpha}) \approx 1/(2\tan^3\beta) + \mathcal{O}(c_{\beta-\alpha}^5) \end{aligned}$$

Results: CP even

Results: CP odd

$$\xi_A^f|_{\cos(\beta-\alpha)=0} = 1/\tan\beta$$

Results: for case study

higher luminosity helps to reach the weaker coupling region.

A larger detector, especially the radius helps to extend the reach in mA.

Summary

- Production
- > Decay : public code
- > Constraints
- Case study: 2HDM results

Thanks !

Constraint

$$cos (\beta - \alpha) = 0,$$

$$m_{\Phi} \equiv m_{H} = m_{A} = m_{H^{\pm}}$$

Theoretical constraints

$$\lambda v^{2} \equiv m_{\Phi}^{2} - m_{12}^{2}/s_{\beta}c_{\beta}$$

$$-125^{2}GeV^{2} < \lambda v^{2} < 600^{2}GeV^{2}$$

$$\lambda \in (-0.26, 5.95)$$

$$\lambda_{4} = \lambda_{5} = \lambda_{3} - 0.258 = -\lambda$$

Constraint

Theoretical constraints

$$\lambda v^2 \equiv m_H^2 - m_{12}^2/s_\beta c_\beta = 0$$

$$\begin{split} m_H &\sim 0: \quad m_{A/H^{\pm}} \lesssim 600 \,\, {\rm GeV} \\ m_A &\sim 0: \qquad m_{H^{\pm}} \lesssim 600 \,\, {\rm GeV}, \qquad m_H \lesssim m_h \end{split}$$

Constraint

Invisible Higgs decays

$$\operatorname{Br}(h \to \phi \phi) = \frac{\Gamma(h \to \phi \phi)}{\Gamma_h} \approx \frac{1}{\Gamma_h^{\mathrm{SM}}} \frac{g_{h\phi\phi}^2}{8\pi m_h^2} \left(1 - \frac{4m_H^2}{m_h^2}\right)^{1/2} \simeq 4700 \cdot \left(\frac{g_{h\phi\phi}}{v}\right)^2 \quad < 0.24$$

 $Br(h \to \phi \phi) = 0$

$$\begin{split} Light \ H : \cos(\beta - \alpha) &= \tan 2\beta \frac{2\lambda v^2 + m_h^2}{2(m_H^2 - 3\lambda v^2 - m_h^2)} \approx \frac{1}{\tan\beta} \,, \\ Light \ A : \cos(\beta - \alpha) &= \tan 2\beta \frac{2\lambda v^2 + m_h^2 + 2m_A^2 - 2m_H^2}{2(m_H^2 - \lambda v^2 - m_h^2)} \approx \frac{1}{\tan\beta} \frac{2m_H^2 - m_h^2}{m_H^2 - m_h^2} \,, \end{split}$$

Results: CP odd

 $\xi_A^f|_{\cos(\beta - \alpha) = 0} = 1/\tan\beta$

code

- Light Scalar decay
- <u>https://github.com/shiggs90/Light_scalar_decay.git</u>

$pp \rightarrow LLP + X$, LLP travels ~480 m, LLP \rightarrow charged tracks + X

FASER: Detector

