COMPLEMENTARY CONSTRAINTS ON Zbb COUPLING AT THE LHC

钱卓妮

第十二届新物理研讨会 @青岛 2023.7

arXiv: 2306.15109

Table of Contents:

- Background and Current Limitation
- $gg \rightarrow b\bar{b}\ell^-\ell^+$ and Asymmetric Observable
- Off-shell through m_{ee} spectra
- Simulation and Fits
- Systematic Error and Alternative Observable
- Main Results

Background: A persistent discrepancy in Zbb coupling

L, R $Zb\bar{b}$ Coupling and the SM prediction:

$$\mathcal{L}_{Zb\bar{b}} = \frac{-e}{s_W c_W} Z_\mu (g_L \bar{b}_R \gamma^\mu b_L + g_R \bar{b}_L \gamma^\mu b_R)$$

$$g_{L,SM} = -1/2 + s_W^2/3 \qquad g_{R,SM} = s_W^2/3$$

$$\mathscr{L} \supset c_{\varphi q,i}^{(1)} (\overline{Q}_i \gamma^\mu Q_i) (iH^{\dagger} \overset{\leftrightarrow}{D}_\mu H) + c_{\varphi q,i}^{(3)} (\overline{Q}_i \sigma^a \gamma^\mu Q_i) (iH^{\dagger} \delta g_{b,L})$$

$$\delta g_{b,L} = -\frac{1}{2\sqrt{2}G_F} \left(c_{\varphi q,3}^{(1)} + c_{\varphi q,3}^{(3)} \right), \quad \delta g_{b,R} = -\frac{1}{2\sqrt{2}G_F} \left(c_{\varphi q,3}^{(1)} + c_{\varphi q,3}^{(3)} \right),$$

Symmetric / asymmetric observable

$$\begin{aligned} \text{(LEP)} \quad & \frac{\sigma_Q^{inc}}{\sigma_q^{inc}} = R_Q \propto (g_{Q,L}^2 + g_{Q,R}^2) \\ \text{(LEP)} \quad & \frac{\sigma^A}{\sigma^{inc}} = A_{FB} \propto \frac{(g_{Q,L}^2 - g_{Q,R}^2)(g_{e,L}^2 - g_{e,R}^2)}{(g_{Q,L}^2 + g_{Q,R}^2)(g_{e,L}^2 + g_{e,R}^2)} \\ \text{Tevatron, LHCb)} \quad & A_{FB} \propto \frac{(g_{Q,L}^2 - g_{Q,R}^2)}{(g_{Q,L}^2 + g_{Q,R}^2) + \sigma_{\text{QCD}}} \end{aligned}$$

$$\begin{split} \delta R_Q &\sim g_{Q,L} \delta g_{Q,L} + g_{q,R} \delta g_{q,R} \\ \delta A_{FB}(\text{LEP}) &\sim \frac{4g_{Q,L}^2 g_{Q,R}^2}{g_{Q,L}^2 + g_{Q,R}^2} (\frac{\delta g_{Q,L}}{g_{Q,L}} - \frac{\delta g_{q,R}}{g_{q,R}}) \\ \delta A_{FB}(\text{LHCb}) &\sim \frac{2}{\sigma_{\text{QCD}}} (g_{Q,L} \delta g_{Q,L} - g_{q,R} \delta g_{q,R}) \text{ (for } \sigma_{\text{QCD}} \gg \sigma_Z), \end{split}$$

For small deviation, R_O and A_{FB} give orthogonal bounds

Background: A persistent discrepancy in *Zbb* **coupling?**

discrepancy evolution over the years

	SM fit	EXP. EXTRACTION
LEP, SLD EWPD 2011	0.1038	0.0992 ± 0.0016
JHEP 01 (2017) 053	0.1038	0.0996 ± 0.0016
EUR.PHYS.J.C 78 (2018) GFITTER	0.1030	0.0992 ± 0.0016
PHYS.REV.D 106 (2022) HEPFIT	0.10315	0.0996 ± 0.0016
PDG2022 REV	0.1029	0.0996 ± 0.0016

- QCD higher order with m_b effects
- Including LHC data drives the main input α_s and m_t accurate (down)

• New physics interpretations over the years

	D. Choudhury, T. M. P. Tait and C. E. M. Wagner, <i>Beautiful mirrors and precision electroweak data</i> , <i>Phys. Rev. D</i> 65 (2002) 053002 [hep-ph/0109097].
IULL	XG. He and G. Valencia, $A^{**b}(FB)$ and $R(b)$ at LEP and new right-handed gauge boso Phys. Rev. D 68 (2003) 033011 [hep-ph/0304215].
2.9	K. Cheung, WY. Keung, CT. Lu and PY. Tseng, Vector-like Quark Interpretation for CKM Unitarity Violation, Excess in Higgs Signal Strength, and Bottom Quark Forward-Backward Asymmetry, JHEP 05 (2020) 117 [2001.02853].
2.6	A. Crivellin, C. A. Manzari, M. Alguero and J. Matias, Combined Explanation of the Zb Forward-Backward Asymmetry, the Cabibbo Angle Anomaly, and $\tau \to \mu\nu\nu$ and $b \to s\ell\ell$ I Phys. Rev. Lett. 127 (2021) 011801 [2010.14504].
2.4	 K. Agashe, R. Contino, L. Da Rold and A. Pomarol, A Custodial symmetry for Zbb, Phy Lett. B 641 (2006) 62 [hep-ph/0605341].
	D. Liu, J. Liu, C. E. M. Wagner and XP. Wang, Bottom-quark Forward-Backward Asymmetry, Dark Matter and the LHC, Phys. Rev. D 97 (2018) 055021 [1712.05802].
2.2	L. Da Rold, Solving the A_{FB}^b anomaly in natural composite models, JHEP 02 (2011) 034 [1009.2392].
2 0	E. Alvarez, L. Da Rold and A. Szynkman, A composite Higgs model analysis of forward-backward asymmetries in the production of tops at Tevatron and bottoms at LEP SLC, JHEP 05 (2011) 070 [1011.6557].
2.0	E. C. Andrés, L. Da Rold and I. A. Davidovich, <i>Beautiful mirrors for a pNGB Higgs</i> , JH 03 (2016) 152 [1509.04726].

Background: A persistent discrepancy in $Zb\bar{b}$ coupling

LEP(2.9 σ) SLD(1 σ) @ Z-pole: $e^-e^+ \to Z^* \to b\bar{b}$ [hep-ex/0509008],1407.3792

Tevatron/LHCb: $q\bar{q} \rightarrow Z^* \rightarrow b\bar{b}$ 1504.06888,1505.02429, 1504.02493, 1901.07573

Future Proposal e^-e^+ collider:1508.07010, 2107.02134 HL-LHC processes: 2101.06261 ($gg \rightarrow Zh$)

Symmetric / Asymmetric observable $@\sqrt{s} \approx m_z$

$$\begin{array}{ll} ({\rm LEP}) & \frac{\sigma_Q^{inc}}{\sigma_q^{inc}} = R_Q \propto (g_{Q,L}^2 + g_{Q,R}^2) \\ ({\rm LEP}) & \frac{\sigma^A}{\sigma^{inc}} = A_{FB} \propto \frac{(g_{Q,L}^2 - g_{Q,R}^2)(g_{e,L}^2 - g_{e,R}^2)}{(g_{Q,L}^2 + g_{Q,R}^2)(g_{e,L}^2 + g_{e,R}^2)} \\ ({\rm Tevatron, LHCb}) & A_{FB} \propto \frac{(g_{Q,L}^2 - g_{Q,R}^2)}{(g_{Q,L}^2 + g_{Q,R}^2) + \sigma_{\rm QCD}} \\ ({\rm LHCb}) & R_{b/c} \propto A_b/A_c \end{array}$$

With Z-pole data only, gL, gR sign degeneracy is unbroken.

Existing Bounds and Limitation:

LEP/SLD (e^+e^- collider): A_{FB} (~ 3σ), A_b (~ 1σ)

- limited off-Z-pole data
- g_L sign determined, g_R sign degenerate

 A_{FB}^{b} : forward-backward asymmetry A_{b} : charge asymmetry from longitudinal polarized beams that mix g_{L}^{e} and g_{R}^{e} coupling.

$$\mathcal{A}_{b} = \frac{g_{Lb}^{2} - g_{Rb}^{2}}{g_{Lb}^{2} + g_{Rb}^{2}}, \quad A_{FB}^{0,b} = \frac{3}{4}\mathcal{A}_{e}\mathcal{A}_{b} = \frac{3}{4}\frac{g_{Le}^{2} - g_{Re}^{2}}{g_{Le}^{2} + g_{Re}^{2}}\frac{g_{Lb}^{2} - g_{Rb}^{2}}{g_{Lb}^{2} + g_{Rb}^{2}}.$$

Sign determination of (g_L^b, g_R^b) at LEP

Hep-ph/0109097

Existing Bounds and Limitation:

- $q\bar{q} \rightarrow b\bar{b}$ dominated,
- NLO QCD contribution at high mass bins $\longrightarrow A_{FR}^{Q\bar{Q}}$ arise at NLO QCD
- Negligible QCD-EW interference

Bin	${\cal O}(lpha^2/lpha_s^2)$	$\mathcal{O}(lpha_s)$	$\mathcal{O}(lpha)$	$A^{bar{b}}_{FB} [\%]$	
$35 \leq M_{b\bar{b}}/{\rm GeV} < 75$	$0.00\substack{+0.00\\-0.00}$	$0.20\substack{+0.01\\+0.01}$	-0.01	$0.19\pm0.06^{-0.01}_{+0.01}$	
$75 \leq M_{b\bar{b}}/{\rm GeV} < 95$	$2.01\substack{+0.54 \\ -0.47}$	$0.52\substack{+0.02 \\ +0.03}$	-0.05	$2.49 \pm 0.16 {}^{+0.52}_{-0.44}$	
$95 \leq M_{b\bar{b}}/{ m GeV} < 130$	$0.56\substack{+0.17 \\ -0.14}$	$0.89\substack{+0.02\\+0.02}$	-0.01	$1.44 \pm 0.27 {}^{+0.16}_{-0.12}$	
$130 \le M_{b\bar{b}}/{ m GeV}$	$0.15\substack{+0.05 \\ -0.04}$	$2.11_{\pm 0.08}^{-0.07}$	-0.13	$2.14 \pm 0.63 {}^{-0.01}_{+0.03}$	
			CI	Aurohy 2015	
Bin	$\mathcal{O}(lpha^2/c$	$(\alpha_s^2) \mathcal{O}(\epsilon)$	(χ_s)	$A_{FB}^{bb}[\%]$	
$40 \le M_{b\bar{b}}/\text{GeV} < 7$	$5 0.00^{+0.0}_{-0.0}$	${}^{00}_{00}$ 0.46^+	-0.03 0.	$46\pm0.14^{-0.03}_{+0.04}$	
$75 \le M_{b\bar{b}}/\text{GeV} < 10$	$2.48^{+0.0}_{-0.0}$	${}^{59}_{52}$ 1.02 $^{-}_{+}$	$^{-0.07}_{-0.08}$ 3.	$50\pm0.31^{+0.52}_{-0.43}$	
$105 \leq M_{b\bar{b}}/{\rm GeV}$	$0.25^{+0.}_{-0.}$	$^{07}_{06}$ 1.53 $^{-}_{+}$	$^{-0.06}_{-0.09}$ 1.	$79\pm0.46^{+0.01}_{+0.03}$	

LHCb (pp collision): $A_{FC}^{b\bar{b}}$ ($A_{C}^{b\bar{b}}$) $\Delta y \equiv |y_b| - |y_{\bar{b}}|$ • $gg \rightarrow b\bar{b}$ dominated,

- Relatively larger $q\bar{q}$ -initiated contribution in forward region
- Limited with systematics (missing higher order theory calc.)

 $A_{FB} = A_u F_u + A_d F_d ,$ $A_C = A_u F_u D_u + A_d F_d D_d$

Rel. contribution

Sufficient off the Z-pole data, yet overwhelmed by QCD background.

Existing Bounds and Limitation:

- S. Gori, J. Gu and L.-T. Wang, The Zbb couplings at future e⁺ e⁻ colliders, JHEP 04 (2016) 062 [1508.07010].
- H. T. Li, B. Yan and C. P. Yuan, Jet Charge: A new tool to probe the anomalous Zb b couplings at the EIC, 2112.07747.
- B. Yan and C. P. Yuan, Anomalous Zbb⁻ Couplings: From LEP to LHC, Phys. Rev. Lett. 127 (2021) 051801 [2101.06261]. (through *b*-quark loop contribution to $gg \rightarrow Zh$ rate)

• B. Yan, Z. Yu and C. P. Yuan, The anomalous Zb b couplings at the HERA and EIC, Phys. Lett. B 822 (2021) 136697 [2107.02134].

$gg \rightarrow bb\ell^-\ell^+$ Process and Observable:

Symmetric cross section:

- $\sigma^{inc} \propto g_I^2 + g_R^2$
- Systematics dominant (>2-3%) not competitive with LEP (0.3%)

Asymmetric observable:

• In the $m_b \rightarrow 0$ limit, the Z-mediated channel: $g_L \rightarrow b_L, \bar{b}_R \rightarrow b(-), \bar{b}(+); g_R \rightarrow b_R, \bar{b}_L \rightarrow b(+), \bar{b}(-)$ Chirality of the coupling $\{g_I, g_R\}$ flips with helicity/charge flipping (* helicity is even harder to determine): $\mathcal{M}_{I}^{-+}(b,\bar{b}) = \mathcal{M}_{R}^{-+}(\bar{b},b)$

So, $\{g_I, g_R\}$ asymmetry <=> $\{b, \overline{b}\}$ charge asymmetric observable

 g_L

$gg \rightarrow b\bar{b}\ell^-\ell^+$ Process and Observable:

Similar to the LEP process: Polarisation summed

$$\begin{split} |\mathcal{M}|^{2} &= |\mathcal{M}_{S}|^{2}(p_{b}, p_{\overline{b}}, p_{\ell^{-}}, p_{\ell^{+}}) \\ &\left(\frac{1}{m_{\ell\ell}^{4}} + \frac{9/4}{\sin\theta_{W}^{4}\cos\theta_{W}^{4}} \frac{(g_{Q,L}^{2} + g_{Q,R}^{2})(g_{e,L}^{2} + g_{e,R}^{2})}{(m_{\ell\ell}^{2} - M_{Z}^{2})^{2} + \Gamma_{Z}^{2}M_{Z}^{2}} + \frac{3/2}{\sin\theta_{W}^{2}\cos\theta_{W}^{2}} \frac{(m_{\ell\ell}^{2} - M_{Z}^{2})(g_{Q,L} + g_{Q,R})(g_{e,L} + g_{e,R})}{m_{\ell\ell}^{2}((m_{\ell\ell}^{2} - M_{Z}^{2})^{2} + \Gamma_{Z}^{2}M_{Z}^{2})}\right) \\ &+ |\mathcal{M}_{A}|^{2}(p_{b}, p_{\overline{b}}, p_{\ell^{-}}, p_{\ell^{+}}) \\ &\left(\frac{9/4}{\sin\theta_{W}^{4}\cos\theta_{W}^{4}} \frac{(g_{Q,L}^{2} - g_{Q,R}^{2})(g_{e,L}^{2} - g_{e,R}^{2})}{(m_{\ell\ell}^{2} - M_{Z}^{2})^{2} + \Gamma_{Z}^{2}M_{Z}^{2}} + \frac{3/2}{\sin\theta_{W}^{2}\cos\theta_{W}^{2}} \frac{(m_{\ell\ell}^{2} - M_{Z}^{2})(g_{Q,L} - g_{Q,R})(g_{e,L} - g_{e,R})}{m_{\ell\ell}^{2}((m_{\ell\ell}^{2} - M_{Z}^{2})^{2} + \Gamma_{Z}^{2}M_{Z}^{2})}\right). \end{split}$$

• After integrating over gluons, the $\{g_L, g_R\}$ asymmetric term is proportional to,

$$(p_b - p_{\bar{b}}).(p_{l^-} - p_{l^+})$$

• Define Asym in the Z^* $(m_{\ell\ell})$ rest frame: $sign(cos\psi)$ between $\vec{p}_b - \vec{p}_{\bar{b}}$ and \vec{p}_{ℓ} $sign(cos\psi)$: whether b/\bar{b} is closer to ℓ^- (Forward) direction

$$\mathbf{I} \overline{|\mathcal{M}|}^2 (\ell^- \ell^+ \to Z^* / \gamma^* \to b\bar{b}):$$

$gg \rightarrow b\bar{b}\ell^-\ell^+$ Process and Observable:

• Off-shell through $m_{\ell\ell}$ spectra

$$\frac{d\sigma_{\gamma}}{dm_{\ell\ell}} = F(m_{\ell\ell}) \frac{1}{m_{\ell\ell}^4}$$

$$\frac{d\sigma_Z}{dm_{\ell\ell}} = F(m_{\ell\ell}) \frac{9/4}{(\sin\theta_W^2 \cos\theta_W^2)^2} \frac{(g_{Q,L}^2 + g_{Q,R}^2)(g_{e,L}^2 + g_{Q,R}^2)}{(m_{\ell\ell}^2 - M_Z^2)^2 + \Gamma_Z^2}$$

$$\frac{d\sigma_{\text{int}}}{dm_{\ell\ell}} = F(m_{\ell\ell}) \frac{3/2}{\sin\theta_W^2 \cos\theta_W^2} \frac{(m_{\ell\ell}^2 - M_Z^2)(g_{Q,L} + g_Q)}{m_{\ell\ell}^2 ((m_{\ell\ell}^2 - M_Z^2)^2)}$$

$$\frac{d\sigma_{\gamma}^{A}}{dm_{\ell\ell}} = 0$$

$$\frac{d\sigma_{Z}^{A}}{dm_{\ell\ell}} = G(m_{\ell\ell}) \frac{9/4}{(\sin\theta_{W}^{2}\cos\theta_{W}^{2})^{2}} \frac{(g_{Q,L}^{2} - g_{Q,R}^{2})(g_{e,L}^{2} - g_{Q,R}^{2})}{(m_{\ell\ell}^{2} - M_{Z}^{2})^{2} + \Gamma_{Z}^{2}}$$

$$\frac{d\sigma_{\text{int}}^{A}}{dm_{\ell\ell}} = G(m_{\ell\ell}) \frac{3/2}{\sin\theta_{W}^{2}\cos\theta_{W}^{2}} \frac{(m_{\ell\ell}^{2} - M_{Z}^{2})(g_{Q,L} - g_{Q}^{2})}{m_{\ell\ell}^{2}((m_{\ell\ell}^{2} - M_{Z}^{2})^{2})^{2}}$$

$$A(m_{\ell\ell}) = \frac{d\sigma_{tot}^A}{d\sigma_{tot}} = \frac{d\sigma_{\gamma}^A + d\sigma_Z^A + d\sigma_{int}^A}{d\sigma_{\gamma} + d\sigma_Z + d\sigma_{int}},$$

Simulation and Fits

• Benchmark fit $pp \rightarrow b\bar{b}\ell^-\ell^+$ with LO simulation $\sigma = A + B(g_L + g_R) + C(g_L^2 + g_R^2)$ $\sigma^A = D + E(g_L + g_R) + F(g_L^2 + g_R^2)$

- Parton analysis for 10 GeV bin from 35-125 GeV: σ, σ_A, A
- Total Asymmetry contribution $A_p = \frac{\sum_c A_c \sigma_c}{\sum_c \sigma_c}$
- (Charge) Tagging efficiency: $A_{obs} = \frac{2\varepsilon_{charge} 1}{1 2\varepsilon_{charge} + 2\varepsilon_{charge}^2} A_p$
- Basic Selection Cuts:
 p_{T,bjet} > 20, p_ℓ > 10 GeV and |η|_{bjet,ℓ} < 2.5 MET>30 GeV (for reducing tt background)
 tt same flavor decay background is non-negligible!

Simulation and Fits

 g_L

Including systematic error: A_{tot}

- Higher order correction ~5%,
- PDF ~4%, m_b correction <1%,
- Experimental (jet energy scale, tagging) ~6%

$$P = \sum_{I=bins} \frac{\left(A_{obs}^{I}(g_{L}, g_{R}) - A_{obs}^{I,SM}\right)^{2}}{\left(\delta A_{stat}^{I}\right)^{2} + \left(\delta A_{syst}^{I}\right)^{2}}.$$

Statistical unc. only

*m*_{ll}∈[35,85] GeV □ *m*_{II}∈[85,95] GeV □ *m*_{ll}∈[95,125] GeV Low, High, Z-pole bins give complementary constraints

Different flavor $t\bar{t}$ ($b\bar{b}e\mu\nu\nu$: DF) as "sideband": \bar{A} (Subtracting $t\bar{t}$ -SF with $t\bar{t}$ -DF)

$$\bar{A} = \frac{\bar{\sigma}^A}{\bar{\sigma}} = \frac{(\sigma_{\rm SF}^+ - \sigma_{\rm DF}^+) - (\sigma_{\rm SF}^- - \sigma_{\rm DF}^-)}{(\sigma_{\rm SF}^+ + \sigma_{\rm SF}^-) - (\sigma_{\rm DF}^+ + \sigma_{\rm DF}^-)} \approx A_{Zb\bar{b}}$$

$$(\delta \bar{A}^{\text{stat}})^2 = \frac{1}{N_{Zbb}} \frac{\sigma_{Zbb}(1 - A_{Zbb}^2) + \sigma_{t\bar{t}}(2 - 4A_{t\bar{t}}A_{Zbb} + 2A_{t\bar{t}}A_{Zbb})}{\sigma_{Zbb}}$$

$$\delta \bar{\sigma}^{\mathrm{sys}} \approx \delta \sigma_{bbZ}^{\mathrm{sys}} \gg \delta \bar{\sigma}^{\mathrm{stat}} \qquad \delta \bar{A}^{sys} = \delta A$$

σ (fb)	$b\overline{b}\ell\ell$	35-85	85–95	95–125	$ t \overline{t}$	35-85
Selection w/o	700	72.9	565	62.1	1312	802
$\not\!\!\!E_T < 30~{\rm GeV}$	605	63.9	488	53.2	225	132
BDT cut	632	51.9	548	46.5	156	24.8

• The Zbb coupling: a declining anomaly, but a sign degeneracy remains

• Asymmetric observable $\mathcal{O}_{[b,\bar{b}]}$ provide orthogonal information

• $b\bar{b}\ell^-\ell^+$ study at LHC provides complimentary probe through $m_{\ell\ell}$ spectra

Independent and competitive HL-LHC constraints