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Sensi6vity	on	invisible	dark	photon	models

1 New	dark	maBer	channel

in	collabora9on	with	Jinhan	Liang	and	Lan	Yang	[2212.04252]
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Different	mono-X	channels

• mono-photon

• mono-jet

• mono-Higgs

• mono-Z

• mono-top
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• e+e− → e+e−

• 	deposit	energy	in	ECLe−

• 	interact	with	ECL	to	produce	DMe+

disappearing	positron	track
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• missing	energy:	<5%	 	energy	in	ECLe+
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ECL	barrel:	32.2∘ < θ < 128.7∘

Less	non-instrumented	setups		
(e.g.,	magne6c	wires)		
between	ECL	&	KLM

BeBer	hermi6city	
(non-projec6ve	gaps	
between	ECL	crystals)

More	beam	BG	in	Endcaps



Bhabha	scattering
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	in	the	barrel	region	with	50/ab6 × 1011 e+e−
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• Charged	par6cles	(e,	 ,	 ):	likely	
detected	by	ECL	and/or	KLM

μ π±

• Neutral	par6cles	(n,	 ,	 ):	
more	difficult	to	detect

γ ν

Neutrino	BG	is	negligible	(xsec	is	small)	

Main	BG	is	due	to	 	n/γ
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ECL	=	16- 	CsI	crystals,	w/	 	cmX0 X0 = 1.86

Photon	can	also	be	detected	by	KLM

KLM	=	alterna6ng	sandwich	of	4.7-cm	iron	
plates	and	ac6ve	detectors
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	 -BG	ager	ECL	for	∼ 2.8 × 104 γ 6 × 1011 e+
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Photon	energy	spectrum	due	to	 	collision	with	ECLe+
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xγ = Eγ /Ee 	is	the	distancetX0
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GeV	 	is	unlikely	to	penetrate	the	KLMγ

However,	 	can	be	absorbed	by	non-
instrumented	setups	(e.g.,	magnet	coil)

γ

KLM	veto	power	is	limited

IFR	@	BaBar,	veto	eff	=	4.5 × 10−4

13	photon	BG	(conserva6ve)
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GEANT4	simula6on	of	 	 	with	4.35	
GeV	onto	a	CsI	target	with	1	

109 e+

X0

Full	simula6on	with	16	 	is	6me-consumingX0

Neutrons	with	significant	energy	are	likely	
to	be	produced	in	the	1st	 	(confirmed	in	
simula6ons	with	2- )

X0
X0
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Veto	 	with	momentum	>	0.6	GeV	(either	
deposit	energy	in	ECL	or	produce	tracks	in	KLM)

p/π±

Count	#	of	neutrons	with	K.E.	>	280	MeV	
(hadronic	shower	threshold)	
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Prob	to	penetrate	a	target	with	length	L

P = exp(−L/λ0)

	=	hadronic	interac6on	lengthλ0

KLM	has	 ∼ 3.9 λ0

ECL	has	 ∼ 0.8 λ0

Prob	to	penetrate	ECL	&	KLM	is	about	1%

about	81	neutron	background	in	total



Summary	on	background	estimation
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BG:	 	+	ECL	 	which	escape	detec6one+ → γ/n

• photon	BG	events:	 	
• neutron	BG	events:	

∼ 13
∼ 81

[Liang,	ZL,	Yang,	2212.04252]

Use	KLM	to	veto	such	BG

KLM

n/γ

e−e+

ECL

CDC
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Invisible	dark	photon
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ℒint = A′ μ(eQfϵf̄γμ f + gχ χ̄γμχ)

dark	photon	A′ μ

gauge	coupling	to	hidden	fermion	 :	χ gχ ≫ eϵ

suppressed	coupling	 	to	SM	fermionϵ

mA′ 
= 3mχ



Annihilation	with	atomic	electrons
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annihila6on	process:	e+e−
A → A′ → χχ̄

σann( s) =
e2ϵ2αD

3
s + 2m2

χ

(s − m2
A′ 

)2 + Γ2
A′ 

m2
A′ 

1 −
4m2

χ

s

αD = g2
χ /4π s = 2meE′ + 2m2

e = 2meEA′ 



Annihilation	with	atomic	electrons	(continued)
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Nann = ℒ∫
Emax

Emin

dE
dσB

dE ∫
E+me

0.95E
dEA′ 

neTe(E′ = EA′ 
− me, E, LT)σann(EA′ 

)

	is	the	Bhabha	xsec
dσB

dE

	is	the	electron	#	densityne

	is	the	 	differen6al	track	lengthTe(E′ , E, LT) e+

[Tsai	&	Whi9s	1966] [Bjorken	et	al,	1988]



Bremsstrahlung	with	target	nucleus
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dominated	by	on-shell	 	produc6onA′ 

Nbre = ℒ∫
Emax

Emin

dE
dσB

dE ∫
E−me

0.95E
dEA′ 

nNTe(E′ , E, X0)
dσbre

dEA′ 

	=	xsec	of	on-shell	produced	
dσbre

dEA′ 

A′ 

[Bjorken	et	al,	0906.0580]	
[Gninenko	et	al,	171205706]	
[Liu	&	Miller,	1705.01633]



Belle	II	sensitivity	on	invisible	dark	photon
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[Liang,	ZL,	Yang,	2212.04252]



Summary
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We	propose	a	new	dark	maBer	channel	at	colliders,	where	one	SM	par6cle	
interacts	with	the	detector	to	produce	DM	par6cles	

The	main	background	at	Belle	II	are	due	to	photon	and	neutron	events	that	
escape	the	detec6on

We	find	that	this	new	DM	channel	@	Belle	II	can	probe	new	parameter	space	of	
invisible	dark	photon,	surpassing	both	the	mono-photon	channel	and	NA64
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[3]	Tsai	&	Whi9s	1966
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