Indirect search for New Physics at LHCb

Jibo HE/何吉波(UCAS) 第十二届新物理研讨会 2023年7月23-29日

Indirect search for New Physics

 Measure FCNC transitations, and compare to predictions

• Operator product expansion (OPE) of $b \rightarrow s\ell^+\ell^-$

$$\mathcal{H}_{\rm eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{e^2}{16\pi^2} \sum_i (C_i O_i + C'_i O'_i) + h.c.$$

- Wilson coefficients $C_i^{(\prime)}$ encode short-distance physics

- Operators $O_i^{(\prime)}$ describe low-enery QCD (using form factors), which have large theory uncertainties

Indirect search for NP (cont.)

• Overconstrain the CKM triangle

Large Hadron Collider

27 km

CMS

Proton energy: up to 7 TeV (10¹² eV) speed: 0.999999991 c

ATLA

ALICE

Beauty/charm production

- Large production cross-section @ 7 TeV
 - Minibias ~60 mb
 - Charm ~6 mb
 - Beauty $\sim 0.3 \text{ mb c.f. 1nb} @Y(4S)$

Flavour factory!

Predominantly in forward/backward cones

The LHCb experiment

The LHCb trigger (2018)

- LO, Hardware
 - $-p_{\rm T}(\mu_1) \times p_{\rm T}(\mu_2) > (1.5 \, {\rm GeV})^2$
 - $-p_{\rm T}(\mu) > 1.8 \,{\rm GeV}$
 - $-E_{\rm T}(e) > 2.4 \, {\rm GeV}$
 - $-E_{\rm T}(\gamma) > 3.0 {
 m GeV}$
 - $-E_{\rm T}(h) > 3.7 \, {
 m GeV}$
- High Level Trigger
 - Stage1, $p_{\rm T}$, IP
 - Stage2, full selection

The turbo stream

Dark photon

W mass

- CDF results demand more measurements at LHC
- Anti-correlation of PDF at GPD/LHCb

Intrinsic charm?

- Bound to valence quarks, longer time scales
- Z associted with charm

$CKM-\gamma$ combination

 Simultaneous determination of $CKM-\gamma$ & charm mixing parameters

$$- \text{CKM } \gamma = (63.8^{+3.5}_{-3.7})^{\circ}$$

[LHCb-Conf-2022-003]

-CL

0.6

0.4

0.2

14

Δm, & Δm

Λm

 D^0

 X_{\bullet}

sin 2ß

-0.5

0.0

 $\overline{\rho}$

0.5

0.0 α

-0.5

-1.0

 $B_{\rm S}^0 \rightarrow \mu^+ \mu^-$ eff. τ • B_s^0 mixing \Rightarrow effective τ $\tau_{\mu^{+}\mu^{-}} = \frac{\tau_{B_{s}}}{1 - y_{s}^{2}} \left[\frac{1 + 2A_{\Delta\Gamma}^{\mu^{+}\mu^{-}}y_{s} + y_{s}^{2}}{1 + A_{\Delta\Gamma}^{\mu^{+}\mu^{-}}y_{s}} \right]$ $A_{\Delta\Gamma}^{\mu^{+}\mu^{-}} \equiv \frac{R_{H}^{\mu^{+}\mu^{-}} - R_{L}^{\mu^{+}\mu^{-}}}{R_{H}^{\mu^{+}\mu^{-}} + R_{T}^{\mu^{+}\mu^{-}}} \qquad A_{\Delta\Gamma} = 1 \text{ in SM}$ $y_s = \frac{\Delta \Gamma_s}{2\Gamma_s}$

Measured by LHCb/CMS, not yet sensitive to $A_{\Lambda\Gamma}$

 $\tau_{\mu\mu} = 2.07 \pm 0.29 \pm 0.03$ ps

1.83 ^{+0.23 +0.04}_{-0.20 -0.04} ps [CMS, PLB 842 (2023) 137955]

 $\mathcal{A}_{\Delta\Gamma}(B_s$ -

$$B^0 \to K^{*0} \mu^+ \mu^-$$

- Described by $q^2 = m^2(\ell^+\ell^-)$ and $\theta_\ell, \theta_K, \phi$
- Many observables!

$$\frac{2(\ell^{+}\ell^{-})}{\begin{pmatrix} & & \\ & &$$

$$\frac{1}{\mathrm{d}(\Gamma+\Gamma)/\mathrm{d}q^2} \frac{\mathrm{d}^3(\Gamma+\bar{\Gamma})}{\mathrm{d}\bar{\Omega}} = \frac{9}{32\pi} \Big[\frac{3}{4} (1-F_\mathrm{L}) \sin^2 \theta_K + F_\mathrm{L} \cos^2 \theta_K + \frac{1}{4} (1-F_\mathrm{L}) \sin^2 \theta_K \cos 2\theta_\ell \\ - F_\mathrm{L} \cos^2 \theta_K \cos 2\theta_\ell + S_3 \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\phi \\ + S_4 \sin 2\theta_K \sin 2\theta_\ell \cos \phi + S_5 \sin 2\theta_K \sin \theta_\ell \cos \phi \\ + \frac{4}{3} A_{\mathrm{FB}} \sin^2 \theta_K \cos \theta_\ell + S_7 \sin 2\theta_K \sin \theta_\ell \sin \phi \\ + S_8 \sin 2\theta_K \sin 2\theta_\ell \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_\ell \sin 2\phi_\ell \end{bmatrix}$$

Branching fraction of $b \rightarrow s \mu^+ \mu^-$

• Pattern of tensions seen, theoretical uncertainty?

BR of $\Lambda_h^0 \to \Lambda(1520)\mu^+\mu^-$

• First measurement, w/ all data

[arXiv:2302.08262]

Lepton flavour universality

• In SM, three lepton families (e, μ, τ) have identical couplings to the gauge bosons

Lepton flavor universality violation? New Physics!

LFU in $b \rightarrow s\ell^+\ell^-$ decays

before Dec 2022

ā

Deviations from SM seen by LHCb

6000

5600

LFU in $b \rightarrow s\ell^+\ell^-$ decays

after Dec 2022

Deviations mostly gone

Precision at 5-10% O(1%) LFUV still possible

路漫漫其修远兮,吾将上下而求索 The road ahead will be long and our climb will be steep

5000

6000

5500

 $m(K^+e^+e^-)$ [MeV/ c^2]

LFU in $b \rightarrow c \ell \nu$ decays

Deviations from SM seen by Babar/Belle/LHCb

Prospects

• LHCb upgrades

(2025: 23 fb⁻¹, Upgrade-II: 300 fb⁻¹)

Observable	Current LHCb	LHCb 2025	Belle II	Upgrade II	ATLAS & CMS
EW Penguins	2				
$\overline{R_K \ (1 < q^2 < 6} \mathrm{GeV}^2 c^4)$	0.1 [274]	0.025	0.036	0.007	_
$R_{K^*} \ (1 < q^2 < 6 \mathrm{GeV}^2 c^4)$	0.1 [275]	0.031	0.032	0.008	—
R_{ϕ},R_{pK},R_{π}	_	0.08,0.06,0.18	-	0.02, 0.02, 0.05	-
CKM tests					
γ , with $B_s^0 \to D_s^+ K^-$	$\binom{+17}{-22}^{\circ}$ [136]	4°	-	1°	_
γ , all modes	$(^{+5.0}_{-5.8})^{\circ}$ [167]	1.5°	1.5°	0.35°	_
$\sin 2\beta$, with $B^0 \to J/\psi K_{\rm s}^0$	0.04 [606]	0.011	0.005	0.003	-
ϕ_s , with $B_s^0 \to J/\psi \phi$	49 mrad [44]	$14 \mathrm{mrad}$	-	$4 \mathrm{mrad}$	22 mrad [607]
ϕ_s , with $B_s^0 \to D_s^+ D_s^-$	170 mrad [49]	35 mrad	-	$9 \mathrm{mrad}$	
$\phi_s^{s\bar{s}s}$, with $B_s^0 o \phi \phi$	154 mrad [94]	39 mrad	-	$11 \mathrm{mrad}$	Under study [608]
$a_{ m sl}^s$	$33 imes 10^{-4}$ [211]	$10 imes 10^{-4}$	-	$3 imes 10^{-4}$	
$ert V_{ub} ert / ert V_{cb} ert$	6% [201]	3%	1%	1%	-
$B^0_s, B^0{ ightarrow}\mu^+\mu^-$					
$\overline{\mathcal{B}(B^0 \to \mu^+ \mu^-)}/\mathcal{B}(B^0_s \to \mu^+ \mu^-)$	90% [264]	34%	-	10%	21% [609]
$ au_{B_{\circ}^{0} ightarrow \mu^{+}\mu^{-}}$	22% [264]	8%	_	2%	
$S_{\mu\mu}$		-	-	0.2	-
$b ightarrow c \ell^- ar{ u}_l { m LUV} { m studies}$					
$\overline{R(D^*)}$	0.026 [215, 217]	0.0072	0.005	0.002	-
$R(J/\psi)$	0.24 [220]	0.071	-	0.02	-
Charm	24.23				
$\Delta A_{CP}(KK-\pi\pi)$	8.5×10^{-4} [610]	$1.7 imes 10^{-4}$	$5.4 imes10^{-4}$	$3.0 imes 10^{-5}$	-
$A_{\Gamma} \ (\approx x \sin \phi)$	$2.8 imes 10^{-4}$ [240]	$4.3 imes10^{-5}$	$3.5 imes10^{-4}$	$1.0 imes 10^{-5}$	_
$x\sin\phi$ from $D^0 \to K^+\pi^-$	13×10^{-4} [228]	$3.2 imes 10^{-4}$	$4.6 imes10^{-4}$	$8.0 imes 10^{-5}$	-
$x \sin \phi$ from multibody decays		$(K3\pi) 4.0 \times 10^{-5}$	$(K_{\rm S}^0\pi\pi) \ 1.2 \times 10^{-4}$	$(K3\pi) 8.0 \times 10^{-6}$	-

Summary

- Many interesting results from LHCb
 - Electroweak, A', W mass, intrinsic charm
 - CP Violation, CKM triangle, ϕ_s , γ , ΔA_{CP}
 - Flavour anomalies, $b \to s\mu^+\mu^-$ BR, P'_5 , $\mathcal{R}_{K^{(*0)}}$, \mathcal{R}_{D^*} , to be confirmed or refuted with more data
- With LHCb upgrade (50 fb⁻¹) & upgrade-II (300 fb⁻¹), much more will be done
- Your continuous and strong supports are always appreciated!
 - Form factors, non-form-factor contributions
 - New observables?

中国科学:物理学力学天文学 SCIENCE CHINA Physics, Mechanics & Astronomy

Editor-in-Chief: Prof. XinCheng Xie

- Editor's Focus: aim at PRL quality, fast channel
- Full-text HTML and timely publication(online immediately)
- Two-month free access at Springer
- Highlighted at EurekAlert and other public media
- Since 1950, in Chinese

国家自然科学基金委员

- 100 Outstanding Academic Journals of China
- Indexed in Scopus, ESCI, etc.
- **Special topic** is encouraged, published over 70 special topics

Scan the QR code Get the news

Supervised by

SCIENCE CHINA

Physics, Mechanics & Astronomy Verse 3 2007

•

仪器化压入新进展专题

Published by

SCIENCE CHINA Physics, Mechanics & Astronomy

s Mechanics