Soft-Collinear Effective Theory: review and recent progress

For comprehensive review of SCET lain Stewart MIT lectures; Book by Becher et al. <u>1410.1892</u>

- 朱华星 (Hua Xing Zhu)
 - Peking University

第十二届新物理研讨会 2023年7月26日, 青岛

Outline

- Brief review on the construction of Soft-Collinear Effective Theory
- Applications to transverse momentum distribution of vector boson
- Power corrections in SCET
- Glauber gluon and factorization violation

Soft-Collinear EFT (SCET) SCET is an EFT for hard QCD process which contains collinear and soft particles Bauer, Pirjol, Stewart, Fleming, Luke

ee

ер

З

pp

Higgs physics

Panorama view of SCET TMD/nuclear B-Decay and CP Quarkonia

Jet physics

Infrared singularity of gauge theory

Higher order resummation

Infrared subtraction

Power corrections

Factorization violation

Regge

Top down v.s. bottom up EFT

dijet production in e+e-

Lightcone decomposition

$$n_1 = (1, \hat{n}_1) \quad \bar{n}_1 = (1, -\hat{n}_1)$$
$$n_1^2 = \bar{n}_1^2 = 0$$
$$n_1 \cdot \bar{n}_1 = 2$$

$$p^{\mu} = \frac{\bar{n}_{1} \cdot p}{2} \frac{n_{1}^{\mu}}{2} + \frac{n_{1} \cdot p}{2} \frac{\bar{n}_{1}^{\mu}}{2} + p_{\perp}^{\mu} \qquad \text{har} \\ p^{-} \qquad p^{+} \qquad \text{col}$$

$$p^{\mu} = (p^+, p^-, p_{\perp}) \qquad \text{anti-c}$$

$$p^2 = p^+ p^- + p_\perp^2 \qquad \qquad {\rm Sol}$$

- $p_h^{\mu} = (Q, Q, Q)$ rd mode: I. mode: $p_c^{\mu} = Q(\lambda^2, 1, \lambda)$
- ft mode:

- coll. mode: $p_{\bar{c}}^{\mu} = Q(1, \lambda^2, \lambda)$
 - $p_s^{\mu} = Q(\lambda, \lambda, \lambda)$
- **ultra-soft mode:** $p_{us}^{\mu} = Q(\lambda^2, \lambda^2, \lambda^2)$
- relevant for jet broadening
 - relevant for jet mass

From QCD fields to SCET fields

Projection operator:

 $P_{+} = \frac{\cancel{n} \, \cancel{n}}{\cancel{n}}$

 $P_+^2 = P_+, \qquad P_-^2$

Note that:

For illustration, consider decomposing full quark field into collinear and usoft quark field

 $\psi(x) \Rightarrow \psi_c(x) + \psi_s(x)$

$$\begin{split} \psi_{c}(x) &= P_{+}\psi_{c} + P_{-}\psi_{c} = \xi + \eta \\ P_{+} &= \frac{\cancel{n}}{4} \cancel{n}, \qquad P_{-} = \frac{\cancel{n}}{4} \cancel{n} \\ P_{+}, \qquad P_{-}^{2} &= P_{-}, \qquad P_{+} + P_{=} = \mathbf{1} \\ \cancel{n}\xi &= 0, \qquad \cancel{n}\eta = 0 \end{split}$$

8

Fermion propagator: $\langle 0|\mathbf{T}\left[\boldsymbol{\xi}(x)\bar{\boldsymbol{\xi}}(0)\right]|0 angle = rac{\hbar\bar{\eta}}{4}\langle 0|$ $=\int \frac{d^4p}{(2\pi)}$

$$\begin{split} \mathbf{\Gamma} \left[\psi_c(x) \bar{\psi}_c(0) \right] \left| 0 \right\rangle \frac{\vec{n} \vec{n}}{4} \\ \frac{p}{2} \frac{i}{p^2 + i\epsilon} e^{-ipx} \frac{\vec{n} \vec{n}}{4} p \frac{\vec{n} \vec{n}}{4} \sim \lambda^4 \frac{1}{\lambda^2} \\ \frac{\vec{n}}{2} \bar{n} \cdot p \end{split}$$

This completely determine the scaling of different component

$$\begin{aligned} \xi(x) &\sim \lambda \\ \eta(x) &\sim \lambda^2 \\ \psi_s(x) &\sim \lambda^{3/2} \end{aligned}$$

 ψ_{s}

Summary of field power counting

Fields	Field Scaling			
$\xi_{n,p}$	λ			
$(A^+_{n,p}, A^{n,p}, A^\perp_{n,p})$	(λ^2 , 1, λ)			
$q_{s,p}$	$\lambda^{3/2}$			
$A^{\mu}_{s,p}$	λ			
q_{us}	λ^3			
A^{μ}_{us}	λ^2			

$$\mathcal{L}_{\psi} = \bar{\psi}i\mathcal{D}\psi = (\bar{\xi} + \bar{\eta} + \bar{\psi}_{s})i\mathcal{D}(\xi + \eta + \psi_{s})$$

$$p^{\mu} = \bar{n}_{1} \cdot p\frac{n_{1}^{\mu}}{2} + n_{1} \cdot p\frac{\bar{n}_{1}^{\mu}}{2} + p_{\perp}^{\mu}$$

$$= (\bar{\xi} + \bar{\eta}) \left[\frac{\vec{p}}{2}i\bar{n} \cdot D + \frac{\vec{p}}{2}in \cdot D + i\mathcal{D}_{\perp}\right] (\xi + \eta)$$

$$= \bar{\xi}\frac{\vec{p}}{2}in \cdot D\xi + \bar{\xi}i\mathcal{D}_{\perp}\eta + \bar{\eta}i\mathcal{D}_{\perp}\xi + \bar{\eta}\frac{\vec{p}}{2}i\bar{n} \cdot D\eta$$
homogeneous in power counting

 η can be completely integrated out suin

$$\mathcal{L}_{c} = \bar{\boldsymbol{\xi}} \left[\frac{\not{n}}{2} i \bar{n} \cdot D - i \not{D}_{\perp} \frac{\not{n}}{2} \frac{1}{i \bar{n} \cdot D} i \not{D}_{\perp} \right] \boldsymbol{\xi}$$
¹¹

Collinear Lagrangian

subleading power or factor out

ng EOM
$$\eta = \frac{1}{i\bar{n}\cdot D}i \not D_{\perp} \frac{\not n}{2} \xi$$

Sum into collinear Wilson line:

Collinear building block: $\chi_n = W_n^{\dagger} \xi_n$

Hard-collinear factorization

 $\bar{n} \cdot A_n$ is $\mathcal{O}(\lambda^0)$. Can add any number of collinear gluon

$$q_{m} = g^{m} \sum_{\text{perms}} \frac{(\bar{n}^{\mu m} T^{A_{m}}) \cdots (\bar{n}^{\mu_{1}} T^{A_{1}})}{[\bar{n} \cdot q_{1}][\bar{n} \cdot (q_{1} + q_{2})] \cdots [\bar{n} \cdot \sum_{i=1}^{m} q_{i}]}$$

$$\sum_{\text{perm}} \frac{(-g)^k}{k!} \left(\frac{\bar{n} \cdot A_n(q_1) \cdots \bar{n} \cdot A_n(q_k)}{[\bar{n} \cdot q_1][\bar{n} \cdot (q_1 + q_2)] \cdots [\bar{n} \cdot \sum_{i=1}^k q_i]} \right) \text{ mom. spectral set of the set of$$

$$O = P \exp\left(ig \int_{-\infty}^{0} ds \, \bar{n} \cdot A_n(\bar{n}s)\right)$$
 position space

$$\bar{\chi}_n = \bar{\xi}_n W_n \qquad \mathcal{B}_{n\perp}^\mu = \frac{1}{g} [W_n^\dagger i D_\perp^\mu W_n]$$

 $W_n = \sum$

 $W(0, -\infty)$

(U)Soft-collinear factorization

Multi-pole expansion of collinear lagraigian:

$$\mathcal{L}_c = \bar{\xi} \left[n \cdot i D_{us} + gn \cdot A_n + i \not{D}_{\perp}^c \frac{1}{i\bar{n}} \right]$$

(u)soft-collinear interaction remove by BPS field redefinition

$$\xi \to Y_n \xi^{(0)} ,$$

$$Y_n(x) = P \exp\left(ig \int_{-\infty}^0 ds \, n \cdot A_{us}(x+t)\right)$$

$$\mathcal{L}_c \to \mathcal{L}_c^{(0)} = \bar{\xi}^{(0)} \left[n \cdot iD_c + i \not D_{c\perp} \frac{1}{i\bar{n} \cdot D_c} i \not D_{c\perp} \right] \frac{\not n}{2} \xi^{(0)}$$

complete decoupling between collinear and soft sector

eikonal Feynman rule:

 $, \quad A_c \to Y_n A_c^{(0)} Y_n^{\dagger}$ $ns) \end{pmatrix} \quad n \cdot D_{us} Y_n = 0 , \quad Y_n^{\dagger} Y_n = 1$

In reality, collinear sector of SCET can be considered as boosted version of QCD. Since amplitudes are Lorentz invariant, it is more convenient to use QCD Feynman rule for calculation

SCET Feynman rules

 $= i \frac{\not n}{2} \frac{\bar{n} \cdot p}{n \cdot p_r \, \bar{n} \cdot p + p_\perp^2 + i0}$

$$n_{\mu} \, rac{ar{n}}{2}$$

$$egin{split} \mathcal{L}_{ ext{hard}}^{(0)} &= \sum_i C_i^{(0)} \mathcal{O}_i^{(0)} \ \mathcal{L}_{ ext{dyn}}^{(0)} &= \sum_i \mathcal{L}_n^{(0)} + \mathcal{L}_{ ext{soft}}^{(0)} \end{split}$$

always!

Schematic matching and evolving in SCET

Consider the jets production in hadronic collision

step 1: match from QCD to SCET hard operators

hard function: $H = |C|^2$

step 2: compute collinear matrix element; evolving from hard scale to collinear scale

Beam and jet function: $B_{a,b}, J_i$

large logs: $\log(\mu_H^2/\mu_J^2)$

step 3: compute soft matrix element; evolving from jet scale to soft scale

Soft function: $S = |\langle Y_a Y_b Y_1 Y_2 Y_3 \rangle|^2$

large logs: $\log(\mu_H^2/\mu_S^2)$, $\log(\mu_J^2/\mu_S^2)$

step 4: match onto non-perturbative matrix element: Parton Distribution Functions and Fragmentation Functions

Loop, log, and power expansion Monster here Nonster log expansion loop expansion 17

Application to Drell-Yan (Higgs) pT distribution

Importance of pT distribution

CDF measurement of W mass

ATLAS measurement of strong coupling

Large logs LO NLO NNLO $N^{3}LO$ $\frac{d\sigma}{dy} =$ $1 + \alpha_s L^2 + \alpha_s^2 L^4 + \alpha_s^3 L^6 + \dots$ LL $+ \alpha_s L + \alpha_s^2 L^3 + \alpha_s^3 L^5 + \dots$ $+ \alpha_s + \alpha_s^2 L^2 + \alpha_s^3 L^4 + \dots$ $+ \alpha_s^2 L + \alpha_s^3 L^3 + \dots$ $+ \alpha_s^2 + \alpha_s^3 L^2 + \dots$ $L = \ln y$ $+ \alpha_s^3 L + \dots$

y is the Fourier conjugate of qT

 $+ \alpha_s^3 + \dots$

200

Counting of logarithmic accuracy

	matching (singular)	nonsingular	γ_x	Γ_{cusp}	eta	PDF
LO	LO	LO	-	-	1-loop	LO
NLO	NLO	NLO	-	-	2-loop	NLO
NNLO	NNLO	NNLO	-	-	3-loop	NNLO
LL	LO	_	-	1-loop	1-loop	LO
NLL	LO	-	1-loop	2-loop	2-loop	LO
NNLL	NLO	-	2-loop	3-loop	3-loop	NLO
NLL'+NLO	NLO	NLO	1-loop	2-loop	2-loop	NLO
NNLL+NNLO	(N)NLO	NNLO	2-loop	3-loop	3-loop	NNLO
NNLL'+NNLO	NNLO	NNLO	2-loop	3-loop	3-loop	NNLO
N ³ LL+NNLO	NNLO	NNLO	3-loop	4-loop	4-loop	NNLO

M.X. Luo, T.Z. Yang, Y.J. Zhu, HXZ, 2019

Ebert, Mistlberger, Vita, 2020

Davies, Webber, Stirling, 1985

[/]. Li, HXZ, 2016

4-loop

Moult, Y.J. Zhu, HXZ, 2022

Duhr, Mistlberger, Vita, 2022

Naive qT factorization in SCET

$$d\sigma \sim \int d^4x e^{-iq \cdot x} \langle N_1 N_2 | J^{\mu\dagger}(x) J_{\mu}(0) \rangle d\sigma$$

Match on SCET operator $J^{\mu} \to C_V(-q^2) \bar{\chi}_{\bar{n}} Y^{\dagger}_{\bar{n}} \gamma^{\mu} Y_n \chi_n$

$$d\sigma \sim \int d^4x e^{-iq \cdot x} |C_V(-q^2)|^2 \langle 0|^2 \times \langle N_1 |\bar{\chi}_n(x_+ + x_\perp) \frac{\bar{n}}{2} \chi$$

$$d\sigma \sim \int d^2 x_{\perp} e^{-i(q^+x^-/2+q^-x^+/2+q)}$$

$$\frac{dH(q^2,\mu)}{d\log\mu} = \left[\Gamma_{\rm cusp}(\alpha_s)\log\frac{-q^2}{\mu^2} + 2\gamma^q(\alpha_s)\right]H(q^2,\mu)$$

 $D)|N_1N_2\rangle \qquad \qquad J^{\mu} = \bar{\psi}\gamma^{\mu}\psi$

 $\mathrm{Tr}[\overline{T}(Y_n^{\dagger}(x_{\perp})Y_{\bar{n}}(x_{\perp}))T(Y_{\bar{n}}^{\dagger}(0)Y_n(0))]|0\rangle$

 $\langle n(0)|N_1\rangle \langle N_2|\bar{\chi}_{\bar{n}}(x_-+x_\perp)\frac{n}{2}\chi_{\bar{n}}(0)|N_2\rangle$

 $^{q_{\perp} \cdot x_{\perp})} H(q^2) S(x_{\perp}) B_1(x_{\perp}, x_{\perp}) B_2(x_{\perp}, x_{\perp})$

 $p_h^{\mu} = (Q, Q, Q)$ $p_c^{\mu} = Q(\lambda^2, 1, \lambda)$ $p_{\bar{c}}^{\mu} = Q(1, \lambda^2, \lambda)$ $p_s^{\mu} = Q(\lambda, \lambda, \lambda)$

Degeneracy of soft and (anti) collinear modes

Lightcone/rapidity divergence

naive soft function

 $S(x_{\perp}) = \langle 0 | \operatorname{Tr}[\overline{T}(Y_n^{\dagger}(x_{\perp})Y_{\bar{n}}(x_{\perp}))T(Y_{\bar{n}}^{\dagger}(0)Y_n(0))] | 0 \rangle$

$$Y_n(x) = P \exp\left(ig \int_{-\infty}^0 ds \, n \cdot A_{us}(x+ns)\right)$$

The configuration is invariant under Lorentz boost in z Exponential regulated soft function

 $S(x_{\perp}) = \langle 0 | \operatorname{Tr}[\overline{T}(Y_n^{\dagger}(x_0 + x_{\perp})Y_{\bar{n}}(x_0 + x_{\perp}))T(Y_{\bar{n}}^{\dagger}(0)Y_n(0))] | 0 \rangle$

Three-loop TMD soft function Y. Li, HXZ, 2016

M.X. Luo, T.Z. Yang, Y.J. Zhu, HXZ, 2019 Three-loop TMD beam function Ebert, Mistlberger, Vita, 2020

 ∞

Proved by conformal transformation connection the two configuration Vladimirov, 2017 Proved using EEC in the back-to-back limit Moult, Y.J. Zhu, HXZ, 2022

Conformal symmetry of Collins-Soper kernel

Y. Li, HXZ, 2016

Four-loop rapidity Collines-Soper Kernel

Moult, Y.J. Zhu, HXZ, 2022

Ebert, Mistlberger, Vita, 2020

N4LL uncertainties

Lattice/exp. extraction of Collins-Soper kernel

M.H. Chu, et al., LPC, 2306.06488

Drell-Yan production at N3LO

qT subtraction Catani, Grazzini, 2002

$$\frac{d^2 \sigma_{\gamma^*}}{dQ^2 dy} = \int_0^{q_T^{\text{cut}}} d^2 \boldsymbol{q}_T \frac{d^4 \sigma_{\gamma^*}}{d^2 \boldsymbol{q}_T dQ^2 dy} + \int_{q_T^{\text{cut}}} d^2 \boldsymbol{q}_T \frac{d^4 \sigma_{\gamma^*}}{d^2 \boldsymbol{q}_T dQ^2 dy}$$

approximated by $H(q^2)S(x_{\perp})B_1(x_+,x_{\perp})B_2(x_-,x_{\perp})$

X. Chen, Gehrmann, Glover, Huss, T.Z. Yang, HXZ, 2021, 2022

Why power corrections?

No natural matching scheme in the transition region, due to mismatch in the order of coupling constant expansion

Higgs production with light-quark loop

 $\sim y_b m_b \left\{ \left(\frac{L^2}{2} - 2 \right) + \frac{C_F \alpha_s}{4\pi} \left[-\frac{L^4}{12} - L^3 + \cdots \right] \right\} + \mathcal{O}(\alpha_s^2)$

pT spectrum sensitive to light particle in the loops

Bishara, Haisch, Monni, Re, 2016

End point singularity

Generic feature of end point divergence

Z.L. Liu, Neubert, 2019

$$\gamma\gamma) = H_{1,\gamma}^{(0)} \langle O_{1,\gamma}^{(0)} \rangle + 2 \int_0^1 \mathrm{d}z \, H_{2,\gamma}^{(0)}(z) \langle O_{2,\gamma}^{(0)}(z) \rangle + H_{3,\gamma}^{(0)} \langle O_{3,\gamma}^{(0)}(z) \rangle$$

A subtraction scheme based on refactorization condition

 $[\![ar{H}^{(0)}_{2,\gamma}(z)]\!] =$ -

 $\llbracket \langle O_{2,\gamma}^{(0)}(z)
angle
rbracket =$ -

$$\begin{split} \mathcal{M}_{b}(h \to \gamma \gamma) &= \left(H_{1,\gamma}^{(0)} + \Delta H_{1,\gamma}^{(0)} \right) \langle O_{1,\gamma}^{(0)} \rangle \\ &+ 2 \int_{0}^{1} \mathrm{d}z \left[H_{2,\gamma}^{(0)}(z) \langle O_{2,\gamma}^{(0)}(z) \rangle - \frac{\left[\left[\bar{H}_{2}^{(0)}(z) \right] \right]}{z} \left[\left[\langle O_{2,\gamma}^{(0)}(z) \rangle \right] \right] - \frac{\left[\left[\bar{H}_{2}^{(0)}(1-z) \right] \right]}{1-z} \left[\left[\langle O_{2,\gamma}^{(0)}(z) \rangle \right] \right] \right] \\ &+ \varepsilon_{1}^{\perp} \cdot \varepsilon_{2}^{\perp} \lim_{\sigma \to -1} H_{3,\gamma}^{(0)} \int_{0}^{M_{h}} \frac{\mathrm{d}\ell_{-}}{\ell_{-}} \int_{0}^{\sigma M_{h}} \frac{\mathrm{d}\ell_{+}}{\ell_{+}} J_{\gamma}^{(0)}(M_{h}\ell_{-}) J_{\gamma}^{(0)}(-M_{h}\ell_{+}) S_{\gamma}^{(0)}(\ell_{-}\ell_{+}) \right|_{\text{leading power}} \end{split}$$

Z.L. Liu, Neubert, 2019

$$egin{aligned} &-H^{(0)}_{3,\gamma}J^{(0)}_{\gamma}(zM_h^2)\,,\ &-rac{arepsilon_1^{\perp}(k_1)\cdotarepsilon_2^{\perp}(k_2)}{2}\int_0^\infty rac{\mathrm{d}\ell_+}{\ell_+}J^{(0)}_{\gamma}(-M_h\ell_+)S^{(0)}_{\gamma}(zM_h\ell_+)\,. \end{aligned}$$

 $T_3(q^2)$ [GeV]

gg to H with light quark loop

A different angle on power corrections

factorization

collinear gluon/quark

soft gluon

leading power: local factorization

subleading power: non-local factorization end-point singularity

operator product expansion

twist operator expansion

large spin limit

leading power: leading twist and spin

subleading power: large spin expansion higher twist

Application to factorization violation Monster here nster loop expansion **Fixed-Order** accuracy power expansion

Glauber operator $\mathcal{L}_{\perp}^{\perp} \mathcal{O}_{\bar{n}}^{jC} + \sum_{n} \sum_{i,j=q,g} \mathcal{O}_{n}^{iB} \frac{1}{\mathcal{P}_{\perp}^{2}} \mathcal{O}_{s}^{j_{n}B}$

$$\mathcal{L}_{G}^{(0)} = \sum_{n,\bar{n}} \sum_{i,j=q,g} \mathcal{O}_{n}^{iB} \frac{1}{\mathcal{P}_{\perp}^{2}} \mathcal{O}_{s}^{BC} \frac{1}{\mathcal{P}_{\perp}^{2}}$$
(3 rapidity secto

sum pairwise on all collinears

$$\begin{split} \mathcal{O}_{n}^{qB} &= \overline{\chi}_{n} T^{B} \frac{\overline{\not{\mu}}}{2} \chi_{n} & \mathcal{O}_{n}^{gB} &= \frac{i}{2} f^{BCD} \mathcal{B}_{n\perp\mu}^{C} \frac{\overline{n}}{2} \cdot (\mathcal{P} + \mathcal{P}^{\dagger}) \mathcal{B}_{n\perp}^{D\mu} \\ \mathcal{O}_{\overline{n}}^{qB} &= \overline{\chi}_{\overline{n}} T^{B} \frac{\overline{\not{\mu}}}{2} \chi_{\overline{n}} & \mathcal{O}_{\overline{n}}^{gB} &= \frac{i}{2} f^{BCD} \mathcal{B}_{\overline{n}\perp\mu}^{C} \frac{n}{2} \cdot (\mathcal{P} + \mathcal{P}^{\dagger}) \mathcal{B}_{\overline{n}\perp}^{D\mu} \\ \mathcal{O}_{s}^{BC} &= 8\pi \alpha_{s} \left\{ \mathcal{P}_{\perp}^{\mu} \mathcal{S}_{n}^{T} \mathcal{S}_{\overline{n}} \mathcal{P}_{\perp\mu} - \mathcal{P}_{\mu}^{\perp} g \widetilde{\mathcal{B}}_{S\perp}^{n\mu} \mathcal{S}_{n}^{T} \mathcal{S}_{\overline{n}} - \mathcal{S}_{n}^{T} \mathcal{S}_{\overline{n}} g \widetilde{\mathcal{B}}_{S\perp}^{\overline{n}\mu} \mathcal{P}_{\mu}^{\perp} - g \widetilde{\mathcal{B}}_{S\perp}^{n\mu} \mathcal{S}_{n}^{T} \mathcal{S}_{\overline{n}} g \widetilde{\mathcal{B}}_{S\perp\mu}^{\overline{n}} - \frac{n_{\mu} \overline{n}_{\nu}}{2} \mathcal{S}_{n}^{T} i g \widetilde{\mathcal{G}}_{s}^{\mu\nu} \mathcal{S}_{\overline{n}} \right\}^{BC} \\ \mathcal{O}_{s}^{q_{n}B} &= 8\pi \alpha_{s} \left(\bar{\psi}_{S}^{n} T^{B} \frac{\overline{\eta}}{2} \psi_{S}^{n} \right) & \mathcal{O}_{s}^{g_{n}B} &= 8\pi \alpha_{s} \left(\frac{i}{2} f^{BCD} \mathcal{B}_{S\perp\mu}^{nC} \frac{n}{2} \cdot (\mathcal{P} + \mathcal{P}^{\dagger}) \mathcal{B}_{S\perp}^{nD\mu} \right) \\ \mathcal{O}_{s}^{q_{n}B} &= 8\pi \alpha_{s} \left(\bar{\psi}_{S}^{\overline{n}} T^{B} \frac{\overline{\eta}}{2} \psi_{S}^{\overline{n}} \right) & \mathcal{O}_{s}^{g_{n}B} &= 8\pi \alpha_{s} \left(\frac{i}{2} f^{BCD} \mathcal{B}_{S\perp\mu}^{\overline{n}C} \frac{n}{2} \cdot (\mathcal{P} + \mathcal{P}^{\dagger}) \mathcal{B}_{S\perp}^{\overline{n}D\mu} \right) \\ \end{array}$$

ors) (2 rapidity sectors)

sum on all collinears

> Glauber Lagrangian spoils factorization by coupling different sectors in SCET

Often its effects exponentiate into overall phase, or sum to zero for sufficient inclusive observables

Strict collinear factorization

Scattering amplitudes obey factorization in two-particle collinear limit

Strict collinear fact.: splitting amplitude ONLY depends of color and kinematics of the collinear pair

Violation of strict collinear factorization by Glauber

$$\mathbf{Sp}^{1,\text{non-fact}} = \frac{\alpha_s}{2\pi} (4\pi e^{-\gamma_E})^{\epsilon} (i\pi) \left(\frac{1}{\epsilon} + \ln\frac{\mu^2}{-2p_1 \cdot p_2} + \ln\frac{z-1}{z}\right) \left(-\mathbf{T_2} \cdot \mathbf{T_3} + \sum_{j>3} \mathbf{T_2} \cdot \mathbf{T_j}\right) \mathbf{Sp}^0$$

Color entangled with non-collinear color flow Cancelled after adding conjugate diagram Also cancel if particle 1 is in final state using color conservation

At least at NNLO in cross section, we don't need to worry about them!

Schwartz, K. Yan, HXZ, 2017

$$\sum_{n,\bar{n}} \sum_{i,j=q,g} \mathcal{O}_n^{iB} rac{1}{\mathcal{P}_{\perp}^2} \mathcal{O}_s^{BC} rac{1}{\mathcal{P}_{\perp}^2}$$

None of the DGLAP-based Monte Carlo generators using LO or NLO calculations can provide a complete description of all measured cross sections and their ratios

Glauber at observable level

Super leading logarithms

Gap-between-jet observable first proposed by Bjorken in 1993

Normal leading logarithms first analyzed by Oderda, Sterman, 1998

Super leading log first appear at four loops: Forshaw, Kyrieleis, Seymour, 2008

No all-order resummation formula available for a long time

leading logs:

super leading

- $e^+e^-, ep: \quad \alpha_s^n \ln^n\left(\frac{Q}{Q_0}\right)$ $pp: \qquad \dots \qquad + \alpha_s^3 (i\pi)^2 \ln^3 \left(\frac{Q}{Q_0}\right) \times \alpha_s^n \ln^{2n} \left(\frac{Q}{Q_0}\right)$

Non-global evolution

$$\sigma_{2 \to M}(Q_0) = \int dx_1 \int dx_2 \, \sum_{m=2+M}^{\infty} \langle \mathcal{H}_m \rangle$$

$$\frac{d}{d\ln\mu}\mathcal{H}_m(\{\underline{n}\},s,\mu) = -\sum_{l=2+M}^m \mathcal{H}_l(\{\underline{n}\},s,\mu) \star \Gamma_{lm}^H(\{\underline{n}\},s,\mu)$$

Becher, Neubert, D.Y. Shao, 2021

 $\left\langle \{\underline{n}\}, s, x_1, x_2, \mu \right\rangle \otimes \boldsymbol{\mathcal{W}}_m(\{\underline{n}\}, Q_0, x_1, x_2, \mu) \right\rangle$

Origin of super leading logs

$$\sigma \sim \sum_{n=0}^{\infty} \left[c_{0,n} \left(\frac{\alpha_s}{\pi} L \right)^n + c_{1,n} \left(\frac{\alpha_s}{\pi} L \right) \left(\frac{\alpha_s}{\pi} i \pi L \right)^2 \left(\frac{\alpha_s}{\pi} L \right)^2 \left(\frac{\alpha_s}{\pi} L \right)^2 \right]$$

$$L \sim \ln(Q/Q_0) \gg 1$$
Sudakov logs: $e^{-\alpha_s L^2}$
Super leading logs: $\frac{\log(\alpha_s L^2)}{\alpha_s L^2}$

Becher, Neubert, D.Y. Shao, Stillger, 2023

50

Question: when will we first see factorization breaking in jet cross section?

NNNLO? NNNNLO?

Summary

- SCET is indispensable for precision collider physics
- A few examples:
 - Transverse momentum distribution of W/Z/H
 - Power corrections to Higgs amplitudes
 - Super leading logarithms in gap cross section

• Only a small facet of SCET. For a list of active topics: SCET 2023 workshop

- https://indico.physics.lbl.gov/event/2384/

A central theme in physics is to understand the renormalization group flow QFTs

SCET provides a toolbox in exploring the varied and rich RG flows of QCD

Sudakov problem

Dokshitzer-Gribov-Lipatov-Altarelli-Parisi equation

Balitsky-Fa -Lipatov

Thank you for your attention!

adin-Kuraev equation	B	anfi-Marchesini-Syme equation
Balitsky-Ko equa	ovchegov tion	

