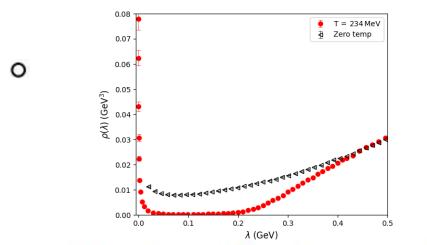
Dimension of Dirac modes in IR phase

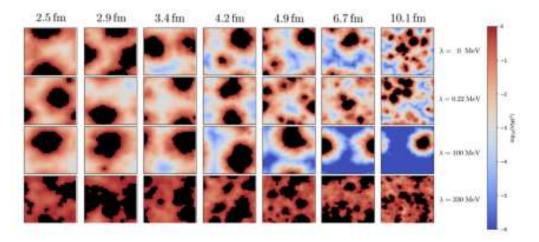
Xiao-Lan Meng

Collaborators: Yi-bo Yang, Peng Sun, Andrei Alexandru, Ivan Horvath, Keh-Fei Liu, and Gen Wang

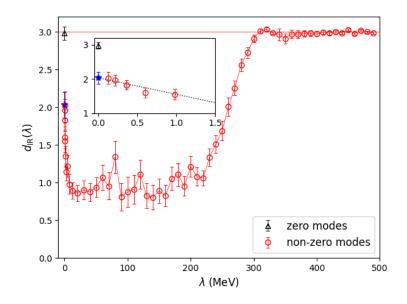
Outline



Dimension of Dirac Eigenvectors...



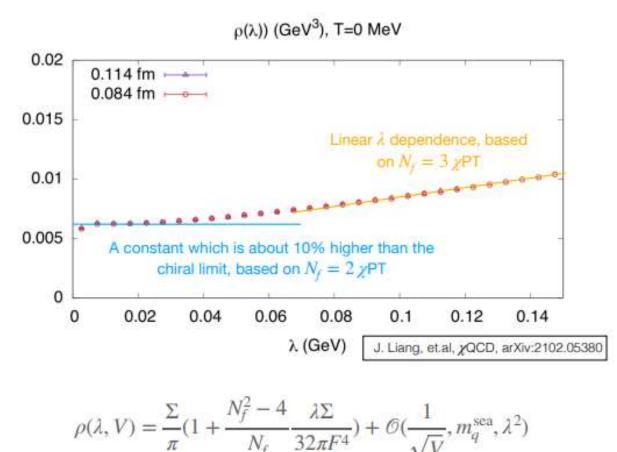
Dirac spectrum above crossover;



...and its distribution.

0

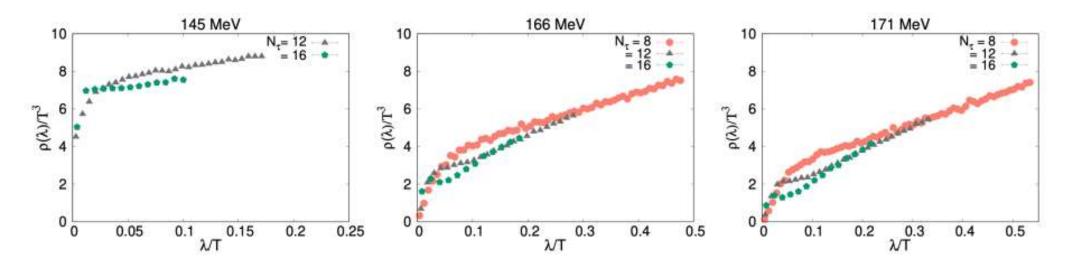
at zero temperature



- 2+1 flavors DWF ensembles at physical light quark masses and two lattice spacings.
 - Dirac spectrum based on the exact eigensolver of the overlap fermion.
 - Corresponds to the chiral condensate in proper limits: $-\langle \bar{\psi}\psi \rangle = \pi \lim_{\lambda \to 0} \lim_{m_l \to 0} \lim_{V \to \infty} \rho(\lambda, V, m_l).$

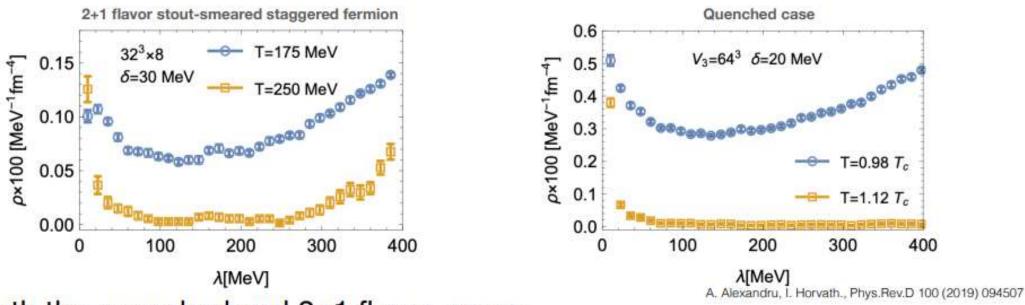
P. H. Damgaard and H Fukaya, JHEP01(2009),052, 0812.2797

above the crossover temperature



- 2+1 flavors HISQ ensembles at physical light quark masses and 2-3 lattice spacings:
- Dirac spectrum with unitary HISQ action.
- $\rho(\lambda \rightarrow 0)$ becomes lower with higher temperature.
- $\rho(\lambda)$ develops a peaked structure at small λ , which becomes sharper as $a \to 0$.

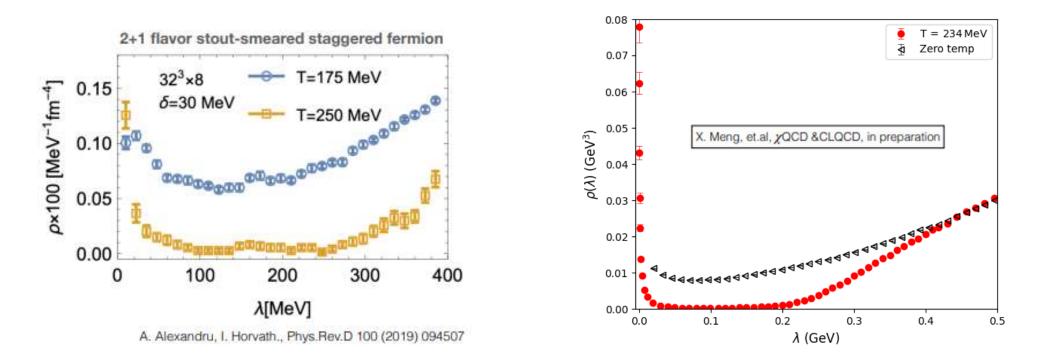
above the crossover temperature



Both the quenched and 2+1 flavor cases:

- Dirac spectrum using overlap fermion shows obvious IR peak at T > 200 MeV.
- The IR peak seems to be much larger than the unitary HISQ case.

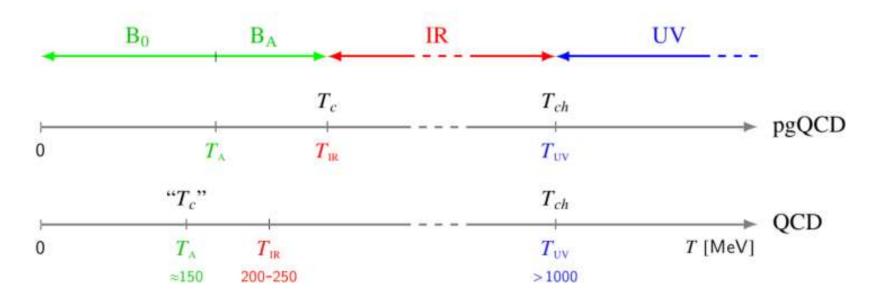
above the crossover temperature



 Dirac spectrum using overlap valence fermion and clover sea is somehow similar to that using staggered fermion sea.

Possible new phase

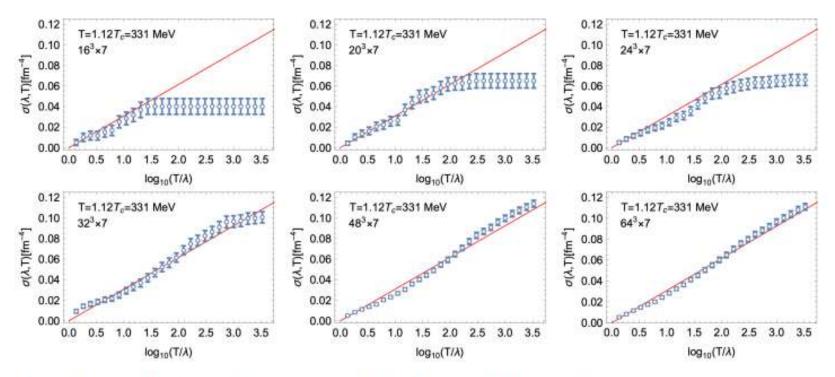
of thermal QCD



- Above T_{IR} : $\rho(\lambda) \propto 1/\lambda$ at $\lambda < T$ and then scale invariance at long distance;
- Above T_{UV} : $\rho(\lambda) \sim 0$ at $\lambda < T$ and then only a weakly interacting gluon plasma remains.

Possible new phase

of thermal QCD



• Above T_{IR} : $\rho(\lambda) \propto 1/\lambda$ at $\lambda < T$ and then scale invariance at long distance;

In such a case,
$$\sigma(\lambda, T) \equiv \int_{\lambda}^{T} \rho(\omega) d\omega \propto \ln \frac{\lambda}{T}$$
 down to some $\lambda_{\rm IR} \propto 1/L$.

But if the IR peak suffers from the action sensitivities, is there any other criteria?

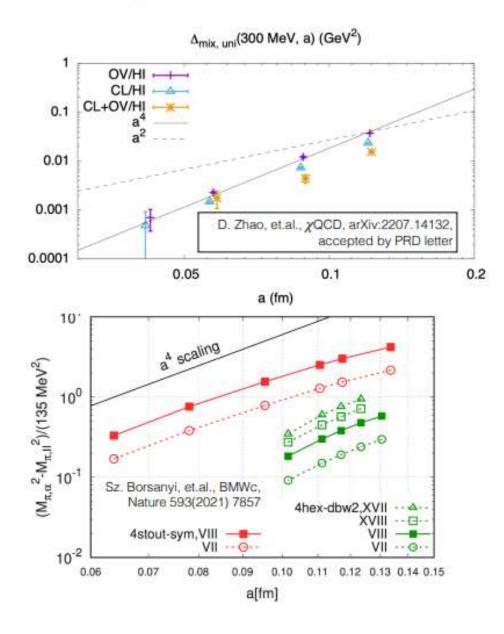
A. Alexandru, I. Horvath, Phys.Rev.D 100 (2019) 094507



above the crossover temperature

- 2 flavors DWF ensembles with different light quark masses.
- The IR peak using overlap valence fermion is sizable before reweighting;
- That using DWF is much smaller;
- And almost vanishes if we use the overlap valence fermion and reweight the DWF sea to overlap sea.

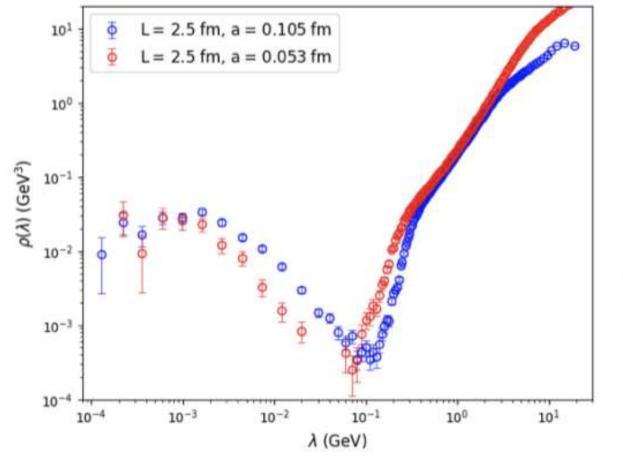
S. Aoki, et.al., JLQCD, Phys.Rev.D103 (2021) 074506



and mixed action effects

- The difference in the IR peak with different setups would be recognized as mixed action or taste mixing effect.
- Both the mixed action and taste mixing effects would be $\mathcal{O}(a^4)$, based on present results with various valence and sea actions at multiple lattice spacings.
- Proper continuum extrapolation should be essential to reach the final answer.

at different lattice spacings



- $N_f = 2 + 1$, T = 234 MeV.
- Valence: overlap fermion on 1-step HYP smeared gauge;
- Sea: Tadpole improved Clover fermion with stout smearing;
- Tadpole improved Symanzik gauge.
- The IR peak remains at smaller lattice spacing, while narrower.

 The overlap fermion operator satisfies the Ginsburg-Wilson,

$$\gamma_5 D_{ov} + D_{ov} \gamma_5 = \frac{a}{\rho} D_{ov} \gamma_5 D_{ov}$$

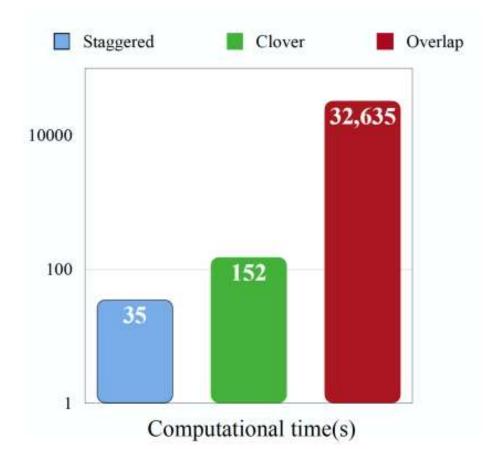
It can be rewritten into

$$D_{ov}^{-1}\gamma_5 + \gamma_5 D_{ov}^{-1} = \frac{a}{\rho}\gamma_5, \ (D_{ov}^{-1} - \frac{1}{2\rho})\gamma_5 + \gamma_5 (D_{ov}^{-1} - \frac{1}{2\rho}) = 0$$

• Thus the chiral fermion operator satisfying $\gamma_5 D_c = -D_c \gamma_5$ can be defined through the overlap fermion operator:

$$D_{c} + m_{q} = \frac{D_{ov}}{1 - \frac{1}{2\rho}D_{ov}} + m_{q}, D_{ov} = \rho(1 + \gamma_{5}\epsilon_{ov}(\rho)).$$

and overlap fermion



overlap fermion v.s. staggered fermion

- The non-zero and finite modes of the overlap fermion are paired, D_{ov}v_{ov} = λ_{ov}v_{ov}, D_{ov}γ₅v_{ov} = λ^{*}_{ov}γ₅v_{ov};
- And then we have $Dv = \lambda v$, $D\gamma_5 v = \lambda^* \gamma_5 v = -\lambda \gamma_5 v$, $Dv_{L/R} = \lambda v_{R/L}$ and also $|v_L| = |v_R|$;
- The exact zero modes have given chiral sector, $1 = |v_{L/R}| \gg |v_{R/L}| = 0$, and $\sum_{\lambda=0} (v_{\lambda})^{\dagger} \gamma_5 v_{\lambda} = Q$.

 Thus the exact zero modes and non-zero modes of the overlap fermion are quite different from each other.

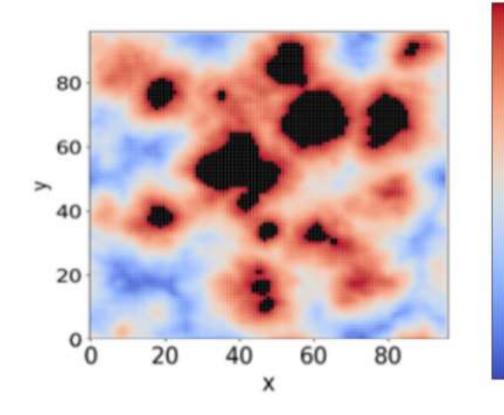
- All the modes of the staggered fermion are also paired, $D^{st}v^{st} = \lambda^{st}v^{st}$, $D^{st}\gamma_5v^{st} = -\lambda^{st}\gamma_5v^{st}$;
- $v_{L/R}^{\text{st}}$ corresponds to even/odd sites of the eigenvector, and then $Dv_{L/R} = \lambda v_{R/L}$ is quite natural.

• But $|v_L|$ and $|v_R|$ on each configuration can be different, to allow the topological charge $Q^{\text{st}} \equiv \sum_{-iM < \lambda < iM} (v_{\lambda}^{\text{st}})^{\dagger} \gamma_5 v_{\lambda}^{\text{st}} = \sum_{-iM < \lambda < iM} (|v_{\lambda,L}|^2 - |v_{\lambda,R}|^2)$ to be non-zero.

C. Bonanno, et.al., JHEP 10 (2019) 187

Dirac spectrum

of the eigenvectors



- $\begin{aligned} V(L) &= (L/a)^3 / (aT), N_* = \sum_{\substack{x \in V \\ and \langle N_* \rangle_{L \to \infty}} \min[V | \psi_{\lambda}(x) |^2, 1], \end{aligned} \\ \text{and } \langle N_* \rangle_{L \to \infty} \propto L^{d_{\mathrm{IR}}(\lambda)} \text{ with } T \text{ is unchanged.} \end{aligned}$
- Reduce the contribution from the black region $(V\psi_{\lambda}^{\dagger}(x)\psi_{\lambda}(x) \ge 1)$ into 1, and add the residual contributions from the other region.
- When *L* becomes larger:

--2

("Jahotao

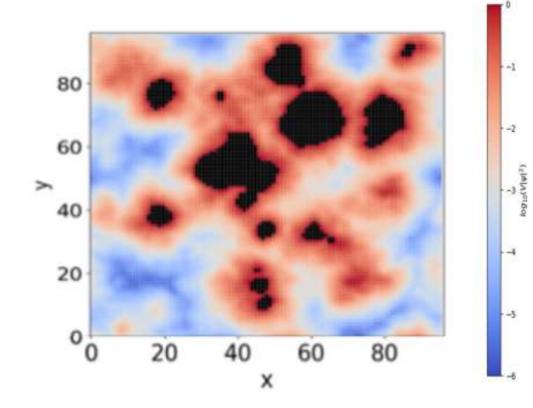
-4

-5

1. $d_{\text{IR}} = 3$ if $\frac{\text{Black region}}{\text{Entire region}}$ keeps unchanged;

2. $d_{\rm IR} < 3$ if $\frac{\rm Black\ region}{\rm Entire\ region}$ becomes smaller.

of the eigenvectors



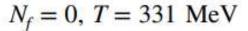
$$f_* \equiv \langle N_* \rangle / V = \sum_{x \in V} \min[|\psi_{\lambda}(x)|^2, 1/V]$$

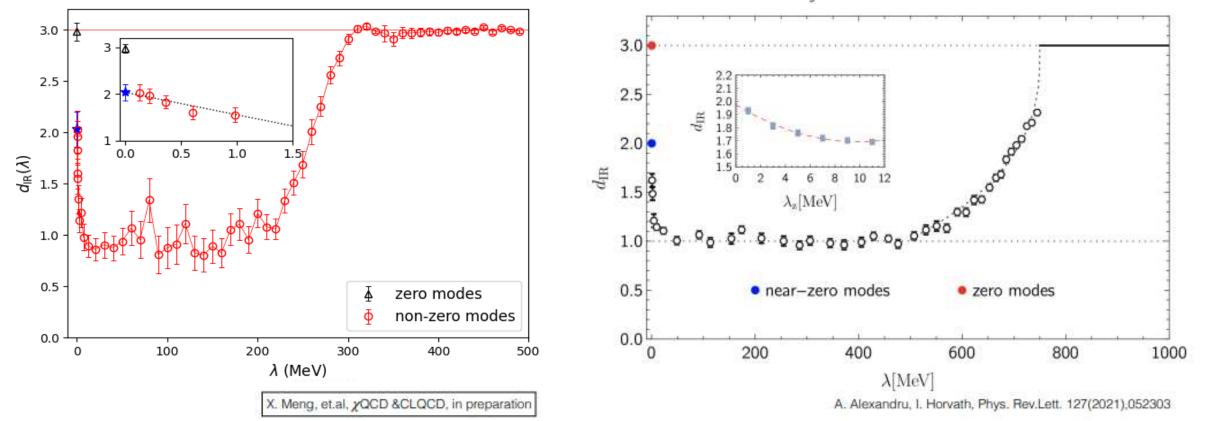
•
$$f_*(L)_{L\to\infty} \propto L^{d_{\mathrm{IR}}-3}$$
.

- When *L* becomes larger:
- 1. $d_{IR} = 3$ if f_* keeps finite;
- 2. $d_{\rm IR} < 3$ if f_* approaches zero.

in the 2+1 flavor case

 $N_f = 2 + 1, T = 234 \text{ MeV}$





Clover ensembles

with multiple lattice spacings and pion masses

- Tadpole improved Clover fermion with stout smearing;
- Tadpole improved Symanzik gauge.
- FLAG green-star criteria can be satisfied with the present ensembles.
- Major contributors: P. Sun, L. Liu, YBY, W. Sun,...

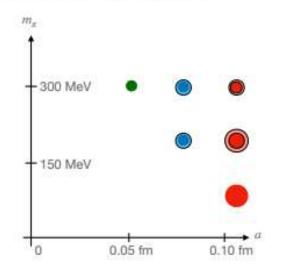


TABLE I. Lattice size $L^3 \times T$, gauge coupling $10/g^2$, bare quark masses $m_{l,s,c}^b$, tadpole improvement factors u_0/v_0 and scale parameter w_0 of the ensembles used in this work. The bare light and starnge quark masses $m_{l,s}^b$ with the bold font on each ensemble are the unitary quark masses, and the other values of $m_{l,s,c}^b$ are those used for the valence quark propagators. The values u_0^I and v_0^I are the tadpole improvement factors used in the gauge and fermion actions, respectively; and u_0 , v_0 , w_0a are those measured from the realistic configurations generated using the Paramters here.

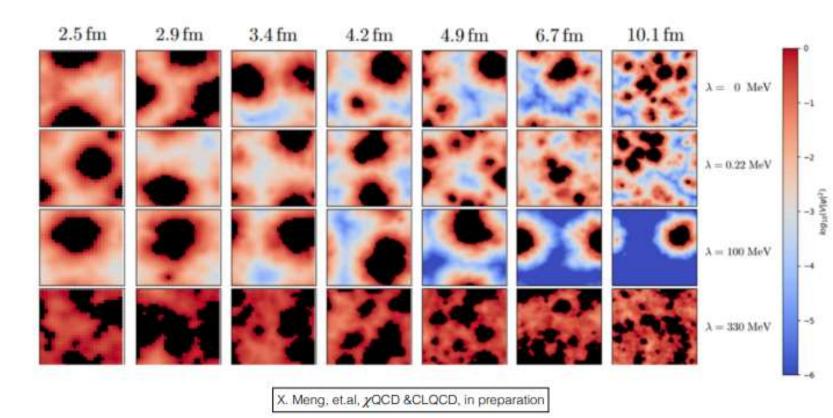
	CIIP29Ss	3 C11P29S	CI1P29M	CIIP22M	CHP22L	CIIP14L	C08P305	C08P30M	C08P225	C08P22M	C06P305
$L^3 \times T$ $10/g^2$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					$48^3 \times 96$	$32^3 \times 96$ $48^3 \times 96$ $32^3 \times 64$ $48^3 \times 96$ 6.41			$48^3 \times 144$ 6.72	
$m_t^{\rm b}$	-0.2770 -0.2760 -0.2750	-0.2770 -0.2760 -0.2750	-0.2780 - 0.2770 -0.2760	- 0.2790 -0.2780 -0.2770	- 0.2790 -0.2780 -0.2770	-0.2825 -0.2820 -0.2815	- 0.2295 -0.2288 -0.2275	-0.2307 - 0.2295 -0.2288	- 0.2320 -0.2307 -0.2295	- 0.2320 -0.2307 -0.2295	- 0.1850 -0.1845 -0.1840
m_s^{b}	-0.2400 -0.2355 -0.2310	-0.2400 -0.2355 -0.2310	-0.2400 -0.2355 -0.2310	-0.2400 -0.2355 -0.2310	-0.2400 -0.2355 -0.2310	-0.2400 -0.2355 - 0.2310	-0.2050 -0.2030 -0.2010	-0.2050 -0.2030 -0.2010	-0.2050 -0.2030 -0.2010	-0.2050 -0.2030 -0.2010	-0.1700 -0.1694 -0.1687
$m_c^{ m b}$	0.4780 0.4800 0.4820	0.4780 0.4800 0.4820	0.4780 0.4800 0.4820	$0.4780 \\ 0.4800 \\ 0.4820$	0.4780 0.4800 0.4820	0.4780 0.4800 0.4820	0.2326 0.2340 0.2354	0.2326 0.2340 0.2354	0.2326 0.2340 0.2354	0.2326 0.2340 0.2354	0.0770 0.0780 0.0790
$\delta_{ au} n_{\min} n_{\max}$	1.0	0.7 4050 48000	0.7 11000 35050	0.7 4100 26600	0.7 1000 5050	1.0 1600 2200	0.5 1000 26200	0.5 2690 6700	0.5 13500 36400	0.5 1600 6060	1.0 1000 4070
u_0^I v_0^I	0.855453 0.951479	0.855453 0.951479	$\begin{array}{c} 0.855453 \\ 0.951479 \end{array}$	$0.855520 \\ 0.951545$	$\begin{array}{c} 0.855520 \\ 0.951545 \end{array}$	$0.855548 \\ 0.951570$	0.863437 0.956942	$0.863473 \\ 0.956984$	$0.863488 \\ 0.957017$	$0.863499 \\ 0.957006$	$0.873378 \\ 0.963137$
u_0 v_0 w_0a			$\begin{array}{c} 0.855422 \\ 0.951444 \end{array}$			$0.855539 \\ 0.951561$	$0.863463 \\ 0.956971$				$\begin{array}{c} 0.873373 \\ 0.963135 \end{array}$

C11P29Ss C11P29S C11P29M C11P22M C11P22L C11P14L C08P30S C08P30M C08P22S C08P22M C06P30S

Distribution

T = 234 MeV

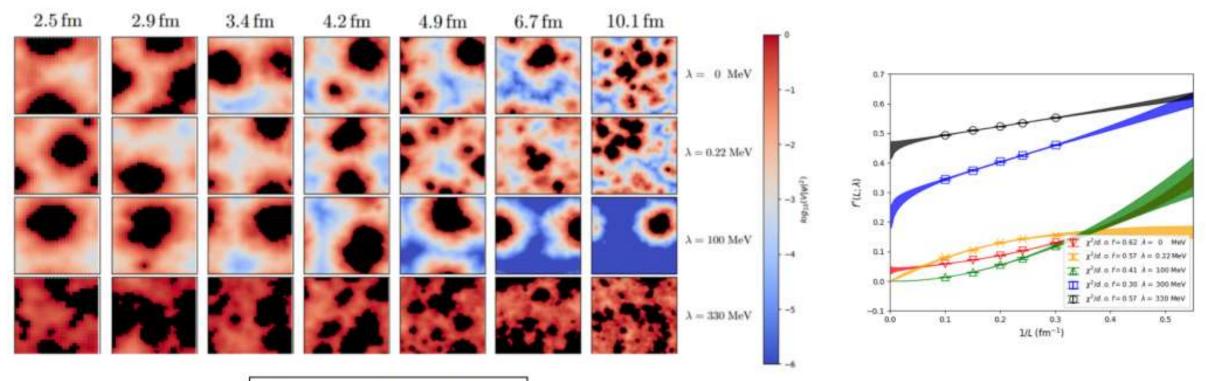
at different spacial size



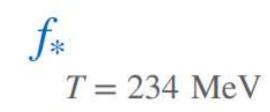
- Locating the position $w = w_0 \equiv \{x_0, y_0, z_0, t_0\}$ where $|\psi(\omega)|^2$ takes the maximum;
- Fix $z = z_0$ and $t = t_0$ and draw the distribution in the x-y plane.
- Black region corresponds to where $|\psi(\omega)|^2 \ge 1/V$;
- $|\psi(\omega)|^2$ is smaller when the color is colder.

Distribution T = 234 MeV

at different spacial size



X. Meng, et.al, XQCD &CLQCD, in preparation



0.4 0.1 0.6 0.3 0.5 0.4 0.2 F(L: J) F(L; J) 0.3 0.1 0.2 0.1 0.0 100 MeV, de = 0.87(20) 0.0 MeV, dx = 2.98(09) 100 MeV, da = 2.91(05) 0 = 0.22 MeV, dis = 1.96(16) 330 MeV, die = 2.98(02) -0.1 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5 1/L (fm-1) 1/L (fm-1)

X. Meng, et.al, ¿QCD &CLQCD, in preparation

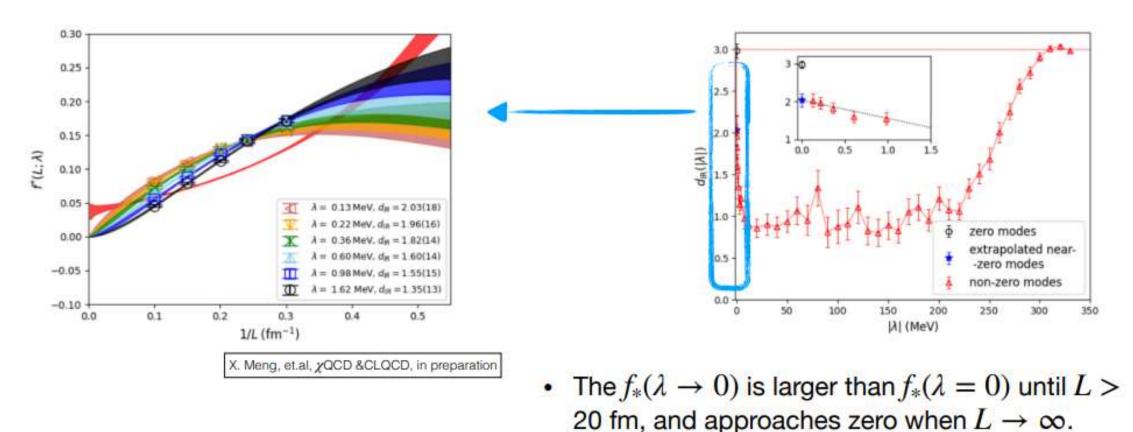
of the eigenvectors

- we find that the following functional form $f_* = c_0(\lambda)L^{d_{\mathrm{IR}}(\lambda)-3}e^{-c_1(\lambda)/L}$ describe the data fairly well for all the λ with L > 3.0 fm.
- The fit is still fine when L <
 3.0 fm if λ > 10 MeV or so;
- But does not work for the zero modes and near-zero modes.

T = 234 MeV

at different eigenvalue regions

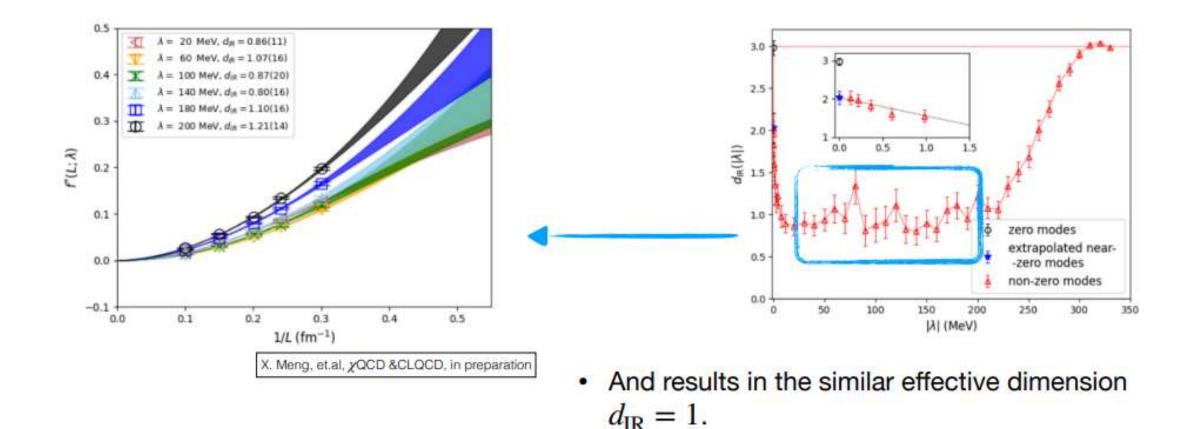
*f*_{*}(λ) converges to a convex curve at λ → 0, which is significantly different from the concave behavior of the exact zero mode with λ = 0.



T = 234 MeV

at different eigenvalue regions

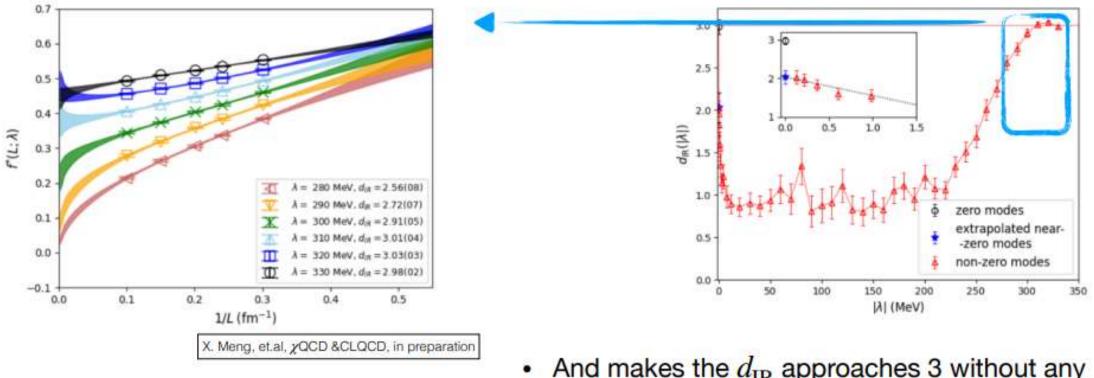
• $f_*(\lambda)$ changes smoothly in the range of 20 MeV $\leq \lambda \leq 200$ MeV.



T = 234 MeV

at different eigenvalue regions

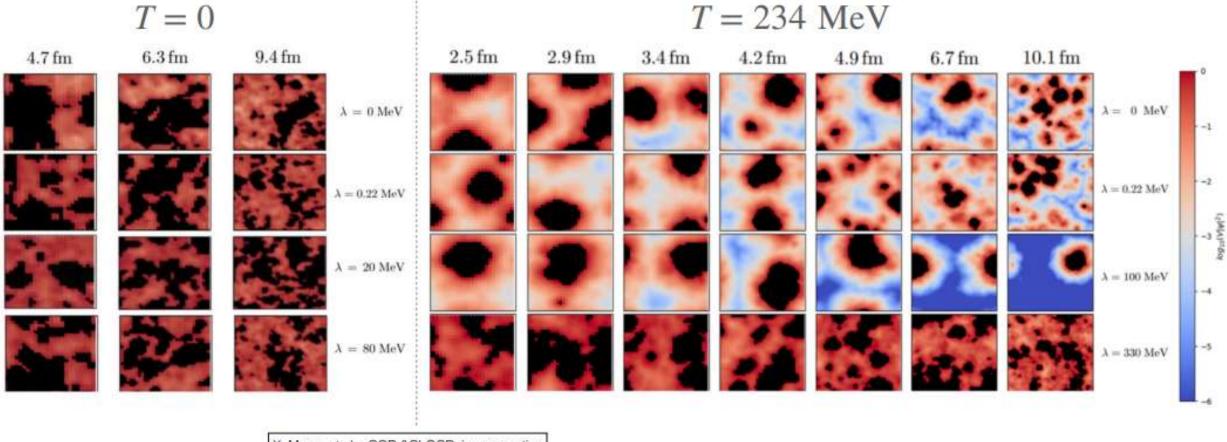
• $f_*(\lambda)$ changes also smoothly in the range of 280 MeV $\leq \lambda \leq 330$ MeV.



And makes the d_{IR} approaches 3 without any visible discontinuity.

Distribution

at different temperatures



X. Meng, et.al, XQCD &CLQCD, in preparation

Summary

- We show that the important pattern of low dimensions seen in pure-glue QCD is also present in "real-world QCD", namely in N_f = 2 + 1 ensembles with physical light and strange quark masses at *a*=0.105 fm:
- 1. $d_{\rm IR} = 3$ for the exact zero modes with $\lambda = 0$.
- 2. $d_{\rm IR} \rightarrow 2$ for the non-zero mode cases with $\lambda \rightarrow 0$.
- 3. $d_{IR} = 1$ for the cases with $\lambda \in [10,200]$ MeV.
- 4. $d_{IR} \rightarrow 3$ smoothly at $\lambda \sim 300$ MeV, which is lower than where $\rho(\lambda; T = 234 \text{ MeV}) \sim \rho(\lambda; T = 0)$.

