Finite Density

20230428

Conjectured QCD phase diagram

A. Li, et.al, Phys. Rev.D 82, 054502 (2010)

Columbia plot

A. D'Ambrosio, et.al, PoS LATTICE2022 (2022) 172

Grand canonical ensembles

• mu=0: HMC

$$\langle O \rangle = \frac{1}{Z} \int D\phi \, e^{-S_E(\phi)} O(\phi), \qquad Z = \int D\phi \, e^{-S_E(\phi)}$$

Chemical potential in lattice QCD

 $(1 + \gamma_4)U_4^{\dagger}(y) \rightarrow (1 + \gamma_4)U_4^{\dagger}(y)e^{\mu a}$, P. Hasenfratz, et.al, Phys. Lett.B125 (1983) 308 $(1 - \gamma_4)U_4(x) \rightarrow (1 - \gamma_4)U_4(x)e^{-\mu a}.$

• Real chemical potential: sign problem & reweighting

$$\langle O \rangle = \frac{\langle O e^{-i \operatorname{Im} S_E(\phi)} \rangle_0}{\langle e^{-i \operatorname{Im} S_E(\phi)} \rangle_0}, \qquad \langle O \rangle_0 = \int D\phi \, \frac{e^{-\operatorname{Re} S_E(\phi)}}{Z_0} O(\phi) \qquad Z_0 \equiv \int D\phi \, e^{-\operatorname{Re} S_E(\phi)} O(\phi)$$

Canonical partition function

- Fugacity expansion $Z(V,T,\mu) = \sum_{k} Z_C(V,T,k) e^{\mu k/T}$
- Fourier transform with an imaginary chemical potential

$$Z_C(V,T,k) = \frac{1}{2\pi} \int_0^{2\pi} \mathrm{d}\phi \, e^{-ik\phi} Z(V,T,\mu)|_{\mu=i\phi T}$$

Integrate out the fermionic part

$$Z_C(V,T,k) = \int \mathcal{D} U e^{-S_g(U)} \det_k M^{N_f}(U)$$
$$\det_k M^{N_f}(U) \equiv \frac{1}{2\pi} \int_0^{2\pi} d\phi \, e^{-ik\phi} \det M(m,\phi;U)^{N_f}$$

Canonical partition function

Charge conjugation symmetry

$$Z_C(V, T, k) = Z_C(V, T, -k)$$

$$Z_C(V, T, k) = \int \mathcal{D} U e^{-S_g(U)} \det_k M^{N_f}(U)$$

$$\det_k M^{N_f}(U) \equiv \frac{1}{2\pi} \int_0^{2\pi} d\phi \, e^{-ik\phi} \det M(m, \phi; U)^{N_f}$$

$$Z_C(V, T, k) = \int \mathcal{D} U \, e^{-S_g(U)} \operatorname{Re} \det_k M^{N_f}(U)$$

Two-step simulation with HMC

$$Z_C(V,T,k) = \int \mathcal{D}U e^{-S_g(U)} \det M^{N_f}(U) W(U) \alpha(U)$$

where

$$W(U) = \frac{|\operatorname{Re} \operatorname{det}_k M^{N_f}(U)|}{\operatorname{det} M^{N_f}(U)},$$

$$\alpha(U) = \operatorname{Sign}(\operatorname{Re} \operatorname{det}_k M^{N_f}(U)).$$

accept/reject method based on the weight W(U)

fold the phase factor $\alpha(U)$ into the measurements

A. Alexandru, et.al, Phys. Rev. D72, 114513 (2005) A. Li, et.al, Phys. Rev.D 82, 054502 (2010)

Baryon chemical potential

• The difference of the free energy after adding one baryon

$$\langle \mu \rangle_{n_B} = \frac{F(n_B + 1) - F(n_B)}{(n_B + 1) - n_B} = -\frac{1}{\beta} \ln \frac{\langle \gamma(U) \rangle_o}{\langle \alpha(U) \rangle_o} \quad (7)$$

where

$$\gamma(U) = \frac{\operatorname{Re} \det_{3n_B+3} M^{n_f}(U)}{|\operatorname{Re} \det_{3n_B} M^{n_f}(U)|}.$$
(8)

 $\langle \rangle_o$ in Eq. (7) stands for the average over the ensemble generated with the measure $|\operatorname{Re} \det_{3n_B} M^{n_f}(U)|$.

Phase diagram, grand canonical vs canonical

P. de Forcrand and S. Kratochvila, Nucl. Phys. Proc. Suppl. 153, 62 (2006) S. Ejiri, Phys. Rev. D78, 074507 (2008)

Lattice setup

- Wilson gauge action + Wilson fermion action
- Lattice spacing: 12^3x24 , w₀ scale (w₀=0.1755fm)
- N_f=2: m_π~900MeV; 4³x4, 6³x4
- N_f=3: m_{π} ~900MeV, 700MeV, 500MeV; 4³x4, 6³x4; RHMC with Remez in Chroma
- Exact determinate projection: compression A. Alexandru, et.al, Phys. Rev.D 83, 034502(2011)

$$\det_k M^{N_f}(U) \equiv \frac{1}{2\pi} \int_0^{2\pi} \mathrm{d}\phi \, e^{-ik\phi} \det M(m,\phi;U)^{N_f}$$

Two flavors (900MeV)

Kappa*2	beta	Lattice spacing (fm)	Temperature (GeV)	Pion mass (GeV)
0.158	5.15	0.31271(13)	0.1577	0.9409(14)
0.158	5.18	0.30803(13)	0.1601	0.9337(14)
0.158	5.20	0.30451(15)	0.1620	0.9307(16)

beta

Kappa*3	beta	Lattice spacing (fm)	Temperature (GeV)	Pion mass (GeV)
0.158	5.07	0.31242(10)	0.1579	0.9421(15)

Kappa*3	beta	Lattice spacing (fm)	Temperature (GeV)	Pion mass (GeV)
0.158	5.05	0.31504(12)	0.1566	0.9447(15)

Kappa*3	beta	Lattice spacing (fm)	Temperature (GeV)	Pion mass (GeV)
0.158	5.03	0.31770(10)	0.1553	0.9471(15)

Kappa*3	beta	Lattice spacing (fm)	Temperature (GeV)	Pion mass (GeV)
0.173	4.80	0.32286(11)	0.1528	0.7485(13)

Kappa*3	beta	Lattice spacing (fm)	Temperature (GeV)	Pion mass (GeV)
0.173	4.78	0.32519(8)	0.1517	0.7542(13)

Kappa*3	beta	Lattice spacing (fm)	Temperature (GeV)	Pion mass (GeV)
0.173	4.76	0.32713(8)	0.1508	0.7587(10)

be

beta

▼

4.6

4.6

Summary and outlook

- We use canonical ensembles with exact projection to investigate the phase transition in real chemical potential and different mass on 4³x4 and 6³x4 lattice.
- It looks like there is **no first order phase transition** in the region we investigate.
- We plan to generate more configurations in 700MeV and 500MeV pion mass case.

BACKUP

Step size and accept rate

- The length of the trajectories: 0.5 with $\Delta \tau = 0.01$, accept rate>90%
- Acceptance rate

6³x4, nf3

Карра	Beta	Baryon number	Accept rate
0.173	4.80	3	39%
0.173	4.80	12	36%
0.173	4.76	3	43%
0.173	4.76	12	28%

Auto-correlation and binning

 $6^{3}x4$, kappa=0.158, beta = 5.15, n_b=12

 $6^{3}x4$, kappa=0.173, beta = 4.80, n_b=3

$$OSt \det_k M^{N_f}(U) \equiv \frac{1}{2\pi} \int_0^{2\pi} \mathrm{d}\phi \, e^{-ik\phi} \det M(m,\phi;U)^{N_f}$$

• 4³x4 one step projection, one core, 6 seconds

One step	Trajectories	Baryon num	Beta	Mass	total
6s	6x10 ⁴	5	3	3	4.5x10 ³ core*hrs.

• 6³X4 one step projection, one core, 250 seconds

One step	Trajectories	Baryon num	Beta	Mass	total
250s	2x10 ⁵	16	3	3	2.0x10 ⁶ core*hrs.

$\det_k M^{N_f}(U) \equiv \frac{1}{2\pi} \int_0^{2\pi} \mathrm{d}\phi \, e^{-ik\phi} \det M(m,\phi;U)^{N_f}$

Projection of the determinant

Discrete Fourier transform Winding number expansion

$$\det_k M^{N_f}(U) \approx \frac{1}{N} \sum_{j=0}^{N-1} e^{-ik\phi_j} \det M(U_{\phi_j})^{N_f}, \qquad \phi_j = \frac{2\pi j}{N}$$

Matrix reduction technique

- Exact projection of the determinant
- The size of the reduced matrix is independent of the temporal lattice extent
- Factor out the chemical potential