# 国产组态的参数标定 胡博伦胡志成 中国科学院理论物理研究所 导师:杨一玻

# Symanzik Action

In this work, we generate the 2+1 flavor full QCD ensembles using the tadpole improved tree level Symanzik gauge action

$$S_g = rac{1}{N_c} \sum_x \operatorname{Re} \sum_{x,\mu < 
u} \operatorname{Tr} \left[ 1 - c_0 \mathcal{P}^U_{\mu,
u}(x) - c_1 \mathcal{R}^U_{\mu,
u}(x) 
ight]$$
 rectangular term, higher order in a and suppress discretization errors

link variables representing gluon fields can acquire large fluctuations. Tadpole improvement is a technique used to mitigate these errors by rescaling the lattice coupling constant and the link variables.

$$c_0 = rac{5}{3} rac{6}{g_0^2 u_0^4} \equiv 10/g^2 ext{ with } g = g_0 u_0^2 \quad , c_1 = -rac{c_0}{20 u_0^2} 
onumber \ u_0 = \left\langle rac{1}{6N_c V} \operatorname{Re} \operatorname{Tr} \sum_{x,\mu < 
u} \mathcal{P}^U_{\mu
u}(x) 
ight
angle^{1/4} ext{ with } V = L^3 imes T \quad v_0 = \left\langle rac{1}{6N_c V} \operatorname{Re} \operatorname{Tr} \sum_{x,\mu < 
u} \mathcal{P}^V_{\mu
u}(x) 
ight
angle^{1/4}$$

 $u_0$  is a measure of the average size of the plaquette

stout smeared link V

# **Clover Action**

$$S_{
m Clover} \, = S_W + rac{1}{2} \sum_x ar{\psi}(x) rac{1}{v_0^3} \sigma^{\mu
u} F^V_{\mu
u} \psi(x) \, ,$$

Reduces discretization errors to order  $O(a^2)$  providing more accurate results

### Stout Link Smearing in Lattice QCD

- Goal: Suppress short-distance noise and enhance signal-to-noise ratio for observables
- Process:
  - 1. Construct "staple" links, capturing local gauge field structure
  - 2. Combine original link variable and staple links using a weighted average, with smearing parameter  $\rho$  (e.g.,  $\rho$ =0.125)
- Benefits: Improved accuracy in hadron masses, form factors, and other observables sensitive to short-distance noise

# Lattice QCD in China

C11P29S:  $a \approx 0.11$  fm,  $m_{\pi} \approx 0.29$  GeV S: small

| name     | Volume              | Lattice spacing | β    | $\pi$ mass | $\eta_s$ mass | L     | n_conf |
|----------|---------------------|-----------------|------|------------|---------------|-------|--------|
| C11P29Ss | $24^3 \times 62$    | 0.105fm         | 6.20 | 290MeV     | 640MeV        | 2.3fm | 200    |
| C11P29S  | 24 <sup>3</sup> ×72 | 0.105fm         | 6.20 | 290MeV     | 640MeV        | 2.6fm | 900    |
| C11P29M  | 32 <sup>3</sup> ×64 | 0.105fm         | 6.20 | 290MeV     | 640MeV        | 3.5fm | 900    |
| C11P22M  | 32 <sup>3</sup> ×64 | 0.105fm         | 6.20 | 220MeV     | 640MeV        | 3.5fm | 450    |
| C11P22L  | 48 <sup>3</sup> ×96 | 0.105fm         | 6.20 | 220MeV     | 640MeV        | 5.4fm | 400    |
| C11P14L  | 48 <sup>3</sup> ×96 | 0.105fm         | 6.20 | 135MeV     | 700MeV        | 5.4fm | 100    |
| C08P30S  | 32 <sup>3</sup> ×96 | 0.080fm         | 6.41 | 300MeV     | 650MeV        | 2.6fm | 500    |
| C08P30M  | 48 <sup>3</sup> ×96 | 0.080fm         | 6.41 | 300MeV     | 650MeV        | 3.8fm | 400    |
| C08P21S  | 32 <sup>3</sup> ×64 | 0.080fm         | 6.41 | 210MeV     | 650MeV        | 2.6fm | 460    |
| C08P21M  | 48 <sup>3</sup> ×96 | 0.080fm         | 6.41 | 210MeV     | 650MeV        | 3.8fm | 450    |
| C06P30S  | $48^3 \times 144$   | 0.054fm         | 6.72 | 300MeV     | 650MeV        | 2.6fm | 400    |

LM Liu, M Gong, P Sun and YB Yang





Parameters in this table are approximate, and should be determined later by fitting

[Chin.Phys.C 46 (2022) ,arXiv: 2207.00183 ,arXiv: 2207.14132]

# Parameters of the configurations

|                          | C11P29Ss         | C11P29S          | C11P29M            | C11P22M            | C11P22L            | C11P14L            | C08P30S            | C08P30M          | C08P22S            | C08P22M          | C06P30S           |
|--------------------------|------------------|------------------|--------------------|--------------------|--------------------|--------------------|--------------------|------------------|--------------------|------------------|-------------------|
| $L^3 \times T$           | $24^3 \times 64$ | $24^3 \times 72$ | $32^{3} \times 64$ | $32^{3} \times 64$ | $48^{3} \times 96$ | $48^{3} \times 96$ | $32^{3} \times 96$ | $48^3 \times 96$ | $32^{3} \times 64$ | $48^3 \times 96$ | $48^3 \times 144$ |
| $10/g^{2}$               |                  |                  | 6                  | .20                |                    |                    |                    | 6.               | 41                 |                  | 6.72              |
|                          |                  |                  |                    |                    |                    | -0.2825            |                    |                  |                    |                  |                   |
|                          |                  |                  |                    |                    |                    | -0.2820            |                    |                  |                    |                  |                   |
|                          |                  |                  |                    |                    |                    | -0.2815            |                    |                  |                    |                  |                   |
|                          |                  |                  |                    | -0.2790            | -0.2790            |                    |                    |                  | -0.2320            | -0.2320          |                   |
| $m_l^{ m b}$             |                  |                  | -0.2780            | -0.2780            | -0.2780            |                    |                    | -0.2307          | -0.2307            | -0.2307          |                   |
|                          | -0.2770          | -0.2770          | -0.2770            | -0.2770            | -0.2770            |                    | -0.2295            | -0.2295          | -0.2295            | -0.2295          | -0.1850           |
|                          | -0.2760          | -0.2760          | -0.2760            |                    |                    |                    | -0.2288            | -0.2288          |                    |                  | -0.1845           |
|                          | -0.2750          | -0.2750          |                    |                    |                    |                    | -0.2275            |                  |                    |                  | -0.1840           |
| _                        | -0.2400          | -0.2400          | -0.2400            | -0.2400            | -0.2400            | -0.2400            | -0.2050            | -0.2050          | -0.2050            | -0.2050          | -0.1700           |
| $m_s^{ m b}$             | -0.2355          | -0.2355          | -0.2355            | -0.2355            | -0.2355            | -0.2355            | -0.2030            | -0.2030          | -0.2030            | -0.2030          | -0.1694           |
|                          | -0.2310          | -0.2310          | -0.2310            | -0.2310            | -0.2310            | -0.2310            | -0.2010            | -0.2010          | -0.2010            | -0.2010          | -0.1687           |
| _                        | 0.4780           | 0.4780           | 0.4780             | 0.4780             | 0.4780             | 0.4780             | 0.2326             | 0.2326           | 0.2326             | 0.2326           | 0.0770            |
| $m_c^{ m b}$             | 0.4800           | 0.4800           | 0.4800             | 0.4800             | 0.4800             | 0.4800             | 0.2340             | 0.2340           | 0.2340             | 0.2340           | 0.0780            |
|                          | 0.4820           | 0.4820           | 0.4820             | 0.4820             | 0.4820             | 0.4820             | 0.2354             | 0.2354           | 0.2354             | 0.2354           | 0.0790            |
| $\delta_{	au}$           | 1.0              | 0.7              | 0.7                | 0.7                | 0.7                | 1.0                | 0.5                | 0.5              | 0.5                | 0.5              | 1.0               |
| $n_{\min}$               |                  | 4050             | 11000              | 4100               | 1000               | 1600               | 1000               | 2690             | 13500              | 1600             | 1000              |
| $n_{\max}$               |                  | 48000            | 35050              | 26600              | 5050               | 2200               | 26200              | 6700             | 36400              | 6060             | 4070              |
| $u_0^1$                  | 0.855453         | 0.855453         | 0.855453           | 0.855520           | 0.855520           | 0.855548           | 0.863437           | 0.863473         | 0.863488           | 0.863499         | 0.873378          |
| $v_0^1$                  | 0.951479         | 0.951479         | 0.951479           | 0.951545           | 0.951545           | 0.951570           | 0.956942           | 0.956984         | 0.957017           | 0.957006         | 0.963137          |
| $u_0$                    | 0.8552548(68)    | 0.8554391(23)    | 0.8554294(19)      | 0.8555282(22)      | 0.85552338(94)     | 0.8555296(17)      | 0.8634595(14)      | 0.86345914(79)   | 0.8635185(18)      | 0.86351466(76)   | 0.87337220(70)    |
| $v_0$                    | 0.9512747(60)    | 0.9514611(21)    | 0.9514522(18)      | 0.9515501(20)      | 0.95154723(86)     | 0.9515537(16)      | 0.9569680(11)      | 0.95696728(62)   | 0.9570237(14)      | 0.95701949(59)   | 0.96313394(50)    |
| $a_{w_0}$                | 0.10995(15)      | 0.106285(57)     | 0.106717(49)       | 0.104396(61)       | 0.104360(28)       | 0.103806(46)       | 0.079084(59)       | 0.078885(24)     | 0.076270(66)       | 0.076768(30)     | 0.053718(36)      |
| $a_{\sqrt{t_0}}$         | 0.103578(97)     | 0.100952(34)     | 0.101202(30)       | 0.099702(37)       | 0.099665(15)       | 0.099448(25)       | 0.075872(35)       | 0.075800(10)     | 0.074393(36)       | 0.074631(15)     | 0.052514(21)      |
| $a_{\sqrt{t_0}}/a_{w_0}$ | 0.94201(62)      | 0.94982(26)      | 0.94831(21)        | 0.95504(27)        | 0.95501(14)        | 0.95802(25)        | 0.95939(37)        | 0.96090(20)      | 0.97538(53)        | 0.97217(24)      | 0.97757(43)       |
| a                        | 0.10541(12)      | 0.10541(12)      | 0.10541(12)        | 0.10541(12)        | 0.10541(12)        | 0.10541(12)        | 0.07695(11)        | 0.07695(11)      | 0.07695(11)        | 0.07695(11)      | 0.05113(14)       |

# Gradient flow scale

 $egin{aligned} \dot{B}_{\mu} &= D_{
u}G_{
u\mu}, \quad B_{\mu}ig|_{t=0} &= A_{\mu}, \ G_{\mu
u} &= \partial_{\mu}B_{
u} - \partial_{
u}B_{\mu} + [B_{\mu}, B_{
u}], \ D_{\mu} &= \partial_{\mu} + [B_{\mu}, \cdot] \end{aligned}$ 

• one can define a scale by keeping a suitable gluonic observable defined at constant flow time t, e.g.,

$$t_0^2 \langle E(t_0) \rangle = 0.3$$
.  $E(t,x) = -\frac{1}{2} \operatorname{Tr} G_{\mu\nu}(t,x) G_{\mu\nu}(t,x)$ 

An alternative scale

$$Wig(w_0^2ig) = t_c \cdot \partial_tig(t^2 \langle E(t) 
angleig)_{t=t_c} = 0.3.$$

advantage: scale can be obtained in each configuration, not fit needed

[arXiv:2111.09849]

# Gradient flow scale $a_{\sqrt{t0}}$



C11P29Ss 112 confs a\_ttFF 0.103578(97) a\_tDFF 0.10995(15) a\_ttFF/a\_tDFF 0.94201(62) C11P29S 879 confs a\_ttFF 0.100952(34) a\_tDFF 0.106285(57) a\_ttFF/a\_tDFF 0.94982(26) C11P29M 601 confs a\_ttFF 0.101202(30) a\_tDFF 0.106717(49) a\_ttFF/a\_tDFF 0.94831(21) C11P22M 451 confs a\_ttFF 0.099702(37) a\_tDFF 0.104396(61) a\_ttFF/a\_tDFF 0.95504(27) C11P22L 405 confs a\_ttFF 0.099665(15) a\_tDFF 0.104360(28) a\_ttFF/a\_tDFF 0.95501(14) C11P14L 107 confs a\_ttFF 0.099665(15) a\_tDFF 0.103806(46) a\_ttFF/a\_tDFF 0.95501(14) C11P14L 107 confs a\_ttFF 0.099448(25) a\_tDFF 0.103806(46) a\_ttFF/a\_tDFF 0.95802(25) C08P30S 483 confs a\_ttFF 0.075872(35) a\_tDFF 0.07984(59) a\_ttFF/a\_tDFF 0.95939(37) C08P30M 403 confs a\_ttFF 0.075800(10) a\_tDFF 0.078885(24) a\_ttFF/a\_tDFF 0.96090(20) C08P22S 459 confs a\_ttFF 0.074393(36) a\_tDFF 0.076768(30) a\_ttFF/a\_tDFF 0.97538(53) C08P22M 447 confs a\_ttFF 0.07631(15) a\_tDFF 0.076768(30) a\_ttFF/a\_tDFF 0.97217(24) C06P30S 257 confs a\_ttFF 0.052514(21) a\_tDFF 0.0763718(36) a\_ttFF/a\_tDFF 0.97277(43)

C11P29Ss 100 confs a\_ttFF 0.098481(96) a\_tDFF 0.11127(17) a\_ttFF/a\_tDFF 0.88509(59) C11P29S 128 confs a\_ttFF 0.096006(88) a\_tDFF 0.10742(15) a\_ttFF/a\_tDFF 0.89373(55) C11P29M 118 confs a\_ttFF 0.096234(66) a\_tDFF 0.10789(11) a\_ttFF/a\_tDFF 0.89197(39) C11P22M 102 confs a\_ttFF 0.094908(76) a\_tDFF 0.10570(13) a\_ttFF/a\_tDFF 0.89793(51) C11P22L 81 confs a\_ttFF 0.094874(33) a\_tDFF 0.105639(63) a\_ttFF/a\_tDFF 0.89809(27) C11P14L 61 confs a\_ttFF 0.094669(32) a\_tDFF 0.105158(63) a\_ttFF/a\_tDFF 0.89809(27) C11P14L 61 confs a\_ttFF 0.073586(57) a\_tDFF 0.079930(98) a\_ttFF/a\_tDFF 0.90026(28) C08P30M 81 confs a\_ttFF 0.073481(22) a\_tDFF 0.0779930(98) a\_ttFF/a\_tDFF 0.92239(42) C08P22S 101 confs a\_ttFF 0.07225(83) a\_tDFF 0.07709(15) a\_ttFF/a\_tDFF 0.9356(10) C08P22M 101 confs a\_ttFF 0.072369(31) a\_tDFF 0.077611(65) a\_ttFF/a\_tDFF 0.93246(466) C06P30S 69 confs a\_ttFF 0.051619(45) a\_tDFF 0.053914(85) a\_ttFF/a\_tDFF 0.95744(93) C11P29Ss 100 confs a\_ttFF 0.092185(93) a\_tDFF 0.11237(17) a\_ttFF/a\_tDFF 0.82034( C11P29S 128 confs a\_ttFF 0.089915(84) a\_tDFF 0.10880(15) a\_ttFF/a\_tDFF 0.82642(4 C11P29M 118 confs a\_ttFF 0.090160(61) a\_tDFF 0.10927(10) a\_ttFF/a\_tDFF 0.82509(2 C11P22M 102 confs a\_ttFF 0.088889(73) a\_tDFF 0.10711(13) a\_ttFF/a\_tDFF 0.82986(3 C11P22L 80 confs a\_ttFF 0.088850(31) a\_tDFF 0.107048(58) a\_ttFF/a\_tDFF 0.83001(1 C11P14L 61 confs a\_ttFF 0.0888640(34) a\_tDFF 0.106592(65) a\_ttFF/a\_tDFF 0.83158(2 C08P30S 144 confs a\_ttFF 0.070104(55) a\_tDFF 0.081250(98) a\_ttFF/a\_tDFF 0.86281( C08P30M 81 confs a\_ttFF 0.069998(23) a\_tDFF 0.081018(53) a\_ttFF/a\_tDFF 0.86399(3 C08P22S 101 confs a\_ttFF 0.066895(79) a\_tDFF 0.079033(61) a\_ttFF/a\_tDFF 0.872100( C06P30S 76 confs a\_ttFF 0.049940(41) a\_tDFF 0.07942(861) a\_ttFF/a\_tDFF 0.872100(

#### Wilson flow

#### Symanzik flow

#### iwasaki flow

# Gradient flow scale $a_{w0}$



1P29S 879 confs a\_ttFF 0.100952(34) a\_tDFF 0.106285(57) a\_ttFF/a\_tDFF 0.94982(26) C 1P29M 601 confs a\_ttFF 0.101202(30) a\_tDFF 0.106717(49) a\_ttFF/a\_tDFF 0.94831(21) C 1P22M 451 confs a\_ttFF 0.099702(37) a\_tDFF 0.104396(61) a\_ttFF/a\_tDFF 0.95504(27) C 1P22L 405 confs a\_ttFF 0.099665(15) a\_tDFF 0.104360(28) a\_ttFF/a\_tDFF 0.95501(14) C 1P14L 107 confs a\_ttFF 0.099648(25) a\_tDFF 0.103806(46) a\_ttFF/a\_tDFF 0.95802(25) C 8P30S 483 confs a\_ttFF 0.075872(35) a\_tDFF 0.079084(59) a\_ttFF/a\_tDFF 0.95939(37) C 8P30M 403 confs a\_ttFF 0.075800(10) a\_tDFF 0.078885(24) a\_ttFF/a\_tDFF 0.96090(20) C 8P22S 459 confs a\_ttFF 0.074631(15) a\_tDFF 0.07678(630) a\_ttFF/a\_tDFF 0.97538(53) C 8P24M 447 confs a\_ttFF 0.072514(21) a\_tDFF 0.0753718(36) a\_ttFF/a\_tDFF 0.9777(43) C

C11P29Ss 100 confs a\_ttFF 0.098481(96) a\_tDFF 0.1112/(1/) a\_ttFF/a\_tDFF 0.88509(S9) C11P29S 128 confs a\_ttFF 0.096006(88) a\_tDFF 0.10742(15) a\_ttFF/a\_tDFF 0.89373(55) C11P29M 118 confs a\_ttFF 0.096234(66) a\_tDFF 0.10789(11) a\_ttFF/a\_tDFF 0.89197(39) C11P22M 102 confs a\_ttFF 0.094908(76) a\_tDFF 0.10570(13) a\_ttFF/a\_tDFF 0.89793(51) C11P22L 81 confs a\_ttFF 0.094874(33) a\_tDFF 0.105639(63) a\_ttFF/a\_tDFF 0.89809(27) C11P14L 61 confs a\_ttFF 0.094669(32) a\_tDFF 0.105158(63) a\_ttFF/a\_tDFF 0.92062(58) C08P30S 144 confs a\_ttFF 0.07388(57) a\_tDFF 0.079930(98) a\_ttFF/a\_tDFF 0.922062(58) C08P30M 81 confs a\_ttFF 0.073481(22) a\_tDFF 0.07709(15) a\_ttFF/a\_tDFF 0.92239(42) C08P22S 101 confs a\_ttFF 0.072125(83) a\_tDFF 0.077611(65) a\_ttFF/a\_tDFF 0.93246(46) C06P30S 69 confs a\_ttFF 0.051619(45) a\_tDFF 0.053914(85) a\_ttFF/a\_tDFF 0.95744(93) CIIP29Ss 100 confs a\_ttFF 0.092185(93) a\_tDFF 0.1123/(1/) a\_ttFF/a\_tDFF 0.82034(42) CIIP29S 128 confs a\_ttFF 0.089915(84) a\_tDFF 0.10880(15) a\_ttFF/a\_tDFF 0.82642(40) CIIP29M 118 confs a\_ttFF 0.090160(61) a\_tDFF 0.10927(10) a\_ttFF/a\_tDFF 0.82509(27) CIIP22M 102 confs a\_ttFF 0.088889(73) a\_tDFF 0.10711(13) a\_ttFF/a\_tDFF 0.82986(36) CIIP22L 80 confs a\_ttFF 0.088850(31) a\_tDFF 0.107048(58) a\_ttFF/a\_tDFF 0.83001(18) CIIP14L 61 confs a\_ttFF 0.088640(34) a\_tDFF 0.106592(65) a\_ttFF/a\_tDFF 0.83158(22) C08P30S 144 confs a\_ttFF 0.069098(23) a\_tDFF 0.081250(98) a\_ttFF/a\_tDFF 0.86281(47) C08P20M 81 confs a\_ttFF 0.068695(79) a\_tDFF 0.07857(15) a\_ttFF/a\_tDFF 0.87434(82) C08P22M 102 confs a\_ttFF 0.068925(30) a\_tDFF 0.079033(61) a\_ttFF/a\_tDFF 0.87210(34) C06P30S 76 confs a\_ttFF 0.049940(41) a\_tDFF 0.054428(76) a\_ttFF/a\_tDFF 0.91755(73)

#### Wilson flow

#### Symanzik flow

#### iwasaki flow

$$a(eta,m_{\pi},ar{m}_{\eta_s}) = a(eta) igg(1+c_1igg(m_{\pi}^2-0.135^2igg)+c_2igg[igg(rac{ar{m}_{\eta_s}*0.1973}{a(eta)}igg)^2-0.69^2igg]+c_3\exp(-m_{\pi}a(eta)/0.1973*L)igg)$$

Wilson flow

| Least Square Fit<br>chi2/dof [dof] | (no prior):<br>= 9.4 [5] | Q = 5.9e-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                   |     |
|------------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------|-----|
| Parameters:                        |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                   |     |
| c1                                 | 0.610 (15                | 5) F 1 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - inf ] |                   |     |
| c2                                 | 0.2086 (95               | 5) $[0.5 +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - inf ] |                   |     |
| c3                                 | -0.126 (30               | (0, 5) $(0, 5)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - inf ] |                   |     |
| a(6,2)                             | 0.10323 (11              | () [0.1] +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - inf ] |                   |     |
| a(6, 41)                           | 0 07558 (11              | $\Gamma 0 08 +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - inf ] |                   |     |
| a(6, 72)                           | 0 05061 (14              | $\Gamma = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 10 = 0.00 + 0.00 + 0.00 + 0.00 + 0.00 + 0.00 + 0.00 + 0.00$ | - inf ] |                   |     |
|                                    | 0.00001 (11              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | J       |                   |     |
| Fit:                               |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                   |     |
| kev                                | v[kev]                   | f(ɒ)[kev]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |                   |     |
|                                    |                          | · (F)[]]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |                   |     |
| a 0 0.                             | 10995 (17)               | 0.10934 (12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ***     |                   |     |
| 1 0.                               | 10608 (16)               | 0.106534 (89)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | **      |                   |     |
| 2 0.                               | 10654 (11)               | 0.106683 (65)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | *       |                   |     |
| 3 0.                               | 10437 (14)               | 0.103926 (68)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ***     |                   |     |
| 4 0.1                              | 04305 (66)               | 0.104231 (55)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | *       |                   |     |
| 5 0.1                              | 03785 (62)               | 0.103909 (58)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | **      |                   |     |
| 6 0.0                              | 79144 (97)               | 0.079020 (50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | *       |                   |     |
| 7 0.0                              | 78837 (56)               | 0.078945 (46)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | *       |                   |     |
| 80.                                | 07622 (16)               | 0.07629 (12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |                   |     |
| 9 0.0                              | 76786 (68)               | 0.076673 (48)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | *       |                   |     |
| 10 0.0                             | 53638 (83)               | 0.053638 (83)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |                   |     |
|                                    |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                   |     |
| Settings:                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                   |     |
| svdcut/n = 1e-                     | 12/0 tol =               | = (1e-08,1e-10,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .e-10*) | (itns/time = 6/6) | 0.0 |
| fitter = scipy                     | _least_square            | es method = t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rf      |                   |     |

Intepolated to  $-1/(12u_0^2)$ 

| Least Square | e Fit (no | prior):   |             |         |        |         |
|--------------|-----------|-----------|-------------|---------|--------|---------|
| chi2/dof     | [dof] = 8 | .3 [5]    | Q = 8.2e    | -08     |        |         |
| Danamatana   |           |           |             |         |        |         |
| Parameters.  | - 1       |           | -> -        | 1       | in C D |         |
|              | CL        | 0.589 (I  |             | +-      | inf ]  |         |
|              | c2 0      | .2110 (90 | 5) L        | 0.5 +-  | inf ]  |         |
|              | c3 –      | 0.124 (30 | ) [         | 0.5 +-  | inf ]  |         |
| a(1          | 6.2) 0.   | 10541 (12 | 2) [        | 0.1 +-  | inf ]  |         |
| a(6          | .41) 0.   | 07695 (1  | 1) [(       | 0.08 +- | inf ]  |         |
| a(6          | .72) 0.   | 05113 (14 | 4) [(       | 0.05 +- | inf ]  |         |
|              |           |           |             |         |        |         |
| Fit:         |           |           |             |         |        |         |
| key          |           | y[key]    | f(p)        | [key]   |        |         |
| <br>a 0      | 0.1116    | 3 (17)    | 0.11103     | (12)    | ***    |         |
| 1            | 0 1078    | 2(15)     | 0 108746    | (87)    | **     |         |
| 2            | 0.1082    | 7 (11)    | 0 108382    | (64)    |        |         |
| 2            | 0.1002    | 2 (12)    | 0.100502    | (66)    | ***    |         |
| 2            | 0.1000    |           | 0.105074    | (50)    |        |         |
| 4<br>F       | 0.10001   |           | 0.105962    | (55)    | *      |         |
| 5            | 0.10554   | 8 (63)    | 0.105669    | (59)    | *      |         |
| 6            | 0.08015   | 9 (98)    | 0.080070    | (48)    |        |         |
| 7            | 0.07990   | 3 (52)    | 0.079986    | (44)    | *      |         |
| 8            | 0.0773    | 4 (15)    | 0.07739     | (12)    |        |         |
| 9            | 0.07785   | 2 (64)    | 0.077756    | (46)    | *      |         |
| 10           | 0.05398   | 9 (85)    | 0.053989    | (85)    |        |         |
| Settings:    |           |           |             |         |        |         |
| svdcut/n =   | = 1e-12/0 | tol =     | = (1e-08,1e | e-10.1e | -10*)  | (itns/t |
| fitter =     | scipv_lea | st_sauar  | es metho    | d = tr  | f      |         |
|              |           |           |             |         |        |         |

metas\_arr=gv.gvar(['0.39956(77)','0.3520(11)','0.35037(76)','0.34<mark>5</mark>2(14)','0.34577(37)','0.37787(43)','0.2707(11)','0.26590(37)','0.2636(16)','0.26 193(54)','0.18397(88)'])

# Joint jit

### Based on PCAC relation, wp-pp ratio and form of pion 2pt, we do the joint fit

$$\frac{C_{2,wp}^{A_4P}(t-a;m_q) - C_{2,wp}^{A_4P}(t+a;m_q)}{C_{2,wp}^{PP}(t;m_q)} |_{0\ll t\ll T} = \frac{4Z_P(\mu)}{Z_A} \frac{\sinh(m_\pi a)}{m_\pi} m_q^R(\mu),$$
$$\sqrt{\frac{C_{2,wp}^{PP}(t;m_q)}{C_{2,ww}^{PP}(t;m_q)}} |_{0\ll t\ll T} = \frac{m_\pi^2}{2Z_P(\mu)m_q^R\sqrt{Z_{wp}}} f_\pi(m_q),$$
$$C_{2,wp}^{PP}(t;m_q)|_{0\ll t\ll T} = \frac{Z_{wp}}{2m_\pi} \exp\left(-\frac{T}{2}m_\pi\right) \cosh\left(t-\frac{T}{2}\right)m_\pi$$
$$C_{bb}^{5,mb}(t;w^d)|_{0\ll t\ll L} = \frac{5w^\mu}{2m_\pi} \exp\left(-\frac{5}{4}w^\mu\right) \exp\left(t-\frac{5}{4}w^\mu\right) \exp\left(t-\frac{5}{4}w^\mu\right)$$

and obtain the renormalized quark mass  $m_q^R$  and pion decay constant  $f_\pi$ 



chi2: 2.11(37) Q: 0.002(11) Sigma\_cubic\_root: 0.2769(20) F: 0.08757(70) F\_pi/F: 1.0531(84) alpha\_4: 0.31(10) alpha\_5: -0.21(22) alpha\_6: 0.072(72) alpha\_8: 0.57(16) c\_m: -5.25(61) c\_f: -9.44(29) c\_fl: -0.937(92) c\_ml: 0.93(22)

F: 0.08763(78) sigma : 0.02105(31) a4 : 0.297(78) a5 : -0.06(14)a6:0.090(36)a8 : 0.642(60)cm : -4.80(47) cml: 0.99(16) cf : -9.81(29) cfl : -0.97(11)

$$egin{aligned} m_{\pi, ext{vv}}^2 =& \Lambda_\chi^2 2 y_ ext{v} igg\{ 1 + rac{2}{N_f} [(2y_ ext{v} - y_ ext{s}) \ln(2y_ ext{v}) + (y_ ext{v} - y_ ext{s})] \ &+ 2 y_ ext{v} (2lpha_8 - lpha_5) + 2 y_ ext{s} N_f (2lpha_6 - lpha_4) \} & ig( 1 + c_m a^2 + c_{ml} e^{-m_\pi L} ig) \ &F_{\pi, ext{vv}} =& Figg( 1 - rac{N_f}{2} (y_ ext{v} + y_ ext{s}) \ln(y_ ext{v} + y_ ext{s}) + lpha_5 y_ ext{v} + lpha_4 N_f y_ ext{s} igg) & ig( 1 + c_f a^2 + c_{fl} e^{-m_\pi L} ig) \end{aligned}$$



With Continuous limit and infinite volume,  $a \rightarrow 0$ ,  $L \rightarrow +\infty$ 

Inverse solve the equation:

$$m_{\pi,vv}^2 = \Lambda_{\chi}^2 2y \left\{ 1 + \frac{2}{N_f} y \ln(2y) + 2y(2\alpha_8 - \alpha_5) + 2yN_f(2\alpha_6 - \alpha_4) \right\}$$

Physical point:  $m_{\pi} = 134.98 \mathrm{MeV} \longrightarrow \mathrm{m_{ud}} = 3.375(79) \mathrm{MeV}$ 



# Future Plans

- Addressing Lattice Spacing and Renormalization Errors:
  - In our calculation, the actual error of quark mass is expected to be larger due to:
  - Errors in the lattice spacing estimation
  - Errors in renormalization constants
  - Plan to refine these estimates and account for their impact on quark mass errors

# Future Plans

- Mass Difference of u and d Quarks:
  - Study the kaon meson to calculate the mass difference between up (u) and down (d) quarks
  - Investigate the role of this mass difference in the properties of the kaon and its interactions
  - Compare the results with other methods and experimental data to validate our findings

# Future Plans

- Tidy Python Codes for Data:
  - Improve the organization and readability of the Python codes used for data analysis
  - Ensure the code is modular, reusable, and well-documented
  - Implement error handling and validation to increase the robustness of the analysis pipeline

Thank you hubolun@itp.ac.cn