Theta Induced Nucleon EDM from Overlap Fermions

04/28/2023 @ 彭桓武理论物理创新研究中心与中国高等科学技术中心(CCAST)联合项目"强子质量的非微扰 起源"第十天 暨基金委格点QCD重大项目课题二"强子结构及其重整化的格点量子色动力学研究"启动会

梁剑(华南师范大学量子物质研究院)

XQCD Collaboration

arXiv:2301.04331

"It is also important to look for electron or neutron electric dipole moments, which may give a new physical signal, and under the energy scales we have already observed"

— Edward Witten: Where is the New Physics Lurking? (cern courier 2022)

Nucleon EDM and CP-Violation

nEDM upper limit 90%CL (ecm)

Nucleon EDM (NEDM) is a sensitive probe of CP violation (CPV).

The contribution to the NEDM from the weak CP-violating phase is 5 orders of magnitude smaller than the current experimental limit.

Strong CPV ($G_{\mu\nu}\tilde{G}_{\mu\nu}$) and/or BSM physics?

Nucleon EDM from Lattice QCD

		m_{π} [MeV]	m_N [GeV]	F_2	α	${ ilde F}_3$	F_3
PRD93:074503 (2016) [10]	n	373	1.216(4)	$-1.50(16)^{a}$	-0.217(18)	-0.555(74)	0.094(74
PRD72:014504 (2005) [5]	n	530	1.334(8)	-0.560(40)	$-0.247(17)^{b}$	-0.325(68)	-0.048(68)
	р	530	1.334(8)	0.399(37)	$-0.247(17)^{b}$	0.284(81)	0.087(81
PRD73:054509 (2006) [6]	n	690	1.575(9)	-1.715(46)	-0.070(20)	-1.39(1.52)	-1.15(1.5)
	n	605	1.470(9)	-1.698(68)	-0.160(20)	0.60(2.98)	1.14(2.9
PRL115:062001 (2015) [8]	n	465	1.246(7)	$-1.491(22)^{c}$	$-0.079(27)^{d}$	-0.375(48)	-0.130(76)
	n	360	1.138(13)	$-1.473(37)^{\circ}$	$-0.092(14)^{d}$	-0.248(29)	0.020(58

This Work	
This Work with $N\pi$	
ETMC [66]	
Dragos et al. [44]	
Syritsyn et al. [67]	

Watershed: Abramczyk et al., PRD96:014501 (**2017**) $F_3 = \tilde{F}_3 + 2\alpha^1 F_2$

Neutron	Proton
$\overline{\Theta} \ \mathrm{e} \cdot \mathrm{fm}$	$\overline{\Theta} \ e \cdot fm$
$d_n = -0.003(7)(20)$	$d_p = 0.024(10)(30)$
$d_n = -0.028(18)(54)$	$d_p = 0.068(25)(120)$
$ d_n = 0.0009(24)$	_
$d_n = -0.00152(71)$	$d_p = 0.0011(10)$
$d_n \approx 0.001$	_

T. Bhattacharya et al., PRD103:114507 (2021)

Chiral Symmetry on the Lattice

$$D_{ov} = \frac{1}{a} [1 + \gamma_5 \text{sgn}(H)] \qquad \text{sgn}(H) = \frac{H}{\sqrt{H^2}} \qquad H(\rho) = \gamma_5 D_w(\rho) = \gamma_5 [D_w(m=0) - \rho]$$

Ginsparg-Wilson relation: $\{\gamma_5, D\} = aD\gamma_5 D$
Massless overlap Dirac operator: $\rho D_{ov}(\rho)$
Massive overlap Dirac operator: $D_{ov}(\rho, m) = \rho D_{ov}(\rho) + m \left(1 - \frac{D_{ov}(\rho)}{2}\right)$
Effective propagator: $D^{-1} = \frac{1 - \frac{1}{2}D_{ov}(\rho)}{D_{ov}(\rho, m)} = \frac{1}{\frac{\rho D_w(\rho)}{1 - \frac{1}{2}D_{ov}(\rho)} + m} \equiv \frac{1}{D_c + m}$
 D_c is continuum-like.
 $\{\gamma_5, D_c\} = 0$

1. Well defined chiral limit at finite lattice spacing

2. Improved algorithms& High statistics

3. CDER

4. Topological charge defined from the overlap operator

3 ensembles with lattice spacing ~0.11 fm

label	$m_{\pi,s}$ (MeV)	$m_{\pi,v}$ (MeV)	$N_{ m cfg}$
24I005	339	$282\ \ 321\ \ 348\ \ 389$	805
24I010	432	$426 \ 519 \ 600$	508
24I020	560	$432 \ 525 \ 606$	552

Y. Aoki et al. PRD83:074508 (2011)

The anomalous Ward identity holds for overlap fermions, and it guarantees that $d_n \rightarrow 0$ when $m_q \rightarrow 0$ even at finite lattice spacings.

P. Hasenfratz, et. al., NPB643:280 (2002) **J. Liang** et. al., PRD98:074505 (2018) D. Guadagnoli, et. al., JHEP 0304, 019 (2003)

1. Well defined chiral limit at finite lattice spacing

2. Improved algorithms& High statistics ~

3. CDER

4. Topological charge defined from the overlap operator

3 ensembles with lattice spacing ~0.11 fm

label	$m_{\pi,s}$ (MeV)	$m_{\pi,v}$ (MeV)	$N_{ m cfg}$
24I005	339	$282\ \ 321\ \ 348\ \ 389$	805
24I010	432	$426 \ 519 \ 600$	508
24I020	560	$432 \ 525 \ 606$	552

Y. Aoki et al. PRD83:074508 (2011)

Multiple coherent grid sources + inversion with deflation + Stochastic Sandwich method + LMS

Y.-B. Yang et al., PRD93():034503 (2016)

1. Well defined chiral limit at finite lattice spacing

2. Improved algorithms& High statistics

3. CDER

4. Topological charge defined from the overlap operator

The cluster decomposition error reduction

1. Well defined chiral limit at finite lattice spacing

2. Improved algorithms& High statistics

3. CDER

4. Topological charge defined from the overlap operator

δĜ			
1	5		

Systematic Uncertainties

The total systematic uncertainty is found to be 22%, which comes from the two-state fits (18%), the momentum extrapolation (4%), the CDER technique (12%) and the chiral extrapolation (3%).

"Partially Quenched" Chiral Extrapolation and Results

$$d_n^{(PQ)} = \frac{e \ \overline{\theta} \ m_{\text{sea}}}{4\pi^2 f^2} \left[F_\pi \ \log\left(\frac{m_\pi^2}{\mu^2}\right) + F_J \ \log\left(\frac{m_J^2}{\mu^2}\right) \right] \\ + \overline{\theta} \ \frac{e}{\Lambda_\chi^2} \left[\frac{m_{\text{sea}}}{2} \ c(\mu) \ + \ d\left(m_{\text{sea}} - m_{\text{val}}\right) + fq_{jl} \ (m_{\text{sea}} - m_{\text{val}}) \right] \right]$$

D.O'Connell and M. J. Savage, PLB633:319 (2006)

label	$m_{\pi,s}$ (MeV)	$m_{\pi,v}$ (MeV)	$N_{ m cfg}$
24I005	339	282 321 348 389	805
24I010	432	$426 \ 519 \ 600$	508
24I020	560	$432 \ 525 \ 606$	552

0

11

"Partially Quenched" Chiral Extrapolation and Results

$$d_n^{(PQ)} = \frac{e \ \overline{\theta} \ m_{\text{sea}}}{4\pi^2 f^2} \left[F_\pi \ \log\left(\frac{m_\pi^2}{\mu^2}\right) + F_J \ \log\left(\frac{m_J^2}{\mu^2}\right) \right] \\ + \overline{\theta} \ \frac{e}{\Lambda_\chi^2} \left[\frac{m_{\text{sea}}}{2} \ c(\mu) \ + \ d\left(m_{\text{sea}} - m_{\text{val}}\right) + fq_{jl} \ (m_{\text{sea}} - m_{\text{val}}) \right] \right]$$

D.O'Connell and M. J. Savage, PLB633:319 (2006)

label	$m_{\pi,s} \; ({ m MeV})$	$m_{\pi,v}$ (MeV)	$N_{ m cfg}$
24I005	339	$282 \ 321 \ 348 \ 389$	805
24I010	432	$426 \ 519 \ 600$	508
24I020	560	$432 \ 525 \ 606$	552

Summary and Outlook

Using overlap fermions, we are having very clear signal for nucleon EDM.

Study with lighter pion mas on going.

Study with lighter pion masses and more lattice spacings is

Thank you

CP-violating Operators

 \blacklozenge theta term $iG_{\mu\nu}\tilde{G}_{\mu\nu}$ dim-4

• quark EDM $i\bar{\psi}[\tilde{F}_{\mu\nu}\sigma^{\mu\nu}]\psi$ dim-5

• quark Chromo-EDM $i\overline{\psi}[\tilde{G}_{\mu\nu}\sigma^{\mu\nu}]\psi$ dim-5

• glue Chromo-EDM (Weinberg term) $f^{abc} \tilde{G}^{a \nu}_{\mu} G^{a \rho}_{\nu} G^{a \mu}_{\rho}$

♦ 4-quark operators? $ψγ_5ψψψψ$ dim-6 dim-6

Problematic due to renormalization and mixing

