

Hadronic Molecules

郭奉坤

中国科学院理论物理研究所

For a review focusing on hadronic molecules, see:

FKG, C.Hanhart, U.-G.Meißner, Q.Wang, Q.Zhao, B.-S.Zou, Rev. Mod. Phys. 90 (2018) 015004

Ordinary and exotic hadrons

Components with the same quantum numbers always mix, what is the dominant one?

Hadronic molecules

Hadronic molecule:

dominant component is a composite state of 2 or more hadrons

 Concept at large distances, so that can be approximated by system of multi-hadrons at low energies

Consider a 2-body bound state with a mass $M = m_1 + m_2 - E_B$

size:

- scale separation \Rightarrow (nonrelativistic) EFT applicable!
- Only narrow hadrons can be considered as components of hadronic molecules, $\Gamma_h \ll 1/r,\,r$: range of forces

Filin et al., PRL105(2010)019101; FKG, Meißner, PRD84(2011)014013

Relation with confinement mechanism?

- THE REAL OWNERS
- Different flux tube configurations: compact multiquarks and hadronic molecules

V.G. Bornyakov et al., PRD70(2004)054506

Model-independent result for *S*-wave loosely bound composite states:

Consider a system with Hamiltonian

$$\mathcal{H} = \mathcal{H}_0 + V$$

 \mathcal{H}_0 : free Hamiltonian, V: interaction potential

• Compositeness:

the probability of finding the physical state $|B\rangle$ in the 2-body continuum $|q\rangle$

$$1-oldsymbol{Z}=\int\!rac{d^3oldsymbol{q}}{(2\pi)^3}\left|\langleoldsymbol{q}|B
ight
angle|^2$$

- $Z = |\langle B_0 | B \rangle|^2$, $0 \le (1 Z) \le 1$
 - $rac{} Z = 0$: pure bound (composite) state
 - $\square Z = 1$: pure elementary state

Compositeness :
$$1-Z=\int\!\!{d^3m q\over (2\pi)^3}\left|\langlem q|B
ight
angle|^2$$

Schrödinger equation

$$(\mathcal{H}_0 + V)|B\rangle = -E_B|B\rangle$$

multiplying by $\langle q |$ and using $\mathcal{H}_0 | q \rangle = rac{q^2}{2\mu} | q \rangle$: \Rightarrow momentum-space wave function:

$$\langle oldsymbol{q}|B
angle = -rac{\langle oldsymbol{q}|V|B
angle}{E_B+oldsymbol{q}^2/(2\mu)}$$

- S-wave, small binding energy so that $R=1/\sqrt{2\mu E_B}\gg r$, r: range of forces $\langle {m q}|V|B
 angle=g_{
 m NR}\left[1+{\cal O}(r/R)
 ight]$
- Compositeness:

$$1 - Z = \int \frac{d^3 q}{(2\pi)^3} \frac{g_{\rm NR}^2}{\left[E_B + q^2/(2\mu)\right]^2} \left[1 + \mathcal{O}\left(\frac{r}{R}\right)\right] = \frac{\mu^2 g_{\rm NR}^2}{2\pi\sqrt{2\mu E_B}} \left[1 + \mathcal{O}\left(\frac{r}{R}\right)\right]$$

• Coupling constant measures the compositeness for an S-wave shallow bound

state $g_{
m NR}^2 pprox (1-Z) rac{2\pi}{\mu^2} \sqrt{2\mu E_B} \le rac{2\pi}{\mu^2} \sqrt{2\mu E_B}$

bounded from the above

 $∼ g_{\rm NR}^2$ is the residue of the *T*-matrix element at the pole $E = -E_B (E \equiv \sqrt{s} - m_1 - m_2)$:

 $g_{\rm NR}^2 = \lim_{E \to -E_B} (E + E_B) \langle \boldsymbol{k} | T_{\rm NR} | \boldsymbol{k} \rangle$

here nonrelativistic normalization is used: $T_{\rm NR} = -\frac{T}{4\mu\sqrt{s}} \simeq -\frac{T}{4m_1m_2}$

> use the LSE $T_{\text{NR}} = V + V \frac{1}{E - \mathcal{H}_0 + i\epsilon} T_{\text{NR}}$ and $|B\rangle \langle B| + \int \frac{d^3 q}{(2\pi)^3} |q_{(+)}\rangle \langle q_{(+)}| = 1$ to derive the Low equation (noticing $T_{\text{NR}} |q\rangle = V |q_{(+)}\rangle$):

$$\langle \mathbf{k}' | T_{\rm NR} | \mathbf{k} \rangle = \langle \mathbf{k}' | V | \mathbf{k} \rangle + \frac{\langle \mathbf{k}' | V | B \rangle \langle B | V | \mathbf{k} \rangle}{E + E_B + i\epsilon} + \int \frac{d^3 q}{(2\pi)^3} \frac{\langle \mathbf{k}' | T_{\rm NR} | \mathbf{q} \rangle \langle \mathbf{q} | T_{\rm NR}^{\dagger} | \mathbf{k} \rangle}{E - \mathbf{q}^2 / (2\mu) + i\epsilon}$$

• Z can be related to scattering length a and effective range r_e

Weinberg (1965)

$$a_{0} = -\frac{2R(1-Z)}{2-Z} \left[1 + \mathcal{O}\left(\frac{r}{R}\right) \right], r_{e0} = -\frac{RZ}{1-Z} \left[1 + \mathcal{O}\left(\frac{r}{R}\right) \right]$$

Effective range expansion (S-wave): $f_{0}^{-1}(k) = 1/a_{0} + r_{e0} k^{2}/2 - ik + \mathcal{O}(k^{4})$

$$\boxed{\frac{\text{Derivation:}}{T_{\text{NR}}(E) \equiv \langle k|T_{\text{NR}}|k\rangle = -\frac{2\pi}{\mu} f_{0}(k) \Rightarrow \text{Im} T_{\text{NR}}^{-1}(E) = \frac{\mu}{2\pi} \sqrt{2\mu E} \theta(E)}$$
Twice-subtracted dispersion relation for $t^{-1}(E)$
 $T_{\text{NR}}^{-1}(E) = \frac{E + E_{B}}{g_{\text{NR}}^{2}} + \frac{(E + E_{B})^{2}}{\pi} \int_{0}^{+\infty} dw \frac{\text{Im} T_{\text{NR}}^{-1}(w)}{(w - E - i\epsilon)(w + E_{B})^{2}}$
 $= \frac{E + E_{B}}{g_{\text{NR}}^{2}} + \frac{\mu R}{4\pi} \left(\frac{1}{R} - \sqrt{-2\mu E - i\epsilon}\right)^{2}$

Example: deuteron as pn bound state. Exp.: $E_B = 2.2 \text{ MeV}$, $a({}^3S_1) = -5.4 \text{ fm}$ $a_{Z=1} = 0$ fm, $a_{Z=0} = -(4.3 \pm 1.4)$ fm

Note:

- Only for S-wave loosely bound state Problematic for $r_{e0} > 0 \Rightarrow Z < 0$ $1 Z = \sqrt{\frac{a_0}{a_0 + 2r_{e0}}}$ •

I. Matuschek, V. Baru, FKG, C. Hanhart, EPJA 57 (2021) 101; Y. Li, FKG, J.-Y. Pang, J.-J. Wu, PRD 105 (2022) L071502

$$\frac{1}{X} = 1 - \exp\left(\frac{1}{\pi} \int_0^\infty dE \frac{\delta_0(E)}{E - E_B}\right)$$

We consider a system of two particles of masses m_1, m_2

 in the near-threshold region, a momentum expansion for the interactions with the LO being a constant

$$\mathcal{L} = \sum_{i=1,2} \phi_i^{\dagger} \left(i \partial_0 - m_i + \frac{\nabla^2}{2m_i} \right) \phi_i - C_0 \phi_1^{\dagger} \phi_2^{\dagger} \phi_1 \phi_2 + \dots$$

nonrelativistic propagator: $rac{i}{p^0-m_i-p^2/(2m_i)+i\epsilon}$

• to have a near-threshold bound state (hadronic molecule)

 $T_{\rm NR}(E) = C_0 + C_0 G_{\rm NR}(E) C_0 + C_0 G_{\rm NR}(E) C_0 G_{\rm NR}(E) C_0 + \dots$ $= \frac{1}{C_0^{-1} - G_{\rm NR}(E)}$

 The loop integral is linearly divergent (E defined relative to m₁ + m₂), regularized with, e.g., a sharp cut

$$\begin{aligned} \boldsymbol{G}_{\mathsf{NR}}(\boldsymbol{E}) &= i \int \! \frac{d^3 \boldsymbol{k} dk^0}{(2\pi)^4} \! \left[\left(k^0 - \frac{\boldsymbol{k}^2}{2m_1} + i\epsilon \right) \left(\boldsymbol{E} - k^0 - \frac{\boldsymbol{k}^2}{2m_2} + i\epsilon \right) \right]^{-1} \\ &= -i2\mu(2\pi i) \int^{\Lambda} \! \frac{d^3 \boldsymbol{k}}{(2\pi)^4} \frac{1}{2\mu \boldsymbol{E} - \boldsymbol{k}^2 + i\epsilon} \\ &= -\frac{\mu}{\pi^2} \left(\Lambda - \sqrt{-2\mu \boldsymbol{E} - i\epsilon} \arctan \frac{\Lambda}{\sqrt{-2\mu \boldsymbol{E} - i\epsilon}} \right) \\ &= -\frac{\mu}{\pi^2} \Lambda + \frac{\mu}{2\pi} \sqrt{-2\mu \boldsymbol{E} - i\epsilon} + \mathcal{O}\left(\Lambda^{-1} \right) \end{aligned}$$

for real E, $\sqrt{-2\mu E - i\epsilon} = \sqrt{-2\mu E} \,\theta(-E) - i\sqrt{2\mu E} \,\theta(E)$

• Renormalization: $T_{\rm NR}$ is Λ -independent,

$$T_{\rm NR}(E) = \frac{1}{C_0^{-1} - G_{\rm NR}} \\ = \left(\frac{1}{C_0} + \frac{\mu}{\pi^2}\Lambda - \frac{\mu}{2\pi}\sqrt{-2\mu E - i\epsilon}\right)^{-1} \\ = \frac{1/C_0^r}{2\pi/(\mu C_0^r) - \sqrt{-2\mu E - i\epsilon}}$$

- Other regularization can be used as well, equiavalent to the sharp cutoff up to $1/\Lambda$ suppressed terms, e.g.
 - I with a Gaussian regulator $\exp\left(-m{k}^2/\Lambda_{
 m G}^2
 ight)$, $\Lambda_{
 m G}=\sqrt{2/\pi}\Lambda_{
 m G}$
 - with the power divergence subtraction (PDS) scheme in dimensional regularization by letting, $\Lambda_{
 m PDS}=2\Lambda/\pi$ Kaplan, Savage, Wise (1998)

$$T_{\rm NR}(E) = \frac{2\pi/\mu}{2\pi/(\mu C_0^r) - \sqrt{-2\mu E - i\epsilon}} = \frac{2\pi/\mu}{2\pi/(\mu C_0^r) + ik}$$

from matching to effective range expansion,

$$f_0^{-1}(k) = -\frac{2\pi}{\mu} T_{\rm NR}^{-1} = -\frac{1}{a_0} + \frac{1}{2} r_{e0} k^2 - i k + \mathcal{O}\left(k^4\right)$$

 $2\pi/(\mu C_0^r) = 1/a_0$; higher terms are necessary to match both a and r_e

• pole below threshold at $E = -E_B$ with $E_B > 0$

$$\kappa \equiv |\sqrt{2\mu E_B}|$$

bound state pole, in the 1st Riemann sheet

$$\Rightarrow 2\pi/(\mu C_0^r) = \kappa$$

virtual state pole, in the 2nd Riemann sheet

$$\Rightarrow 2\pi/(\mu C_0^r) = -\kappa$$

Im k **bound state pole** $k = i \kappa$ thr. $i \kappa$ $k = -i \kappa$ **virtual state pole** $k = -i \kappa$

unable to get a resonance pole at LO with a single channel

Bound state and virtual state

• If the same binding energy, bound and virtual states cannot be distinguished above threshold (E > 0):

$$|T_{\rm NR}(E)|^2 \propto \left|\frac{1}{\pm\kappa + i\sqrt{2\mu E}}\right|^2 = \frac{1}{\kappa^2 + 2\mu E}$$

• Bound state and virtual state are different below threshold (E < 0):

bound state: peaked below threshold

$$|T_{\rm NR}(E)|^2 \propto \frac{1}{(\kappa - \sqrt{-2\mu E})^2}$$

virtual state: a sharp cusp at threshold

$$|T_{\rm NR}(E)|^2 \propto \frac{1}{(\kappa+\sqrt{-2\mu E})^2}$$

Bound state and virtual state

$$T_{\rm NR}(E) = \frac{2\pi/\mu}{2\pi/(\mu C_0^r) - \sqrt{-2\mu E - i\epsilon}}$$

At LO, effective coupling strength for bound state

$$g_{\rm NR}^2 = \lim_{E \to -E_B} (E + E_B) T_{\rm NR}(E) = -\frac{2\pi}{\mu} \left(\frac{d}{dE}\sqrt{-2\mu E - i\epsilon}\right)_{E=-E_B}^{-1}$$
$$= \frac{2\pi}{\mu^2} \sqrt{2\mu E_B}$$

Recall the compositeness formula:

$$g^2_{
m NR}=(1-Z)rac{2\pi}{\mu^2}\sqrt{2\mu E_B}$$

This means that the pole obtained at LO NREFT with only a constant contact term corresponds to a purely composite state (Z = 0)

Range corrections: other components at shorter distances

- coupling to additional states/channels
- energy/momentum-dependent interactions: higher order

Heavy quark spin symmetry

- For heavy quarks (charm, bottom) in a hadron, typical momentum transfer Λ_{QCD}
 - heavy quark spin symmetry (HQSS): chromomag. interaction $\propto \frac{\sigma \cdot B}{m_Q}$ spin of the heavy quark decouples

 $\mathbf{T}_{\mathbf{R}} = \mathbf{T}_{\mathbf{Q}} =$

Let total angular momentum $J = s_Q + s_\ell$,

- s_Q : heavy quark spin,
- s_{ℓ} : spin of the light degrees of freedom (including orbital angular momentum)
 - ✓ HQSS:

 s_{ℓ} and s_Q are conserved separately in the heavy quark limit!

✓ spin multiplets:

for singly heavy mesons, e.g. $\{D, D^*\}, \{B, B^*\}$ with $s_{\ell}^P = \frac{1}{2}^-$; for heavy quarkonia, e.g. *S*-wave: $\{\eta_c, J/\psi\}, \{\eta_b, \Upsilon\}$;

P-wave: $\{h_c, \chi_{c0,c1,c2}\}$, $\{h_b, \chi_{b0,b1,b2}\}$

XYZ states and more

- Milestones:
 - ✓ X(3872) Belle (2003)
 - ✓ $Z_b(10610,10650)^{\pm}$ Belle (2011)
 - ✓ $Z_c(3900)^{\pm}$ BESIII, Belle (2013)
 - ✓ P_c LHCb (2015, 2019)
 - ✓ T⁺_{cc} LHCb (2021)

Prominence of near-threshold structures

Near-threshold structures

X.-K. Dong, FKG, B.-S. Zou, PRL126,152001(2021)

Consider a production process, must go through final-state interaction (unitarity)

 $P_1^{\Lambda}[1+G_1^{\Lambda}T_{11}(E)]+P_2^{\Lambda}G_2^{\Lambda}(E)T_{21}(E)$ $+ \Phi_{P^{\Lambda}} G_{1}^{\Lambda} + \Phi_{P^{\Lambda}} G_{2}^{\Lambda} + \Phi_{P^{\Lambda}} G_{2}^{\Lambda} + \Phi_{P^{\Lambda}} G_{2}^{\Lambda} + P_{1}^{\Lambda} G_{2}^{\Lambda} + P_{1}^{\Lambda} G_{2}^{\Lambda} + P_{2}^{\Lambda} G_{2}^{\Lambda} G_{2}^{\Lambda} + P_{2}^{\Lambda} G_{2}^{\Lambda} G_{2}^{\Lambda} + P_{2}^{\Lambda} +$ $\equiv P_1 T_{11}(E) + P_2 T_{21}(E)$

- All nontrivial energy dependence are contained in $T_{11}(E)$ and $T_{21}(E)$
- Case-1: dominated by $T_{21}(E)$,

Near-threshold structures

- S-wave attraction => Nontrivial structure
- Pole produced by LO interaction: a hadronic molecular state
- More complicated line shape if both channels are important for the production

Spectrum of hadronic molecules

X.-K. Dong, FKG, B.-S. Zou, 物理学进展 41 (2021) 65; CTP73(2021)125201

Predictions based on a vector-meson exchange model (HQSS respected):

Spectrum of hadronic molecules

Suggestions for lattice:

- > operators with exotic quantum numbers
 - $\square D\overline{D}_1 [1^{-+}]$
 - $\square D^*\overline{D}_1 [0^{--}]$
 - $\square D^* \overline{D}_2^* [3^{-+}]$
 - $\square D_1 \overline{D}_1 [2^{+-}]$
- with a pion mass larger than the physical value ($\sim 400 \text{ MeV}$), so that D^* , D_1 , D_2^* are all stable

- $M_{\psi(4360)} M_{\psi(4230)} \approx M_{D^*} M_D, M_{\psi(4415)} M_{\psi(4360)} \approx M_{D_2^*} M_{D_1}$
- Exotic 0⁻⁻ spin partner $\psi_0(4360) [D^*\overline{D}_1]$ of $\psi(4230), \psi(4360), \psi(4415)$ as $D\overline{D}_1, D^*\overline{D}_1, D^*\overline{D}_2$ hadronic molecules
- Robust against the inclusion of coupled channels and three-body effects

- May be searched for using $e^+e^- \rightarrow \psi_0 \eta$, $\psi_0 \rightarrow J/\psi \eta$, $D\overline{D}^*$, $D^*\overline{D}^*\pi$, ...
 - $M = (4366 \pm 18) \text{ MeV},$ $\Gamma < 10 \text{ MeV}$

HQSS: *P_c* pentaquarks

The LHCb P_c states might be $\Sigma_c^{(*)} \bar{D}^{(*)}$ molecules predicted in Wu, Molina, Oset, Zou (2010) $P_c(4312) \sim \Sigma_c \bar{D}, P_c(4440, 4457) \sim \Sigma_c \bar{D}^*$

Consider S-wave pairs of $\Sigma_c^{(*)} \overline{D}^{(*)}$ [$J_{\Sigma_c} = \frac{1}{2}, J_{\Sigma_c^*} = \frac{3}{2}$]:

$$J^{P} = \frac{1}{2}^{-}: \quad \Sigma_{c}\bar{D}, \ \Sigma_{c}\bar{D}^{*}, \ \Sigma_{c}^{*}\bar{D}^{*}$$
$$J^{P} = \frac{3}{2}^{-}: \quad \Sigma_{c}^{*}\bar{D}, \ \Sigma_{c}\bar{D}^{*}, \ \Sigma_{c}^{*}\bar{D}^{*}$$
$$J^{P} = \frac{5}{2}^{-}: \quad \Sigma_{c}^{*}\bar{D}^{*}$$

Spin of the light degrees of freedom s_{ℓ} : $s_{\ell}(D^{(*)}) = \frac{1}{2}$, $s_{\ell}(\Sigma_c^{(*)}) = 1$. Thus, $s_{L} = \frac{1}{2}, \frac{3}{2}$ For each isospin, 2 independent terms

$$\left\langle 1, \frac{1}{2}, \frac{1}{2} \left| \hat{\mathcal{H}} \right| 1, \frac{1}{2}, \frac{1}{2} \right\rangle, \qquad \left\langle 1, \frac{1}{2}, \frac{3}{2} \left| \hat{\mathcal{H}} \right| 1, \frac{1}{2}, \frac{3}{2} \right\rangle$$

Thus, the 7 pairs are in two spin multiplets: 3 with $s_L = \frac{1}{2}$ and 4 with $s_L = \frac{3}{2}$

HQSS: P_c pentaquarks

Seven P_c generally expected in this hadronic molecular model Xiao, Nieves, Oset (2013); Liu et al. (2018, 2019); Sakai et al. (2019); ...

Predictions using the masses of $P_c(4440, 4457)$ as inputs

Liu et al., PRL122(2019)242001

Scenario	Molecule	J^P	B (MeV)	M (MeV)
Α	$\bar{D}\Sigma_c$	$\frac{1}{2}^{-}$	7.8 – 9.0	4311.8 - 4313.0
Α	$ar{D}\Sigma_c^*$	$\frac{3}{2}^{-}$	8.3 - 9.2	4376.1 - 4377.0
A	$ar{D}^*\Sigma_c$	$\frac{1}{2}^{-}$	Input	4440.3
Α	$ar{D}^*\Sigma_c$	$\frac{3}{2}$	Input	4457.3
Α	$ar{D}^*\Sigma_c^*$	$\frac{1}{2}^{-}$	25.7 - 26.5	4500.2 - 4501.0
Α	$ar{D}^*\Sigma_c^*$	$\frac{3}{2}^{-}$	15.9 – 16.1	4510.6 - 4510.8
Α	$ar{D}^*\Sigma_c^*$	5-2	3.2 - 3.5	4523.3 - 4523.6
В	$ar{D}\Sigma_c$	$\frac{1}{2}^{-}$	13.1 - 14.5	4306.3 - 4307.7
В	$ar{D}\Sigma_c^*$	$\frac{3}{2}^{-}$	13.6 - 14.8	4370.5 - 4371.7
В	$ar{D}^*\Sigma_c$	$\frac{1}{2}^{-}$	Input	4457.3
В	$ar{D}^*\Sigma_c$	$\frac{3}{2}^{-}$	Input	4440.3
В	$ar{D}^*\Sigma_c^*$	$\frac{1}{2}^{-}$	3.1 - 3.5	4523.2 - 4523.6
В	$ar{D}^*\Sigma_c^*$	$\frac{3}{2}^{-}$	10.1 - 10.2	4516.5 - 4516.6
B	$ar{D}^*\Sigma_c^*$	5-2	25.7 - 26.5	4500.2 - 4501.0

HQSS: P_c pentaquarks

Solution B is favored after fitting to the LHCb data with an EFT with coupled channels, including both contact terms + one-pion exchanges

M.-L. Du, V. Baru, F.-K. Guo, C. Hanhart, U.-G. Meißner, J. A. Oller, Q. Wang, PRL124(2020)072001; JHEP08(2021)157

• Channels: $D^{*+}D^0$, $D^{*0}D^+$

 T_{cc}^+

Contact term + one-pion exchange; three-body effects

- Left-hand cut (lhc) due to the OPE could affect the precise extraction of the T_{cc} pole from lattice calculations
 - Virtual state pole from lattice results with unphysical pion masses:

 $M_{\pi} = 280 \text{ MeV}$, M. Padmanath and S. Prelovsek, PRL 129 (2022) 032002; $M_{\pi} = 350 \text{ MeV}$, S. Chen, C. Shi, Y. Chen, M. Gong, Z. Liu, W. Sun, and R. Zhang, PLB 833 (2022) 137391; $M_{\pi} = 146 \text{ MeV}$, Y. Lyu, S. Aoki, T. Doi, T. Hatsuda, Y. Ikeda, and J. Meng, arXiv:2302.04505 [hep-lat]

Left-hand cut due to the u-channel pion being on-shell

Left-hand cut: $\Delta M - \omega_{\pi}(q^2) = 0 \Rightarrow$ branch point at (w.r.t. threshold.=): $\approx \frac{(\Delta M)^2 - M_{\pi}^2}{8\mu}$

 T_{cc}^+

- Could also influence other calculations with nearby lhc
- Luescher formalism with lhc [EFT formalism with 3-body cut put into a finite box] needs to be employed to extract scattering observables

近几年的综述不完全列表

 \geq

...

- H.-X. Chen, W. Chen, X. Liu, S.-L. Zhu, The hidden-charm pentaquark and tetraquark states, Phys. Rept. 639 (2016) 1 [arXiv:1601.02092]
- ➢ A. Hosaka, T. Iijima, K. Miyabayashi, Y. Sakai, S. Yasui, *Exotic hadrons with heavy flavors* −*X*, *Y*, *Z* and related states, Prog. Theor. Exp. Phys. 2016, 062C01 [arXiv:1603.09229]
- R. F. Lebed, R. E. Mitchell, E. Swanson, *Heary-quark QCD exotica*, Prog. Part. Nucl. Phys. 93 (2017) 143 [arXiv:1610.04528]
- A. Esposito, A. Pilloni, A. D. Polosa, *Multiquark resonances*, Phys. Rept. 668 (2017) 1 [arXiv:1611.07920]
- F.-K. Guo, C. Hanhart, U.-G. Meißner, Q. Wang, Q. Zhao, B.-S. Zou, *Hadronic molecules*, Rev. Mod. Phys. 90 (2018) 015004 [arXiv:1705.00141]
- S. L. Olsen, T. Skwarnicki, Nonstandard heavy mesons and baryons: Experimental evidence, Rev. Mod. Phys. 90 (2018) 015003 [arXiv:1708.04012]
- M. Karliner, J. L. Rosner, T. Skwarnicki, *Multiquark states*, Ann. Rev. Nucl. Part. Sci. 68 (2018) 17 [arXiv:1711.10626]
- C.-Z. Yuan, The XYZ states revisited, Int. J. Mod. Phys. A 33 (2018) 1830018 [arXiv:1808.01570]
- Y.-R. Liu, H.-X. Chen, W. Chen, X. Liu, S.-L. Zhu, Pentaquark and tetraquark states, Prog.Part.Nucl.Phys. 107 (2019) 237 [arXiv:1903.11976]
- N. Brambilla, S. Eidelman, C. Hanhart, A. Nefediev, C.-P. Shen, C. E. Thomas, A. Vairo, C.-Z. Yuan, *The XYZ states:* experimental and theoretical status and perspectives, Phys. Rept. 873 (2020) 154 [arXiv:1907.07583]
- F.-K. Guo, X.-H. Liu, S. Sakai, Threshold cusps and triangle singularities in hadronic reactions, Prog. Part. Nucl. Phys. 112 (2020) 103757 [arXiv:1912.07030]
- G. Yang, J. Ping, J. Segovia, Tetra- and penta-quark structures in the constituent quark model, Symmetry 12 (2020) 1869 [arXiv:2009.00238]
- H.-X. Chen, W. Chen, X. Liu, Y.-R. Liu, S.-L. Zhu, An updated review of the new hadron states, arXiv:2204.02649
- L. Meng, B. Wang, G.-J. Wang, S.-L. Zhu, Chiral perturbation theory for heavy hadrons and chiral effective field theory for heavy hadronic molecules, arXiv:2204.08716

