't Hooft 模型中的隐粲夸克部分子分布函数

't Hooft 模型算符方法

胡思危 贾宇、莫哲文 (IHEP)、熊小努、朱明亮 (CSU) 2023 年 4 月 20 日

1.pp 对撞中, Λ_c^+ 的产生并没有被碎裂函数显著压低

 $2.\pi^- p \rightarrow D\overline{D}pX$ 实验中,观察到 D 的产生集中在 大 x 区域

3. 在 pp 对撞中,看见了超过预期的 $D^+(c\overline{d})$ 产生

1

The Intrinsic Charm of the Proton

S.J. Brodsky (SLAC), P. Hoyer (Nordita), C. Peterson (Nordita), N. Sakai (Nordita) Apr, 1980

Intrinsic Heavy Quark States

Stanley J. Brodsky (SLAC), C. Peterson (SLAC), N. Sakai (Fermilab) Jan, 1981

- 夸克模型 $|p\rangle = |uud\rangle$
- 次领头阶 $|uudg\rangle$ 、 $|uudQ\bar{Q}\rangle$... $|uud\rangle \xrightarrow{boost} |uudg\rangle$ 、 $|uudq\bar{q}\rangle$...

背景

1

实验上的 intrinsic charm 探测

背景

LHCb 上的质子质子对撞,测量 $\mathcal{R} = \frac{\sigma(Zc)}{\sigma(Zj)}$

Zc 产生的领头阶贡献

加入 IC 对 SM 预言的修改

NNPDF: 3σ 的意义下确定存在 IC,携带动量约 0.62%

质子中发现 |uudcc) 的概率

$$P(p \to uudc\bar{c}) \sim \frac{\langle \dots | V | \dots \rangle^2}{\left(m_p^2 - \sum_{i=1}^5 \frac{m_{\perp,i}^2}{x_i} \right)^2} \delta\left(1 - \sum_{i=1}^5 x_i \right)$$
$$\propto \frac{x_c^2 x_c^2}{(x_c + x_c)^2} \delta\left(1 - \sum_i x_i \right), m_{c\bar{c}} \to \infty$$

积分得到

$$f_c(x) = f_{\bar{c}}(x) = Nx^2 \left[\frac{1}{3} (1-x) (1+10x+x^2) + 2x(1+x) \ln x \right]$$
$$f_u = f_d = 6(1-x)^5$$

BHPS result

BHPS result

能够描述在大 x 处的行为, 是实验拟合的重要模型(BHPS 1/2/3)

介子云模型 Meson Cloud Model (MCM)

spliting $\mathcal{F}(y)$

$$\mathcal{L}_{pD\Lambda_c} = i g_{pD\Lambda_c} ar{\psi}_p \gamma_5 \psi_B \phi_D + \mathsf{h.c.}$$

 $\mathsf{PDF}\; f_{c \, \mathsf{in} \, \Lambda_c}$

$$\mathcal{L}_{\Lambda_c c[qq]} = g_{\lambda_c c[qq]} \bar{\psi}_{\lambda_c} \psi_c \phi_{[qq]} + \mathsf{h.c}$$

Lattice

粲夸克电磁形状因子

QCD 拉氏量为(光锥规范 $A^+ = 0$, 手征 Wely 表象 $\psi^T = 2^{-1/4} (\psi_R, \psi_L)$)

$$\mathcal{L} = -\frac{1}{4}F^{\mu\nu,a}F^{a}_{\mu\nu} + \overline{\psi}\left(i\not\!\!D - m\right)\psi$$

= $\frac{1}{2}\left(\partial_{-}A^{-,a}\right)^{2} + g_{s}\psi^{\dagger}_{R}A^{-,a}T^{a}\psi_{R} + \psi^{\dagger}_{R}i\partial_{+}\psi_{R} + \psi^{\dagger}_{L}i\partial_{-}\psi_{L} - \frac{m_{f}}{\sqrt{2}}\left(\psi^{\dagger}_{L}\psi_{R} + \psi^{\dagger}_{R}\psi_{L}\right)$

运动方程

$$\partial_{-}^{2} A^{-,a} - g_{s} \psi_{R}^{\dagger} T^{a} \psi_{R} = 0,$$

$$i \partial_{-} \psi_{L} - \frac{m}{\sqrt{2}} \psi_{R} = 0.$$

- 运动学自由度只有 ψ_R, 胶子只提供库伦势
- 没有三胶子四胶子顶角, F₋₋F⁻⁻ = 0

$V \sim |x - y|$ 规范场自然地出现色禁闭。引入玻色化

$$\begin{split} M\left(k^{+}, p^{+}\right) &\equiv \frac{1}{\sqrt{N_{c}}} \sum_{i} d^{i}(k^{+}) b^{i}(p^{+}) \\ M^{\dagger}\left(k^{+}, p^{+}\right) &\equiv \frac{1}{\sqrt{N_{c}}} \sum_{i} b^{i\dagger}(p^{+}) d^{i\dagger}(k^{+}) \\ \left[M\left(k_{1}^{+}, p_{1}^{+}\right), M^{\dagger}\left(k_{2}^{+}, p_{2}^{+}\right)\right] &= (2\pi)^{2} \,\delta(k_{1}^{+} - k_{2}^{+}) \delta(p_{1}^{+} - p_{2}^{+}) + \mathcal{O}\left(\frac{1}{\sqrt{N_{c}}}\right) \end{split}$$

自然地引入大 N_c 极限

$$N_c
ightarrow \infty, \qquad \lambda \equiv rac{g_s^2 N_c}{4\pi} \, \, {
m fixed}, \qquad g_s \sim rac{1}{\sqrt{N_c}}$$

't Hooft Model

大 N_c 极限

1+1QCD 的相互作用

$$g_s^2 A^{-i,a} \psi_R^{\dagger} T^a \psi_R \sim g_s^2 \left(\psi_R^{i,\dagger} \psi^j \right)_x \left(\psi_R^{k,\dagger} \psi^l \right)_y \sum_a T^a_{i,j} T^a_{k,l}$$
$$\sum_a T^a_{i,j} T^a_{k,l} = \frac{1}{2} \left(\delta_{il} \delta_{jk} - \frac{1}{N} \delta_{ij} \delta_{kl} \right)$$

夸克对的相互作用

构造介子态算符

$$M^{\dagger}((1-x)P^{+}, xP^{+}) = \sqrt{\frac{2\pi}{P^{+}}} \sum_{n=0}^{\infty} \varphi_{n}(x) m_{n}^{\dagger}(P^{+}),$$
$$m_{n}^{\dagger}(P^{+}) = \sqrt{\frac{P^{+}}{2\pi}} \int_{0}^{1} dx \varphi_{n}(x) M^{\dagger}((1-x)P^{+}, xP^{+}),$$

我们期待对易关系

$$\left[m_n(P_1^+), m_r^{\dagger}(P_2^+)\right] = 2\pi\delta_{nr}\delta(P_1^+ - P_2^+)$$

要求

$$\int_0^1 dx \,\varphi_n(x)\varphi_m(x) = \delta_{nm}$$
$$\sum_n \varphi_n(x)\varphi_n(y) = \delta(x-y)$$

't Hooft Model

一个介子的理论

$$H_{\rm LF} = H_{\rm LF;0} + \int \frac{dP^+}{2\pi} P_n^- m_n^{\dagger}(P^+) m_n(P^+)$$

对角化给出't Hooft 方程

$$\left(\frac{m^2}{x} + \frac{m^2}{1-x}\right)\varphi_n(x) - 2\lambda \int dy \frac{\varphi_n(y) - \varphi_n(x)}{(x-y)^2} = M_n^2 \varphi_n(x)$$

Collins-Soper definition:

$$f(x) = \int \frac{dz^-}{4\pi} e^{-ixP^+z^-} \langle P^+ | \overline{\psi}(z^-) \gamma^+ \mathcal{P}\left[\exp\left(-ig_s \int_0^{z^-} d\eta^- A^+(\eta^-)\right)\right] \psi(0) | P^+ \rangle_{\text{connected}}$$

cs 介子中 s 夸克的 PDF

Nc 意义上的微扰

$$\begin{split} |\pi'\rangle &\approx |\pi\rangle + \frac{1}{P^- - H_{\rm LF,0} + i\epsilon} V |\pi\rangle \\ P^- &= P^-_D + P^-_{\bar{D}}, \quad H_{\rm LF,0} = \frac{M^2_\pi}{2P^+} \end{split}$$

't Hooft Model vs MCM

't Hooft model

$$f_{c/\pi}(x) = \sum_{D\bar{D}} \langle \pi(P^+) | D_{\mathbf{n}_3} \overline{D}_{\mathbf{n}_4} \rangle \langle D_{\mathbf{n}_1} \overline{D}_{\mathbf{n}_2} | \pi(P^+) \rangle \int \frac{dz^-}{4\pi} e^{-ixP^+z^-} \langle D_{\mathbf{n}_3} \overline{D}_{\mathbf{n}_4} | \bar{c}(z^-) \gamma^+ c(0) | D_{\mathbf{n}_1} \overline{D}_{\mathbf{n}_2} \rangle \langle D_{\mathbf{n}_1} \overline{D}_{\mathbf{n}_2} | \pi(P^+) \rangle \int \frac{dz^-}{4\pi} e^{-ixP^+z^-} \langle D_{\mathbf{n}_3} \overline{D}_{\mathbf{n}_4} | \bar{c}(z^-) \gamma^+ c(0) | D_{\mathbf{n}_1} \overline{D}_{\mathbf{n}_2} \rangle \langle D_{\mathbf{n}_1} \overline{D}_{\mathbf{n}_2} | \pi(P^+) \rangle \int \frac{dz^-}{4\pi} e^{-ixP^+z^-} \langle D_{\mathbf{n}_3} \overline{D}_{\mathbf{n}_4} | \bar{c}(z^-) \gamma^+ c(0) | D_{\mathbf{n}_1} \overline{D}_{\mathbf{n}_2} \rangle \langle D_{\mathbf{n}_1} \overline{D}_{\mathbf{n}_2} | \pi(P^+) \rangle \int \frac{dz^-}{4\pi} e^{-ixP^+z^-} \langle D_{\mathbf{n}_3} \overline{D}_{\mathbf{n}_4} | \bar{c}(z^-) \gamma^+ c(0) | D_{\mathbf{n}_1} \overline{D}_{\mathbf{n}_2} \rangle \langle D_{\mathbf{n}_1} \overline{D}_{\mathbf{n}_2} | \pi(P^+) \rangle \langle D_{\mathbf{n}_2} | \pi(P^+) \rangle \langle D_{\mathbf{n}_1} \overline{D}_{\mathbf{n}_2} | \pi(P^+) \rangle \langle D_{\mathbf{n}_2} | \pi(P^+) | \pi(P^+) \rangle \langle D_{\mathbf{n}_2} | \pi(P^+) | \pi(P^+) \rangle \langle D_{\mathbf{n}_2} | \pi(P^+) |$$

't Hooft Model vs MCM

't Hooft model

$$f_{c/\pi}(x) = \sum_{D\bar{D}} \langle \pi(P^+) | D_{n_3} \overline{D}_{n_4} \rangle \, \langle D_{n_1} \overline{D}_{n_2} | \pi(P^+) \rangle \int \frac{dz^-}{4\pi} \, e^{-ixP^+z^-} \, \langle D_{n_3} \overline{D}_{n_4} | \, \bar{c}(z^-) \gamma^+ c(0) \, | D_{n_1} \overline{D}_{n_2} \rangle \, dz = \sum_{D\bar{D}} \langle \pi(P^+) | D_{n_3} \overline{D}_{n_4} \rangle \, \langle D_{n_1} \overline{D}_{n_2} | \pi(P^+) \rangle \, dz$$

MCM

$$f_{c/\pi}(x) = \sum_{D\bar{D}} \left| \langle \pi(P^+) | D_{n_1} \overline{D}_{n_2} \rangle \right|^2 \int \frac{dz^-}{4\pi} e^{-ixP^+z^-} \langle D_{n_1} \overline{D}_{n_2} | \, \bar{c}(z^-) \gamma^+ c(0) \, | D_{n_1} \overline{D}_{n_2} \rangle$$

数值结果

- 在二维下求和是必要的
- 干涉项没有影响 IC 的含量,但是影响了分布

数值结果

$$\varphi_n^{u\bar{u}}(x) = (-1)^n \varphi_n^{u\bar{u}}(1-x)$$

给出

$$Cm_n^{u\bar{u}}(P^+)C^{-1} = (-1)^{n+1}m_n^{u\bar{u}}(P^+)$$

π_n 有固定宇称,宇称守恒压低

3+1 维 OPE:
QED
$$\langle p | rac{F_{\mu
u}^4}{m_l^4} | p
angle \sim rac{lpha^4}{M_l^4}$$
QCD $\langle p | rac{G_{\mu
u}^3}{m_Q^2} | p
angle \sim rac{\Lambda_Q^2 \mathrm{CD}}{M_Q^2}$

$$\begin{split} \mathcal{L}_{QCD}^{eff} &= -\frac{1}{4} G_{\mu\nu a} G^{\mu\nu a} - \frac{g^2 N_C}{120\pi^2 M_Q^2} D_a G_{\mu\nu a} D^a G^{\mu\nu a} \\ &+ C \frac{g^3}{\pi^2 M_Q^2} G_{\mu}^{\nu a} G_{\nu}^{\tau b} G_{\tau}^{\mu c} f_{abc} + \mathcal{O} \Big(\frac{1}{M_Q^4} \Big) \end{split}$$

3+1 维 OPE: QED $\langle p | \frac{F_{\mu\nu}^4}{m_l^4} | p \rangle \sim \frac{\alpha^4}{M_l^4}$ QCD $\langle p | \frac{G_{\mu\nu}^3}{m_O^2} | p \rangle \sim \frac{\Lambda_{\rm QCD}^2}{M_O^2}$

$$\begin{aligned} \mathcal{L}_{QCD}^{eff} &= -\frac{1}{4} G_{\mu\nu a} G^{\mu\nu a} - \frac{g^2 N_C}{120\pi^2 M_Q^2} D_a G_{\mu\nu a} D^a G^{\mu\nu a} \\ &+ C \frac{g^3}{\pi^2 M_Q^2} G_{\mu}^{\nu a} G_{\nu}^{\tau b} G_{\tau}^{\mu c} f_{abc} + \mathcal{O} \Big(\frac{1}{M_Q^4} \Big) \end{aligned}$$

THANK YOU