Hadron and parton masses from Lattice QCD

Yi-Bo Yang

Outline

Brief introduction on Lattice QCD; 0

Parton masses and their low energy limits. 0

Hadron mass and its components;

Discretized quantum field theory

Lattice

$$\left(\phi(x+\hat{n}_{\mu})+\phi(x-\hat{n}_{\mu})\right)+(m^{2}a^{2}-2)\phi(x)=0$$

$$S_L = \frac{1}{4\sum_{\mu} \operatorname{Sin}^2(\frac{ap_{\mu}}{2})/a^2 + m^2}$$
$$\int_{-\pi/a}^{\pi/a} \mathrm{d}^4 p$$

The divergence has been regularized into the 1/aⁿ and log(a) terms

The QCD Lagrangian is the following:

$$\bar{\psi}(\gamma_{\mu}(\partial_{\mu} - igA_{\mu}) - m)\psi - \frac{1}{4}F^{a}_{\mu\nu}F^{a}_{\mu\nu}, \quad F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} + ig[A_{\mu}, A_{\nu}]$$

$$A_{\mu}(x + \frac{1}{2}\hat{n}_{\mu}) = a^{4} \frac{U_{\mu}(x) - U_{\mu}^{\dagger}(x)}{2ig_{0}a} + \mathcal{O}(a^{2}g^{2}), U_{\mu}(x) \equiv e^{ig_{0}\int_{x}^{x+a\hat{\mu}}dyA_{\mu}(y)};$$

$$U_{\mu}(x) \equiv e^{ig_0 \int_x^{x+a\hat{\mu}} dy A_{\mu}(y)}, \ U_{\mu}^{\dagger}(x) \equiv e^{-ig_0 \int_{x+a\hat{\mu}}^x dy A_{\mu}(y)} = e^{ig_0 \int_{x+a\hat{\mu}}^x dy A_{\mu}(y)}$$

 ${\mathcal X}$

Wilson link

with basic variable ψ and A_{μ}

The lattice gauge theory replaces the basic variable A_{μ} into the gauge link (or Wilson link) U_{μ} :

$$x + a\hat{\mu}$$

•
$$\mathcal{P}_{\mu\nu}(x) = U_{\mu}(x)U_{\nu}(x+a\hat{\mu})U_{\mu}^{\dagger}(x+a\hat{\nu})U_{\nu}^{\dagger}(x) = 1 + ig_0a^2F_{\mu\nu}(x+\frac{a}{2}(\hat{\mu}+\hat{\nu})) - \frac{1}{2}a^4g_0^2F_{\mu\nu}(x+\frac{a}{2}(\hat{\mu}+\hat{\nu}))F_{\mu\nu}(x+\frac{a}{2}(\hat{\mu}+\hat{\nu})) + id_0a^2F_{\mu\nu}(x+\frac{a}{2}(\hat{\mu}+\hat{\nu})) = 0$$

- it can also be used to define the gauge field tensor $F_{\mu\nu}$, and also gauge action: $S_g = \frac{1}{2g_0^2} \sum_{x,\mu\nu} \operatorname{Re}\left[1 \operatorname{Tr}[\mathscr{P}_{\mu\nu}(x)]\right] = \frac{1}{2} \operatorname{Tr}\left[\int \mathrm{d}^4 x F_{\mu\nu} F_{\mu\nu}\right] + \mathcal{O}(a^2)$
 - Such an action has the $\mathcal{O}(a^2)$ discretization error.
 - It can combine with the 1x2 loop $\mathscr{P}_{\mu\nu}^{Rect}(x) = U_{\mu}(x)U_{\mu}(x+a\hat{\mu})U_{\nu}(x+2a\hat{\mu})U_{\mu}^{\dagger}(x+a\hat{\mu}+a\hat{\nu})U_{\mu}^{\dagger}(x+a\hat{\nu})U_{\nu}^{\dagger}(x)$ to construct the Symanzik or Iwasaki action, to suppress the discretization error to $\mathcal{O}(a^4)_{\circ}$

$$S_g^{\text{Symanzik}} = \frac{5}{3} S_g^{1x1} - \frac{1}{12} S_g^{1x2}$$
$$S_g^{\text{Iwasaki}} = (1 + 8 \times 0.331) S_g^{1x1} - \frac{1}{3} S_g^{1x2}$$

gauge action

 $-0.331S_g^{1x2}$

• The naive discretization suffers from the doubling problem:

•
$$\mathscr{S}_{q}^{Naive}(m) = \sum_{x,y} \bar{\psi}(x) D_{Naive}(m;x,y) \psi(y), \ D_{Naive}(m;x,y) = \frac{1}{2a} \sum_{\mu} \gamma_{\mu} \left(U_{\mu}(x) \delta_{y,x+a\hat{\mu}} - U_{\mu}^{\dagger}(x-a\hat{\mu}) \delta_{y,x-a\hat{\mu}} \right) + m \delta_{y,x}$$

- The propagator has 1/m IR poles at $pa = (0/\pi, 0/\pi, 0/\pi, 0/\pi)$, which is different from the continuum theory.
- Staggered fermion:
- $\psi^{\text{st}}(x) = \gamma_4^{x_4} \gamma_1^{x_1} \gamma_2^{x_2} \gamma_3^{x_3} \psi(x), \{\gamma_1^{\text{st}}, \gamma_2^{\text{st}}, \gamma_3^{\text{st}}, \gamma_4^{\text{st}}\} = \{(-1)^{x_4} \psi(x), \{\gamma_1^{\text{st}}, \gamma_2^{\text{st}}, \gamma_3^{\text{st}}, \gamma_4^{\text{st}}, \gamma_4^{\text{st}}\} = \{(-1)^{x_4} \psi(x), \{\gamma_1^{\text{st}}, \gamma_2^{\text{st}}, \gamma_4^{\text{st}}, \gamma_4^{\text{st}}, \gamma_4^{\text{st}}\}\}$
- 16 IR poles \rightarrow 4 IR poles.

Cost x10

Naive and Staggered actions

$$x_4, (-1)^{x_1+x_4}, (-1)^{x_1+x_2+x_4}, 1\};$$

Mixing between IR poles can be suppressed with kinds of the improvement, likes the so-call highly-improved staggered quark (HISQ).

- Wilson fermion action: 0
- $D+m \rightarrow D+aD^2+m$
- Clover fermion action:
- $D + m \rightarrow D + aD^2 + m + ac_{sw}\sigma_{\mu\nu}F^{\mu\nu}$
- Suppress the additional chiral symmetry breaking at $\mathcal{O}(\alpha_s^2/a)$.
- ^o The cost of either Wilson or Clover action is $\mathcal{O}(10)$ of the Staggered fermion.

Wilson and clover actions

• It removes the unphysical IR pole at $p_i = \pi/a$, while introduce the additional chiral symmetry breaking at $\mathcal{O}(\alpha_s/a)$.

- Ginsparg-Wilson relation: $\gamma_5 D_{GW} + D_{GW} \gamma_5 = \frac{1}{\rho} D_{GW} \gamma_5 D_{GW}$ •
- Overlap fermion as a possible solution: $\mathcal{S}_q^{ov}(m) = \sum_{x,v} \bar{\psi}(x) \Big(\delta_{xy} m + \sum_z D_{ov}(\rho; x, z) \frac{\rho/a}{\delta_{zv} - D_{ov}(\rho; z, y)/2} \Big) \psi(y)$
- In $p \to 0$ region, $D_{ov} \to a \gamma_{\mu} p_{\mu}$;
- $\ln p \to \pi/a$ region, $D_{ov} \to \mathcal{O}(1)$.

- But approximate the sign function $\frac{\gamma_5 D_w(-\rho)}{\sqrt{D_w(-\rho)D_W^\dagger(-\rho)}}$ action.

Staggered/HISQ

Cost x10

Ginsparg-Wilson action

y),
$$D_{ov}(\rho) = 1 + \frac{D_w(-\rho)}{\sqrt{D_w(-\rho)D_W^{\dagger}(-\rho)}}$$

$$\frac{1}{|\gamma_5 D_w(-\rho)|} = \frac{\gamma_5 D_w(-\rho)}{|\gamma_5 D_w(-\rho)|} \text{ need } \mathcal{O}(100) \text{ cost of the Wilson/Clov}$$

• Domain wall fermion action is an approximation of overlap fermion with O(10) cost of the Wilson/Clover action.

ver

Lattice regularization

- The Feynman rule under the lattice regularization can be extracted in the weak coupling limit.
- It approaches to the continuum form in the $a \rightarrow 0$ limit.
- But the Feynman rule of the multi-gluon vertex is very complicated, especially for the improved discretized actions.
- For example, the 4-gluon vertex of the simplest Wilson gauge actions $S_{G} = \frac{1}{2g_{0}^{2}} \sum_{x,\mu\nu} \operatorname{Re}\left[1 - \operatorname{Tr}[\mathscr{P}_{\mu\nu}(x)]\right] = \frac{1}{2} \operatorname{Tr} \int \mathrm{d}^{4}x F_{\mu\nu} F_{\mu\nu} + \mathscr{O}(a^{2})$

With
$$\mathscr{P}_{\mu\nu}(x) = U_{\mu}(x)U_{\nu}(x+a\hat{\mu})U_{\mu}^{\dagger}(x+a\hat{\nu})U_{\nu}^{\dagger}(x)$$

 $(S_G)_{A^4} = -$

Feynman rules

$$\begin{split} \Gamma_{\mu\nu\lambda\rho}^{ABCD}(k,q,r,s) = \\ -g_{0}^{2} \Big[\sum_{E} f_{ABE} f_{CDE} \Big\{ \delta_{\mu\lambda} \delta_{\nu\rho} [\cos \frac{1}{2}a(q-s)_{\mu} \cos \frac{1}{2}a(k-r)_{\nu} - \frac{a^{4}}{12} \tilde{k}_{\nu} \delta_{\nu} \delta_{\nu} \delta_{\nu} \delta_{\nu} \delta_{\nu} \cos \frac{1}{2}a(k-r)_{\nu} - \frac{a^{4}}{12} \tilde{k}_{\nu} \delta_{\nu} \delta_{\nu} \delta_{\nu} \delta_{\nu} \cos \frac{1}{2}a(k-r)_{\nu} - \frac{a^{4}}{12} \tilde{k}_{\nu} \delta_{\nu} \delta_{\nu} \delta_{\nu} \delta_{\nu} \delta_{\nu} \cos \frac{1}{2}a(k-r)_{\nu} - \frac{a^{4}}{12} \tilde{k}_{\nu} \delta_{\nu} \delta_{\nu}$$

 $\times \left\{ {}^{0}_{\mu\nu}{}^{0}_{\mu\lambda}{}^{0}_{\mu\rho} \sum_{\sigma} {}^{\kappa}_{\sigma} {}^{q}_{\sigma}{}^{\tau}_{\sigma}{}^{s}_{\sigma} - \right.$ $-\delta_{\mu\nu}\delta_{\mu\rho}\tilde{k}_{\lambda}\tilde{q}_{\lambda}\tilde{s}_{\lambda}\tilde{r}_{\mu}-\delta_{\mu\lambda}\delta_{\mu\rho}\tilde{k}_{\nu}\tilde{r}_{\nu}\tilde{s}_{\nu}\tilde{q}_{\mu}-\delta_{\nu\lambda}\delta_{\nu\rho}\tilde{q}_{\mu}\tilde{r}_{\mu}\tilde{s}_{\mu}\tilde{k}_{\nu}$ $+ \delta_{\mu\nu}\delta_{\lambda\rho}\tilde{k}_{\lambda}\tilde{q}_{\lambda}\tilde{r}_{\mu}\tilde{s}_{\mu} + \delta_{\mu\lambda}\delta_{\nu\rho}\tilde{k}_{\nu}\tilde{r}_{\nu}\tilde{q}_{\mu}\tilde{s}_{\mu} + \delta_{\mu\rho}\delta_{\nu\lambda}\tilde{k}_{\nu}\tilde{s}_{\nu}\tilde{q}_{\mu}\tilde{r}_{\mu}\Big\}$

Lattice regularization

Taking the simplest Wilson fermion as example:

$$\mathscr{S}_{q}^{W}(m) = \sum_{x,y} \bar{\psi}(x) D_{w}(m;x,y) \psi(y), \ D_{w}(m;x,y) = \frac{1}{2a} \sum_{\mu} \left((1+\gamma_{\mu}) U_{\mu}(x) \delta_{y,x+a\hat{\mu}} + (1-\gamma_{\mu}) U_{\mu}^{\dagger}(x-a\hat{\mu}) \delta_{y,x-a\hat{\mu}} \right) - (m+\frac{4}{a}) \delta_{y,x}$$

$$Where \quad U(x) \equiv e^{ig_0 \int_x^{x+a\hat{\mu}} dy A_{\mu}(y)} :$$

There is a g-g-q-q vertex at $\mathcal{O}(a)$:

Additional vertex

 $-\frac{a}{2}C_Fi\gamma_\mu\sin ap_\nu$

Such a vertex is $\mathcal{O}(a)$ at tree level, but it can introduce $\mathcal{O}(\alpha_s)$ correction at quantum level!

Lattice regularization

Taking the quark self energy as an example:

energy

The result can be quite different finite $\mathcal{O}(\alpha_s)$ corrections with different discretization: $\sigma^2 C$

$$Z_Q^{RI}(p^2) = 1 + \frac{g c_F}{16\pi^2} [(1 - \xi)\log(1 - \xi)]$$

W Wilson overlap Fermion actions -2

Loop correction

 $B(a^2p^2) + B_O + 4.79\xi] + O(a^2p^2) + O(g^4)$

ilson	B_Q Iwasaki	Iwasaki ^{HYP}	Gauge actions
1.85	3.32	-4.22	
1.50	-13.58	-7.56	

Basic unit of Lattice C
$$(\gamma_4(\partial_\tau - igA_4)\psi + \sum (\partial_i - igA_i)\gamma_i - m)\psi = 0$$

The discretized Dirac equation with the coupling with the non-abelian SU(3) gauge field:

- $\gamma_{1,2,3,4}$ are 4 × 4 complex matrices, $A_{1,2,3,4}$ are space-time dependent 3x3 complex matrices;
- Can be converted to a problem of sparse matrix inversion.

)CD

Computer cores

Internal sites

Boundary sites requiring information from the other cores;

- $L^3 \times T = 4^3 \times 4$ lattice:
- Red point: 12×12 diagonal matrix
- Black point: 12×12 sparse matrix

Basic flow of Lattice QCD

Analysis the configurations to get the physical results

- physical analysis!

Configuration:

- Specify the discretized quark and gluon actions
- Specify the flavors of quarks and their bare masses
- Specify the bare gauge coupling

 \rightarrow Determine the lattice spacing through Λ_{OCD}

Specify the lattice size $L^3 \times T$

Markov chain Monte Carlo

- Case 1: Clover fermion, 24³x72, a=0.108 fm, $m_{\pi}=300$ MeV, 8 V100 GPUs:
- One week for warn-up;
- Another week for 200 configurations (5 traj. per conf.)

Case 2: Mobius DW (chiral fermion), 96³x192, *a* =0.071 fm, m_{π} =140 MeV, 512 V100 GPUs: • One year for warn-up; Another year for 200 configurations (5 traj. per conf.)

Configurations:

- m_{π} < 200 MeV;

15

Configurations in China:

• Generate the configurations using the domestic computers is the foundation of any high-precision lattice QCD study.

- FLAG criteria is the current status-ofthe-arts in the lattice community.
- Major contributors: P. Sun, L. Liu, YBY, W. Sun,...

	C11P29Ss	C11P29S	C11P29M	C11P22M	C11P22L	C11P14L	C08P30S	C08P30M	C08P22S	C08P22M	C06P30S
$L^3 \times T$	$24^3 \times 64$	$24^3 \times 72$	$32^3 \times 64$	$32^3 \times 64$	$48^3 \times 96$	$48^3 \times 96$	$32^3 \times 96$	$48^3 \times 96$	$32^3 \times 64$	$48^3 \times 96$	$48^{3} \times 144$
$10/g^{2}$			6.2	20				6.	41		6.72
						-0.2825					
						-0.2820					
						-0.2815					
				-0.2790	-0.2790				-0.2320	-0.2320	
$m_l^{ m b}$			-0.2780	-0.2780	-0.2780			-0.2307	-0.2307	-0.2307	
	-0.2770	-0.2770	-0.2770	-0.2770	-0.2770		-0.2295	-0.2295	-0.2295	-0.2295	-0.1850
	-0.2760	-0.2760	-0.2760				-0.2288	-0.2288			-0.1845
	-0.2750	-0.2750					-0.2275				-0.1840
	-0.2400	-0.2400	-0.2400	-0.2400	-0.2400	-0.2400	-0.2050	-0.2050	-0.2050	-0.2050	-0.1700
$m_s^{ m b}$	-0.2355	-0.2355	-0.2355	-0.2355	-0.2355	-0.2355	-0.2030	-0.2030	-0.2030	-0.2030	-0.1694
	-0.2310	-0.2310	-0.2310	-0.2310	-0.2310	-0.2310	-0.2010	-0.2010	-0.2010	-0.2010	-0.1687
	0.4780	0.4780	0.4780	0.4780	0.4780	0.4780	0.2326	0.2326	0.2326	0.2326	0.0770
$m_c^{ m b}$	0.4800	0.4800	0.4800	0.4800	0.4800	0.4800	0.2340	0.2340	0.2340	0.2340	0.0780
	0.4820	0.4820	0.4820	0.4820	0.4820	0.4820	0.2354	0.2354	0.2354	0.2354	0.0790
$\delta_{ au}$	1.0	0.7	0.7	0.7	0.7	1.0	0.5	0.5	0.5	0.5	1.0
n_{\min}		4050	11000	4100	1000	1600	1000	2690	13500	1600	1000
$n_{ m max}$		48000	35050	26600	5050	2200	26200	6700	36400	6060	4070
u_0^{I}	0.855453	0.855453	0.855453	0.855520	0.855520	0.855548	0.863437	0.863473	0.863488	0.863499	0.873378
v_0^{I}	0.951479	0.951479	0.951479	0.951545	0.951545	0.951570	0.956942	0.956984	0.957017	0.957006	0.963137
u_0		0.855440	0.855422			0.855539	0.863463				0.873373
v_0		0.951463	0.951444			0.951561	0.956971				0.963135
$w_0 a$											

Towards the FLAG criteria

TABLE I. Lattice size $L^3 \times T$, gauge coupling $10/g^2$, bare quark masses $m_{l,s,c}^{\rm b}$, tadpole improvement factors u_0/v_0 and scale parameter w_0 of the ensembles used in this work. The bare light and starnge quark masses $m_{l,s}^{b}$ with the bold font on each ensemble are the unitary quark masses, and the other values of $m_{l,s,c}^{b}$ are those used for the valence quark propagators. The values $u_0^{\rm I}$ and $v_0^{\rm I}$ are the tadpole improvement factors used in the gauge and fermion actions, respectively; and $u_0, v_0, w_0 a$ are those measured from the realistic configurations generated using the Paramters here.

29S C11P29M C11P22M C11P22L C11P14L C08P30S C08P30M C08P22S C08P22M C0
--

Outline

Brief introduction on Lattice QCD

Parton masses and their low energy limits. 0

Hadron mass and its components;

Hadron mass from Lattice QCD

- From the time order product $(\mathcal{O} = \epsilon_{abc}(u^{a,T}Cd^b)u^c)$: $\langle \mathcal{O}(t)\mathcal{O}^{\dagger}(0)\rangle = \sum_{n} \langle \mathcal{O}(t) | n \rangle \frac{e^{-E_n t}}{2E_n} \langle n | \mathcal{O}^{\dagger}(0) \rangle_{t \to \infty} \frac{|\langle \mathcal{O}(t) | 0 \rangle|^2}{2E_0} e^{-E_0 t}$
- From the path integral $(S(x; y) = (D(x; y) + m)^{-1})$: $\langle \mathcal{O}(t)\mathcal{O}^{\dagger}(0) \rangle = \sum \langle \epsilon_{abc} ((u^{a,T}Cd^b)u^c)(\vec{x}, t)\Gamma_e \epsilon_{a'b'c'} ((u^{a',T}Cd^{b'})u^{c'})^{\dagger}(\vec{0}, 0) \rangle$

 $= \sum \epsilon_{abc} \epsilon_{a'b'c'} \langle \text{Tr}[S_{u}^{aa',T}(\vec{x},\tau;\vec{0},0)CS_{d}^{bb'}(\vec{x},\tau;\vec{0},0)C^{\dagger}] \text{Tr}[\Gamma^{e}S_{u}^{cc'}(\vec{x},\tau;\vec{0},0)] + \text{Tr}[S_{u}^{aa',T}(\vec{x},\tau;\vec{0},0)CS_{d}^{bb'}(\vec{x},\tau;\vec{0},0)\Gamma^{e}S_{u}^{cc'}(\vec{x},\tau;\vec{0},0)C^{\dagger}] \rangle$

• All the ground state hadron masses can be obtained with different \mathcal{O} and m.

$$m_{\rm N}^{\rm eff} = \frac{1}{a} \log \frac{\langle \mathcal{O}(t-a)\mathcal{O}^{\dagger}(0) \rangle}{\langle \mathcal{O}(t)\mathcal{O}^{\dagger}(0) \rangle}$$

C. Alexandrou, et,al. ETMC, PRD104(2021)074515

The light quark masses

P.Zyla et,al, PTEP(2020)083C01 (PDG2020):

• $m_p = 938.27 \text{ MeV} = m_{p,\text{OCD}} + 1.00(16) \text{ MeV} + \dots;$

•
$$m_n = 939.57$$
 MeV;

•
$$m_{\pi}^0 = 134.98$$
 MeV;

 $(m_{p,\text{QCD}} + m_n)/2 = 938.4(1) \text{ MeV}$

• $m_{\pi}^+ = 139.57 \text{ MeV} = m_{\pi}^0 + 4.53(6) \text{ MeV} + \dots;$

X. Feng, et,al. PRL128(2022)062003

• $m_K^0 = 497.61(1) \text{ MeV} = m_{K,QCD}^0 + 0.17(02) \text{ MeV} + \dots$

• $m_K^+ = 493.68(2) \text{ MeV} = m_{K,\text{QCD}}^+ + 2.07(15) \text{ MeV} + \dots$

D. Giusti, et,al. PRD95(2017)114504

From lattice QCD

The light quark masses

Lattice spacing dependence

 The lattice spacing a is very sensitive to the bare coupling;

> mass to satisfy the condition is very

 Renormalization is needed to convert the result to MS-bar.

 $\alpha_{\rm s}^{\rm bare}$

Quark masses

FLAG2021

ms

From lattice QCD

FLAG, EPJC80(2020)113

The quark masses are small...

YBY, et.al. χ QCD Collaboration, PRD94(2016)054503

YBY, J. Liang, et. al., χ QCD Collaboration, PRL121(2018)212001

ViewPoint and Editor's suggestion

Ji's sum rule M =

$$= -\langle T_{44} \rangle = \langle H_E \rangle + \langle H_m \rangle + \langle H_g \rangle + \frac{1}{4} \langle H_a \rangle,$$
for the hadron energy

$$M = -\langle \hat{T}_{44} \rangle = \langle H_m \rangle + \langle H_a \rangle$$
With

$$H_m = \sum_{u,d,s...} \int d^3x \, m \, \overline{\psi} \psi,$$

$$H_m = \sum_{u,d,s...} \int d^3x \, m \, \overline{\psi} \psi,$$

$$H_m = \sum_{u,d,s...} \int d^3x \, m \, \overline{\psi} \psi,$$

$$H_m = \sum_{u,d,s...} \int d^3x \, \gamma_m \, m \, \overline{\psi} \psi.$$

$$H_m = \sum_{u,d,s...} \int d^3x \, \gamma_m \, m \, \overline{\psi} \psi.$$

$$H_m = \sum_{u,d,s...} \int d^3x \, \gamma_m \, m \, \overline{\psi} \psi.$$

$$H_m = \sum_{u,d,s...} \int d^3x \, \gamma_m \, m \, \overline{\psi} \psi.$$

$$H_m = \sum_{u,d,s...} \int d^3x \, \gamma_m \, m \, \overline{\psi} \psi.$$

$$H_m = \sum_{u,d,s...} \int d^3x \, \gamma_m \, m \, \overline{\psi} \psi.$$

$$H_m = \sum_{u,d,s...} \int d^3x \, \gamma_m \, m \, \overline{\psi} \psi.$$

$$H_m = \sum_{u,d,s...} \int d^3x \, \gamma_m \, m \, \overline{\psi} \psi.$$

$$H_m = \sum_{u,d,s...} \int d^3x \, \gamma_m \, m \, \overline{\psi} \psi.$$

$$H_m = \sum_{u,d,s...} \int d^3x \, \gamma_m \, m \, \overline{\psi} \psi.$$

$$H_m = \sum_{u,d,s...} \int d^3x \, \gamma_m \, m \, \overline{\psi} \psi.$$

$$H_m = \sum_{u,d,s...} \int d^3x \, \gamma_m \, m \, \overline{\psi} \psi.$$

$$H_m = \sum_{u,d,s...} \int d^3x \, \gamma_m \, m \, \overline{\psi} \psi.$$

$$H_m = \sum_{u,d,s...} \int d^3x \, \gamma_m \, m \, \overline{\psi} \psi.$$

$$H_m = \sum_{u,d,s...} \int d^3x \, \gamma_m \, m \, \overline{\psi} \psi.$$

$$H_m = \sum_{u,d,s...} \int d^3x \, \gamma_m \, m \, \overline{\psi} \psi.$$

$$H_m = \sum_{u,d,s...} \int d^3x \, \gamma_m \, m \, \overline{\psi} \psi.$$

$$H_m = \sum_{u,d,s...} \int d^3x \, \gamma_m \, m \, \overline{\psi} \psi.$$

The QCD anomaly

$$H_a = H_g^a + H_m^\gamma$$
, The glue
anomaly
 $H_g^a = \int d^3x \ \frac{-\beta(g)}{g} (E^2 + B^2),$
 $H_m^\gamma = \sum_{u,d,s\cdots} \int d^3x \gamma_m m \overline{\psi} \psi.$
The quark mass anomaly

Ji's sum rule

- Direct calculation of the quark/glue momentum fraction with non-perturbative renormalization and normalization.
- Trace anomaly contribution deduced by the direct calculation of the quark scalar condensate in nucleon, based on the sum rule. $rac{1}{4}M \;=\; -\langle \hat{T}_{44}
 angle = rac{1}{4}\langle H_m
 angle + rac{1}{4}\left\langle H_a
 angle
 angle$


```
Ji's sum rule
```


W. Sun, et.al, χ QCD Collaboration, PRD103(2021)094503

for the charmonium

- The charm quark mass contribution in all the different charmonia are around 2.2 GeV.
- Most of the mass difference between different charmonia comes from the dynamics.

Chinese Academy of Sciences, Grant No. XDC01040100

- The trace of QCD energy momentum tensor (EMT), $T_{\mu\nu} = \frac{i}{\gamma} \bar{\psi} \overleftrightarrow{D}_{(\mu} \gamma_{\nu)} \psi + \frac{1}{\varDelta} g_{\mu\nu} F^2 - F_{\mu\rho} F_{\rho\nu}$ is just the quark mass term $m\bar{\psi}\psi$ at the classical level.
- But with the quantum corrections, the quantum correction changes the trace term into: J.Collins et,al. PRD16(1977) 438 $T^{\mu}_{\mu} = \left[1 + \frac{2}{\pi}\alpha_{s} + \mathcal{O}(\alpha_{s}^{2})\right]m\bar{\psi}\psi + \left[\left(-\frac{11}{8\pi} + \frac{N_{f}}{12\pi}\right)\alpha_{s} + \mathcal{O}(\alpha_{s}^{2})\right]F^{2},$ where the terms proportional to α_{s} are the QCD quantum corrections.
- Then the hadron mass can be decomposed into three pieces: $m_N = m \langle \bar{\psi}\psi \rangle_N + \left[\frac{2}{\pi}\alpha_s + \mathcal{O}(\alpha_s^2)\right] m \langle \bar{\psi}\psi \rangle_N + \left[\left(-\frac{11}{8\pi} + \frac{N_f}{12\pi}\right)\alpha_s + \mathcal{O}(\alpha_s^2)\right] \langle F^2 \rangle_N.$

Defintion

M.A. SHIFMAN et,al. PLB78(1978)

YBY, et. al., χ QCD Collaboration, PRD94(2016)054503

$$\langle H_m \rangle_H = \Delta R^q(t_f; H) + \mathcal{O}(e^{-\delta m t_f}), \langle F^2 \rangle_H = \Delta R^g(t_f; H) + \mathcal{O}(e^{-\delta m t_f}),$$

F. He, P. Sun, **YBY**, XQCD Collaboration, PRD104 (2021) 074507

Hadron matrix elements

- Valence quark mass ~ 500 MeV.
- Considering pseudo-scalar (PS) and vector (V) mesons
- Their quark matrix elements are similar within ~10% difference;
- But the gluon matrix elements differ by a factor of 2 in those two hadrons
- …...and the uncertainty is much larger even with 5 steps of HYP smearing on the gluon operator.

Supported by Strategic Priority Research Program of Chinese Academy of Sciences, Grant No. XDC01040100

- The gluon contribution $\frac{\beta}{2g} \langle F^2 \rangle_H$ to the hadron mass m_H .
- $\frac{p}{2g} \langle F^2 \rangle_N$ is around 800 MeV in the chiral limit $m_q \rightarrow 0$. $\frac{\rho}{2g}\langle F^2\rangle_{\pi}$ will be less than 100 MeV in the chiral limit $m_q \rightarrow 0$.
- They are exact what QCD predict.

$$H_g^a$$
 (GeV)

Gluon contribution

Supported by Strategic Priority Research Program of Chinese Academy of Sciences, Grant No. XDC01040100

$$\rho_{H}(|r|) = \mathbf{0}.$$

$$\frac{\langle \sum_{\vec{y}} \mathcal{H}(t_{f}, \vec{y}) H_{a}^{g}(t, \vec{y} + \vec{r}) \sum_{\vec{x}} \mathcal{H}^{\dagger}(0, \vec{x}) \rangle}{\langle \sum_{\vec{y}} \mathcal{H}(t_{f}, \vec{y}) \sum_{\vec{x}} \mathcal{H}^{\dagger}(0, \vec{x}) \rangle}|_{t, t_{f} - t \to \infty}, \qquad \mathbf{0}.$$

 Similar strategy as that proposed for the pion charge radius;

X. Feng. et.al, PRD101(2020)051502, arXiv:1911.04064

• The density is an order of magnitude smaller than the usual estimate of $\langle F^2 \rangle \sim 0.01 - 0.06$

> M. Shifman. et.al, NPB147(1979)448 G. Bali. et.al, PRL113(2014)092001, arXiv:1403.6477

(GeV⁴)

PE

Density inside hadron

Supported by Strategic Priority Research Program of Chinese Academy of Sciences, Grant No. XDC01040100

Outline

• Brief introduction on Lattice QCD;

Parton masses and their low energy limits. 0

Hadron mass and its components;

The light quark masses

$$m_{q}^{\overline{\text{MS}}}(\mu) = \frac{Z_{m}^{\text{MOM,Lat}}(Q, 1/a)}{Z_{m}^{\text{MOM,Dim}}(Q, \mu, \epsilon)} Z_{m}^{\overline{\text{MS}},\text{Dim}}$$

Nonperturbative IR region can only be calculate by Lattice QCD

- The RI/MOM renormalization targets to cancel the $\alpha_{s} \log(a)$ divergences using the off-shell quark matrix element;
- Up to the $\mathcal{O}(a^2p^2)$ correction which can be eliminated by the $a^2p^2 \rightarrow 0$ extrapolation.

Renormalization

$m(\epsilon)m_q^{\text{Lat}}(1/a) + \mathcal{O}(a^m, \alpha_s^n)$

G. Martinelli, et.al, NPB445(1995)81, arXiv: hep-lat/9411010

The regularization-independent

 And also vertex 1 $\Lambda(p, p, \Gamma) = S^-$

Landau gauge.

• It can be applied to any regularization scheme.

momentum subtraction scheme

First of all, we introduce a perturbative calculable scale $Q^2 = -p^2$, o Then we can calculate the quark propagator $S(p) = \sum e^{-i(p \cdot x)} \langle \psi(x) \overline{\psi}(0) \rangle$, \boldsymbol{X}

function

$$\int_{x,y} e^{-i p \cdot (x-y)} \langle \psi(x) \overline{\psi}(0) \Gamma \psi(0) \overline{\psi}(y) \rangle S^{-1}(p)$$
 under the

• Eventually we can define the RI/MOM renormalization condition as the $\frac{Z_q^{\text{RI}}(Q)}{T} = \frac{C_0}{T} + Z_S^{\text{MOM}}(Q) + \mathcal{O}(m_q).$ following: $\frac{1}{\text{Tr}[\Gamma^{\dagger}\Lambda(p,p,\Gamma)]}_{p^{2}=-Q^{2}} \quad m_{q}^{n}$

RI/MOM scheme

• The RI/MOM renormalization constant of the quark mass under the lattice regularization is:

$$Z_m^{\text{MOM,Lat}}(Q, 1/a, \xi) = (Z_S^{\text{MOM,Lat}}(Q, 1/a, \xi))^{-1} = \langle q \mid \mathcal{O} \mid q \rangle^{\text{Lat}} = 1 + \frac{\alpha_s C_F}{4\pi} [-3\log(a^2 Q^2) - \xi + b_S] + \mathcal{O}(\alpha_s^2, a^2 Q^2);$$

• The RI/MOM and MS renormalization constants under the dimensional regularization are:

$$Z_m^{\text{MOM,Dim}}(Q,\mu,\epsilon,\xi) = \langle q \mid \mathcal{O} \mid q \rangle^{\text{Dim}} = 1 + \frac{\alpha_s C_F}{4\pi} [\frac{3}{\tilde{\epsilon}} - 3\log(\frac{Q^2}{\mu^2}) - \xi + 5] + \mathcal{O}(\alpha_s^2)$$

$$Z_m^{\overline{\text{MS}},\text{Dim}}(Q,\mu) = 1 + \frac{\alpha_s C_F 3}{4\pi \ \tilde{\epsilon}} + \mathcal{O}(\alpha_s^2)$$

$$m_{q}^{\overline{\text{MS}}}(\mu) = \frac{Z_{m}^{\text{MOM,Lat}}(Q, 1/a, \xi)}{Z_{m}^{\text{MOM,Dim}}(Q, \mu, \epsilon, \xi)} Z_{m}^{\overline{\text{MS}},\text{Dim}}(Q, \mu, \epsilon, \xi)$$

Perturbative calculation

• Thus the renormalized quark mass under the MS scheme can be defined by:

 $^{n}(\epsilon)m_{q}^{\text{Lat}}(1/a) + \mathcal{O}(a^{2m}Q^{2m},\alpha_{s}^{n})$

RI/MOM scheme

 $Z_m^{\text{MOM,Lat}}(Q, a, 0) = (Z_S^{\text{MOM,Lat}}(Q, a, 0))^{-1}$

Discretization errors

F. He, et.al, χ QCD, arXiv: 2204.09246

- The discretization is 0 sizable at $a \sim 0.1$ fm;
- Becomes much smaller 0 after the $\mathcal{O}(a^2p^2)$ correction is removed;
- The higher order $a^{2n}p^{2n}$ correction can also be removed in the practical calculation.

The light quark masses

A. Bazavov, et,al., MILC, PRD87(2013)054505

Renormalization

$$= Z_m^{\overline{\text{MS}},\text{Lat}}(\mu,1/a)m_q^{\text{Lat}}(1/a) + \mathcal{O}(a^{2m}Q^{2m},\alpha_s^n)$$

$$\overline{S}(\mu) = (Z_{S}^{\overline{\text{MS}}}(\mu))^{-1} = \frac{Z_{m}^{\text{MOM,Lat}}(Q, 1/a, \xi)}{Z_{m}^{\text{MOM,Dim}}(Q, \mu, \epsilon, \xi)} Z_{m}^{\overline{\text{MS}},\text{Dim}}(\epsilon)|_{a^{2}Q^{2} \to 0} + C$$

• The scalar renormalization constant $Z_{S}^{\overline{\text{MS}}}(\mu)$ shares the similar lattice spacing dependence as the bare quark mass $m_q^{\text{Lat}}(1/a)$;

• The renormalized quark mass $m_q^{\text{Lat}}(1/a)$ $m_q^{\overline{\mathrm{MS}}}(\mu) = 1$ -should $\overline{Z_S^{\overline{\text{MS}},\text{Lat}}(\mu,1/a)}$ be free of 1/a.

Quark masses

FLAG2021

ms

From lattice QCD

FLAG, EPJC80(2020)113

Chiral symmetry breaking dynamical quark mass under the Landau gauge

• If we define the mass renormalization constant through $m^{RI}(Q) = \frac{Tr[\langle S(p) \rangle^{-1}]}{Z_q(Q)}|_{Q=\sqrt{-p^2}}$, then we have $Z_p(Q)Z_m(Q) = 1$ for arbitrary quark mass and scale, and then a nonzero "dynamical mass" will appear in the renormalized quark mass

$$m_q^R(a, m_q; Q) = Z_m m_q^{\text{bare}}(a, m_q).$$

- It is an important feature in the DSE approach to understand the IR physics of QCD.
- But where does the feature come from?

Chiral symmetry breaking in the vertex correction under the Landau gauge

 Under the Landau gauge, we can define the vertex correction at given off-shell scale as:

$$Z_{\Gamma}(Q) \equiv \frac{Z_{q}(Q)}{\operatorname{Tr}[\langle S(p) \rangle^{-1} . \langle S(p) . \Gamma . S(p) \rangle . \langle S(p) \rangle^{-1}]} |_{Q = \sqrt{-p^{2}}}$$

• Then we have

$$Z_S \neq Z_P, Z_V \neq Z_A$$
, if *Q* is small.

• And we can see $Z_P = Z_m^{-1}$ approaches zero when $Q \rightarrow 0$.

Chiral symmetry breaking

M. Denissenya, et al., PRD91(2015)034505, 1410.8751

in the hadron masses

• Based on the 2pt correlator $C_2(t,\Gamma) = \sum_{\vec{x}} \text{Tr}[\langle \Gamma S(\vec{0},0;\vec{x},t)\Gamma S(\vec{x},t;\vec{0},0)\rangle]$ in the Euclidean space, the ground state mass with given interpolation field $\bar{q}_1\Gamma q_2$ can be defined by:

$$m_{\Gamma} \equiv \frac{1}{a} \lim_{t \to \infty} \log \frac{C_2(t, \Gamma)}{C_2(t+a, \Gamma)}.$$

The spontaneous chiral symmetry breaking makes

$$m_{a_0} \equiv m_I \neq m_{\gamma_5} \equiv m_{\pi}, m_{a_1} \equiv m_{\gamma_5 \gamma_i} \neq m_{\gamma_i} \equiv m_{\rho}.$$

But the correlators seem to be closer at smaller t...

Chiral symmetry breaking

M. Tomii, et al., PRD99(2019)014515, 1811.11238

in the correlators

• Based on the 2pt correlator $C_2(|x|, \Gamma) = \text{Tr}[\langle \Gamma S(0; x) \Gamma S(x; 0) \rangle]$ in the Euclidean space, the renormalized quark mass can be defined by:

$$m_{ud,S/P}^{\overline{\mathrm{MS}}}(1/|x|) = \sqrt{\frac{C_2(|x|, I/\gamma_5)}{C_2^{\overline{\mathrm{MS}}}(|x|, I/\gamma_5)}}} m_{ud}^{\mathrm{bare}};$$

- Then we have
- 1. $m_{ud,S}^{\overline{\text{MS}}}(1/|x|) \simeq m_{ud,P}^{\overline{\text{MS}}}(1/|x|), C_2(|x|, I) \simeq C_2(|x|, \gamma_5)$, if $1/|x| \gg 1$ GeV;
- 2. $m_{ud,S}^{\overline{\text{MS}}}(1/|x|) \neq m_{ud,P}^{\overline{\text{MS}}}(1/|x|), C_2(|x|, I) \simeq C_2(|x|, \gamma_5)$, if $1/|x| \ll 1$ GeV.

Chiral symmetry breaking dynamical quark mass and trace anomaly

YBY, *X*QCD, Lattice2019 001, 2003.12914

- If we compare $m_q^R(a, m_q; Q) = Z_m m_q^{\text{bare}}(a, m_q)$ with $\langle q | m_q \bar{\psi} \psi - \frac{\beta}{2g} F^2 | q \rangle$, they are somehow close to each other at large Q.
- But it would not be a well-defined comparison and requires further investigation.
- Let us consider the problem in another way, through the Dirac spectrum...

- The non-zero and finite eigenvalues of the overlap fermion are all paired, $D_c v = i\lambda_c v, D_c \gamma_5 v = -i\lambda_c \gamma_5 v$
- Thus if $|\lambda_c|$ has a lower band $\lambda_0 \gg m_q$, then $\gamma_5 \frac{1}{D_c + m_q} + \frac{1}{D_c + m_q} \gamma_5 \propto \frac{m_q}{\lambda_0^2} \propto \frac{m_q}{\lambda_0} \frac{\gamma_5}{D_c + m_q}$
- and then the chiral symmetry restores in such a case.

and chiral symmetry breaking

0.02 0.114 fm 0.084 fm 0.015 Λ_0 0.01 0.005 0 0.02 0.12 0.1 0.14 0.04 0.06 0.08 0 λ (GeV) YBY, *X*QCD, Lattice2019 001, 2003.12914

If we put a hard cutoff λ_0 at small λ , then one would expect that the chiral condensate "vanishes", and chiral symmetry "restores" with a "spin symmetry".

ρ(λ)) (GeV³), T=0 MeV

with hard cutoff at small eigenvalues

M. Denissenya, et al., PRD91(2015)034505, 1410.8751

with hard cutoff at small eigenvalues

YBY, *x*QCD, Lattice2019 001, 2003.12914

- We define the subtracted propagator as $S_h(p, x; \lambda_c) = \sum_{y} e^{ipy} (\langle \bar{\psi}(x)\psi(y) \rangle - \sum_{-\lambda_0 < \lambda < \lambda_0} \mathsf{v}_{\lambda}(x) \frac{1}{i\lambda + m} \mathsf{v}_{\lambda}^{\dagger}(y));$
- And then the subtracted vertex correction is defined by $\frac{Z_p}{Z_n}(\lambda_0) = \frac{Tr[\langle S_h \rangle^{-1} . \langle S_h . \gamma_5 . S_h \rangle . \langle S_h \rangle^{-1}]}{Tr[\langle S_h \rangle^{-1} . \langle S_h . S_h \rangle . \langle S_h \rangle^{-1}]}(\lambda_0).$
- One can see that the chiral symmetry restores after the low mode with $\lambda < 10m_q$ are subtracted.

$$\gamma_5 \frac{1}{D_c + m_q} + \frac{1}{D_c + m_q} \gamma_5 \propto \frac{m_q}{\lambda_0^2} \propto \frac{m_q}{\lambda_0} \frac{\gamma_5}{D_c + m_q}$$

with hard cutoff at small eigenvalues

YBY, *X*QCD, Lattice2019 001, 2003.12914

- Similar feature appears in the "dynamical quark mass", when we define the subtracted quark mass as $m^{RI}(Q;\lambda_0) = \frac{Tr[\langle S_h(p;\lambda_0) \rangle^{-1}]}{Z_a(Q;\lambda_0)}$
- Subtracted quark mass $m^{RI}(m_q; Q; \lambda_0) \propto m_q$ when the low mode with $\lambda < 10m_a$ are subtracted.
- It is consistent with the chiral symmetry "restoring" picture in the other examples.

$$\gamma_5 \frac{1}{D_c + m_q} + \frac{1}{D_c + m_q} \gamma_5 \propto \frac{m_q}{\lambda_0^2} \propto \frac{m_q}{\lambda_0} \frac{\gamma_5}{D_c + m_q}$$

on a lattice with small volume $L_S^3 \times L_T$

JLQCD and TWQCD, PRD83(2010), 074501, 1012.4052 • The $\rho(\lambda)$ will be suppressed at small λ when L_S and/or $L_T = 1/T$ is small enough (*T* here corresponds the temperature):

1.
$$L_S < \frac{1}{m_{\pi}} \ll L_T$$
, ϵ -regime;

2. $L_T < \frac{1}{m_{\pi}} \ll L_S$, finite temperature regime.

 The chiral symmetry breaking are also suppressed in these two cases.

S. Aoki, et.al, JLQCD, PRD103(2021), 074506, 2011.01499

on a lattice with small spacial volume

JLQCD, PRD77(2008), 074503, 0711.4965

 The result suggests that the chiral symmetry is restored in the ϵ -regime:

$$C_{2,P} = C_{2,S}, \ C_{2,V} = C_{2,A}.$$

• The effective mass of "the vector meson" would be also small in such a case.

S. Aoki, et.al, JLQCD, PRD103(2021), 074506, 2011.01499

at high temperature

- Similarly, the $\rho(\lambda)$ is suppressed at small λ , when the temperature T is above the critical (cross-over) temperature ~ 150 MeV.
- The chiral condensates $\Sigma = \pi \lim_{\lambda \to 0} \lim_{V \to \infty} \rho(\lambda)$ vanishes;
- The chiral symmetry should also restores in such a case.

L. Ya Glozman, PRD101(2020), 074516, 1912.06505

at high temperature

- $32^3 \times 8$, T = 380 MeV ~ $2.2T_c$, $N_f = 2$
- The chiral symmetry is restored, as $C_{2,P} = C_{2,S}, C_{2,V} = C_{2,A}.$
- Even more, $C_{2,T} = C_{2,V} = C_{2,A}$.
- Chiral-spin symmetry within the $T_c 3T_c$ intervals?

Distribution

X. Meng, et.al, χ QCD &CLQCD, in preparation

at different temperatures

T = 234 MeV

fm	$3.4\mathrm{fm}$	$4.2\mathrm{fm}$	$4.9\mathrm{fm}$	$6.7\mathrm{fm}$	$10.1{ m fm}$	
						$\lambda = 0 { m MeV}$
						$\lambda = 0.22~{\rm MeV}$
						$\lambda = 100 \; {\rm MeV}$
						$\lambda=330\;{\rm MeV}$

Measure-based dimension

in the 2+1 flavor case

- $N_f = 2 + 1, T = 234$ MeV.
- **Overlap valence fermion and Clover** fermion sea
- $d_{\text{IR}} = 3$ for the eigenvector with $\lambda = 0$ and $\lambda \geq 300$ MeV.
- $d_{\rm IR} \rightarrow 2$ for the non-zero mode cases with $\lambda \rightarrow 0.$
- $d_{\rm IR} = 1$ for the cases with $\lambda \in [10,200]$ MeV.

Summary

- accurately;
- come from the QCD dynamics.
- eigen modes of the Dirac operator spectrum in the Euclidean space.
- Lattice QCD "observations".

Lattice QCD provides a systematic solution to describe QCD precisely and

Most of the light hadron masses and more than 1/3 charmonium masses

The spontaneous chiral symmetry breaking directly relates to the low lying

Non-perturbative understandings of QCD are essential to understand the