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Precision: gateway to discovery

» Positive results » Negative results
* Rudolphine Tables (Tycho Brahe’s data, * Michelson’s experiments: Einstein’s
most precise before telescope): Kepler’s Special Relativity
laws, Newton’s law of gravity * No evidence of FCNC: GIM
« Accurate black-body radiation data: mechanism predicting charm quark,
Planck’s quantization discovery of J /iy (Ting & Richter)

 The advance of the Mercury's perihelion:

hint of Einstein’s General Relativity

» Discovery via precision

« Search anomalous deviations from theory
* Interplay between exp. and th.

 Theory: lattice or perturbative
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Perturbative QFT

1. Generate Feynman amplitudes

Feynman diagrams and Feynman rules

New developments: unitarity, recurrence relation, CHY, ...

2. Calculate Feynman loop integrals (Fls)

Amplitudes: linear combinations of Fls with rational coefficients

3. Perform phase-space integrations
: Monte Carlo simulation with IR subtractions

Relating to loop integrals via reverse unitarity (if no jet)

/ (g:)pD(%)Mpz) - / (gf)pD (p2+i10+ TP - iiO+>
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Definition of Fls

> A family of Feynman integrals

<. dP¢; Dyt DY
S /H imrD/2 Dl + 10—|—)V1 ce (DK + iO+)VK

Da = Aaijgi . Ej + Baz'jﬁf,; "Py + Ca

e« ¢4,..,7;: loop momenta; p,, ..., pr: external momenta;
« A, B:integers; C: linear combination of s (including masses)
« Dy, .., Dg:inverse propagators; v4, ..., vg: integers

Dx+1, -, Dy to form complete bases; vy, 4, ..., Vy: NoON-negative integers

» Difficulties of calculating Fls

* Analytical: known special functions are insufficient to express Fls

« Numerical: UV, IR, integrable singularities, ...
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Integration-by-parts: example

dPy 1
2m) P (02 — A)n

» Vanishing on the big hypersphere with radius R

dP¢ 0 Az U dD—1SM o ll
/ (2m)" ot {“2 B N”} N /a (2m)P {(62 - A)”} =Y

Integrand: fixed power in R; Measure: R°~*

« A family of Fls: F(n):/(

« Thus vanishing in dimensional regularization

> Relations between Fls

D 2002 = A) + 2A
():/K{(E2 A)”_n/g ((EQ—A)):H } = (D —2n)F(n) —2nAF(n+1)
1 n-2

———F(n)

« All Fls in this family can be expressed by F(1)

Fn+1)=

R )
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IBP equations

» Dimensional regularization: vanish at boundary

/HdDg 0 qDKle'”DRfVN —0 Vi, g,k
17TD/28€“ k DIt - - DX ’ T

\U/ ﬁ:({)f,..,{)g’pf,...,pgﬁ)

Linear equation: Z ka SV (D, §) =0

Q: polynomials in D, S

Plenty of linear equations can be easily obtained by varying: v,/, k

L 8/42



Master integrals

> # of equations grows faster than # of Fls

* Let positive powers r =v; +---+v; ,nonpositives = —(v; . +--+v;,),
N, = CEZLCNZZ-} | is the # of Fls with fixed 7, s

« # of equations (for seeds with fixed r,s) = L(L + E) X N, ,

 #of newFls =N, + N,;1541 (= 2 N, for sufficient large 7, s)

« Expectation: finite # of linearly independent Fis

» A family of Fls form a FINITE-dim. linear space

« Bases of the linear space called master integrals (Mls)

 |BPs reduce tens of thousands of Fls to much less Mis
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IBP reduction

» Laporta’s algorithm to do reduction
Z ngk I (D S ) 0

« Generate egs for all v with 1" € [Tmina Tmax]a S & [Smina Smax}
* Ordering: simpler Fl has smaller z, then smaller r, then smaller s
« Solving linear eqgs to eliminate more complicated Fls

« Eventually, all Fls are linear combinations of Mls

» Solving IBP egs: automatic, any-loop order
 Public codes: AIR, FIRE, LiteRed, Reduze, Kira, FiniteFlow, Blade...

«  Many more private codes

 Warning: time-consuming for complicated problems

R )
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Differential equations: example

> Due to IBP: DEs of Mis

IBP 2(D—3 D -2 7
4m? — s m2(4m?2 — s) "
D -2
IBP 2o
- 1 dP/¢ 200+ p)-p
—In=7—In=—4 - _D/2 (2 2 2 212
0s 25 Oph 2s | inP/2 (2 — m?)[(£L + p)? — m?]
J 1 I —1
S 12+211 22 anhi + aioho
2] =0 i
L 5110 =
» Boundary Condition

{IﬂmQ—m = (=5)P*7°r(2 - D/Q)F(Pl()l/f__;))
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Traditional DEs method

> Step 1: Set up s-DEs of Mis

Differentiate MIs w.r.t. invariants s, such as m?,p - ¢

§ - ﬁ

IBP relations result in: I(D,8) = A;(D,5)I(D,5)

Si

» Step 2: Calculate boundary condition

Calculate integrals at special value of m?, p*

Case by case, not systematic, maybe still hard!

» Step 3: Solve DEs

Systematic, not hard (explain later)
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Since 90s’

Using IBPs: express any Fl as linear combination of Mis,
also setup DEs for Mis

Fls = Linear algebra @ Master integrals

Input:
The same kinematics
The same spacetime dimension

The same number of loops

DEs method: needs BCs
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Auxiliary mass terms

X. Liu, YQM, C. Y. Wang, 1711.09572

» Auxiliary Fls

epsn- [l e D
v irD/2 (D — My p+i0H)"1 - (D — Agn +i01H)vx

« 1; = 0 (typically 0 or 1), an auxiliary mass if 1; > 0

* Analytical function of n

* Physical result obtained by (causality)
I;(D,s)= lim IZ*™(D,s,n)

n—10~

* 1) Setup n-DEs; 2) Calculate boundary conditions; 3) Solve n-DEs

A, FEHRF

» n-DEs for Mls in auxiliary family using IBP

0

a—fa“X(D, §,n) = A(D,8,n)[*™(D, 5,n)
n
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Flow of auxiliary mass

> Solve ODEs of Mls

Im(n)

________

" | Singularity structure

T’Tu

8 - —
(D, 5,) = A(D, 5, )I*(D,5,1)
n

o If [24*(D, 3, ) is known , solving ODEs
numerically to obtain [%“*(D, §,i07)
« A well-studied mathematical problem

Step1: Asymptotic expansion atn = o
Step2: Taylor expansion at analytical points
Step3: Asymptotic expansionatn =0

- Efficient to get high precision :
ODEs, known singularity structure
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Boundary values at n — o

» Nonzero integration regions as n — o
Linear combinations of loop momenta: 0(,/|5]) or 0(1)

» Simplify propagators atn — o

¢, is the 0({/In]) part of loop momenta

?s is the 0(1) part of loop momenta

p is linear combination of external momenta
1 1
(l, +0ls+p)2—m2 —kn E%—ﬁ;?]
* Unchangeif /, =0andkx =0

» Boundary Fls after simplification

1. Vacuum integrals

2. Simpler Fls with less denominators, if all loop momenta are 0(1)
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Iterative strategy

» For boundary Fls with less denominators:

Calculate them again use AMF method, even simpler boundary Fls as input
(besides vacuum integrals)

: .I — -;..-.-.-:::.;_.._..-.-.:;::%i:_-:{::.;:n —_ ./ — ..
“108(176) 29(62) 14(30) 3(5) scaleless

Eventually, leaving only (single-mass) vacuum integrals as input

Kinematic information can be recovered by linear algebra!

» Typical single-mass vacuum Mils

* Much simpler to be calculated

P The same number of loops and spacetime dimensions
— H
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2017-2021

Fls = Linear algebra @ Vacuum integrals

Input:
No kinematics (no external legs)
The same spacetime dimension

The same number of loops

Is this the end of the story?
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From vacuum integrals to p-integrals

> A family of single mass vacuum integrals
/H dDE Klji_KlﬂLl...D;]VN
irD/2 (Dy +i0FT)"1 -+ (D + 101k

Dy =13 —m*+i0"

m?: the only scale. Can choose m? =1

» Propagator (p-)integrals
R L Dy —VK+1 Jy—VN
l (1) = / (H i(er%) DKD+”12 ---Da]fv

=2

* As¢iistheonlyscale: T, (/2) = (— 62) L-nb T (1)

* L-loop single-mass vacuum integral expressed by (L — 1)-loop p-integral

[ dP4 (=f) vt T(v—LD/2)T(LD/2 — v+ 1)+
o= | s AT N R

(L—-1)D 1)
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From p-integrals to vacuum integrals

Z. F. Liu, YQM, 2201.11637

» Apply AMF method on (L — 1)-loop p-integral

1) IBP to setup n-DEs

2) Single-mass vacuum integrals no more than (L — 1) loops as input

S

Single-mass vacuum integrals with L loops are determined by

that with no more than (L — 1) loops (besides IBP)

 Boundary: 0-loop p-integrals equal 1

KB, WK

» Only IBPs are needed to determine Fls!

« |IBPs: linear algebra, exact (in D, 5) relations between Fls
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Workflow

» The ‘FICalc’ to calculate Fls can be defined as (any given
nonsingular D and s):

@ If itis a 0-loop p-integral, return 1;
@ If itis a single-mass vacuum integral, express it by a p-integral, and
call ‘FICalc’ to calculate the p-integral;
3 Otherwise:
a) Introduce n to one propagator (if the mass mode is not possible)
b) Setup n-DEs using IBP as input
c) Call ‘FICalc’ to calculate boundary Fls atn — o

d) Numerically solve n-DEs with given BCs to obtainn — i0~

L 23/42



A five-loop example

Y AR — 2.073855510286740¢ 2 — 7.812755312590133¢ !
, ‘ — 17.25882864945875 + 717.6808845492140¢
P — 1 8190.876448160049¢2 + 78840.29598046500¢
. 0 + 566649.1116484678¢* + 3901713.802716081¢

“d, . + 23702384.71086095¢% + 142142936.8205112¢” .

* |IBP relations are the only input!

« Terms up to 0(e*) agree with literature; Others are new (D = 4 — 2¢)
Lee, Smirnov, Smirnov, 1108.0732

« An arbitrary dimension D = 4/7, challenging for other methods

-9.7931120970486493218087959800691116464281825474654283306146947264431
516031830610056668242341877309401032293901004574319494017206091158244
70822465419388568066195037237209021119616849996640259201636321*1017

with about 130 significant digits
24/42
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Since 2022

Fls = Linear algebra

No other input:
No kinematics!
No spacetime dimension!

No loops!
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Package: AMFlow

> Download X. Liu, YQM, 2201.11669
Link: https://qgitlab.com/multiloop-pku/amflow

Name Last commit Last update
3 diffeq_solver update 3 months ago
3 examples update 3 months ago
B3 ibp_interface fix_a_bug_for_mpi_version 1 week ago
C AMFlow.m fix mass mode 2 months ago
M CHANGELOG.md update changelog 1 week ago
Me FAQ.md update 6 maonths ago
B3 LICENSE.md test 7 months ago
=+ README.md update 3 months ago
[% options_summary update 3 months ago

» Description

« The first (method and) package that can calculate any Fl (with any number of

loops, any D and 5) to arbitrary precision, given sufficient resource

L 27/42


https://gitlab.com/multiloop-pku/amflow

Advantages: all purposes

» Expansion of D around any fixed value D,
« Calculate Fls with D = D, — 2¢ for a list of small € (e.g. 0.01,0.011,0.012, ..., 0.02)

 Fit Lauran expansionin ¢
D, can be 4, 3 (nonrelativistic theory), or other values

« Can obtain € expansion to any order

» Calculate Fls with linear propagators

- Present frequently in effective field theory

» Calculate phase space integrals

 Asfar as thereis no jet

L 28/42



» Cutting-edge problems

--.? ..... ?‘ -
S SO S
-
@

R )

Examples using AMF

Family dp a b c d e f
T serup 6 20 18 8 1 25 30
Tove 7 11 15 6 3 15 42
P, 95% 9%  96% 99% 98%  94%  93%
T5 2 916 64 1305 30 1801 63

Time to setup DEs (CPU core hours)
« Results: 16-digit precision, to 0(¢*)
» First step of iteration: cost most time
« All results in (a)-(f) are new, very
challenging for all other methods!

* Highly nontrivially checked!

* |IBP reduction (bottleneck): C++
* Solve n-DEs: Mathematica. Can be

significantly improved
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Pheno. applications of AMF
» Two ways to use AMF

« Use AMF to calculate each phase-space point
« Use AMF to generate BCs of s-DEs

» Wide range of applications

* Linear propagators; Phase space integrals; QCD sum rules; Electroweak corrections;

Quarkonia production; Complex mass; ...

AMFlow: A Mathematica package for Feynman integrals computation via auxiliary mass Citations per year
flow

Xiao Liu (Peking U., SKLMNPT and Oxford U., Theor. Phys.), Yan-Qing Ma (Peking U., SKLNPFT and Peking U., CHEP and CICQM, Beijing)

Jan 27, 2022

30 pages

Published in: Comput.Phys. Commun. 283 (2023) 108565
Published: Feb, 2023

e-Print: 2201.11669 [hep-ph]

DO 10.1016/j.cpc.2022,108565 (publication)

View in: ADS Abstract Service

[A pdf [= cite @ reference search =) 67 citations
B e
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Current status: master integrals calculation

> Main methods
Hepp, (1966)

F. Feng, Z. Li, ...

. . Usyukina (1975)
* Mellin-Barnes representation smirnov, 9905323
J. Wang, ...

Laporta, 0102033

- Difference equations ..o/ o250

 |Differential equations| Kotikov, PLE(1991)

)
( \

Analytical : if e-form exists

Henn, 1304.1806
L.B Chen, L.L. Yang, G. Yang, Y. Zhang, ...

> In future

1. Find out the minimal number of MlIs (D or 4): exhausting relations, simpler DEs

Numerical: general and efficient
X. Liu, YQM, C. Y. Wang, 1711.09572

2. Define better Mlis: simpler DEs, more efficient to get and solve numerically

. 3. Analytical: elliptic functions
—3 H
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Current status: integral reduction

» Difficulties of IBP method (although simply linear algebra)

« Complicated intermediate express

« Very large scale of linear equations (can be billions of) E.g. Laporta 1910.01248

» Improvements for IBPs

 Finite field: solving intermediate express swell
Manteuffel, Schabinger, 1406.4513

« Syzygy equations: trimming IBP system
Gluza, Kajda, Kosower, 1009.0472
Larsen, Zhang, et. al., 1511.01071, 1805.01873, 2104.06866

» Block-triangular form: minimize IBP system (needs input)
Liu, YQM, 1801.10523, Guan, Liu, YQM, 1912.09294

> In future
1. A better way: combine syzygy equations and block-triangular form

2. Find direct solution of IBP relations. IBP generators: a noncommutative algebra
i
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Ways to bypass IBPs

» 1/D expansion and matching

(A 13 281 2823
m=0: fi1 =—{ 3 4d ' 32d2 ' 128d° m

» 1/n expansion and matching RN

‘[111 -

3D 3y 9D

> Intersection theory

* Fls Ial ag,...,an _K/U(p — <(10’C]

1
— ~ N —
p=¢d z, (p_zalzaz N dVz=dz ANdza A Ndzy
1 ~2 N

. Intersection number (¥Ll¢r)w = ) Res. p(d)p ‘PR)
pEP

i _ D—2)?p*| 4, D—3m? (D+4)(D-3)p*| .. N

Still hard,
worth further study
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State-of-the-art perturbative computation

» 2—2 process with massive particles at two-loop: almost done

g+g-t+t, g+g-H+H(g), eTe- -HZ

» Frontier in the following decade:

2—3 processes at two loops (3jly, VIH+2j tt+j, ttH,...)
2—2 processes at three loops (2j/y, VIH+j, tt, HH, ...)
2—1 processes at four loops (j, V/H, AP kernel)

Very a few obtained, usually no exact pure virtual contribution

» Very challenging

Four-loop g + g = H (NNLP in HTL): 860 days (wall time!)

Bottleneck: IBP reduction
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Packages for fully automatic calculation

Generate Manipulate - Master integrals
h - Integral reduction -
amplitudes amplitudes calculation

Package FeynArts or
used qggraf

https://feyna

rts.de/
Notes http://cfif.ist.

CalclLoop

https://qgitlab.co
m/ygma/CalcLoop

utl.pt/~paulo
/agraf.html

* Fully automatic, valid to any-loop order
The key: AMFlow

Blade AMFlow

https://qgitlab.co https://qgitlab.

m/multiloop-

com/multiloop

pku/blade

-pku/amflow

.

Implementing block-triangular form,

usually improves efficiency by 0(10?)

Main challenge: integral reduction is time/resource consuming

The dawn of automatic multi-loop calculation!

Automatic NLO correction obtained more than 10 years ago: MadGraph, Helac, FDC, etc

R )
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https://feynarts.de/
http://cfif.ist.utl.pt/~paulo/qgraf.html
https://gitlab.com/yqma/CalcLoop
https://gitlab.com/multiloop-pku/blade
https://gitlab.com/multiloop-pku/amflow
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Summary for DimReg

» Feynman integrals form a finite-dim. linear space

» AMF: Feynman integrals can be completely determined
once relations in the linear space is clear

» Result in a powerful method to calculate Fls: in principle
any Fl can be systematically calculated

. 2022 . future L.
Impossible =— possible — efficiency

» Solving the linear space is still hard, stay tuned
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Integrals in lattice regulator

R )

Nonperturbative computation of lattice correlation functions
by differential equations

Federico Gasparotto, Andreas Rapakoulias, and Stefan Weinzierl

PRISMA Cluster of Excellence, Institut fiir Physik, Johannes Gutenberg-Universitit Mainz,
D-55099 Mainz, Germany

® (Received 31 October 2022; accepted 15 December 2022; published 4 January 2023)

We show that methods developed in the context of perturbative calculations can be transferred to
nonperturbative calculations. We demonstrate that correlation functions on the lattice can be computed
with the method of differential equations, supplemented with techniques from twisted cohomology. We
derive differential equations for the variation with the coupling or—more generally—with the parameters
of the action. Already simple examples show that the differential equation with respect to the coupling has
an essential singularity at zero coupling and a regular singularity at infinite coupling. The properties of
the differential equation at zero coupling can be used to prove that the perturbative series 1s only an
asymptotic series.

DOI: 10.1103/PhysRevD.107.014502
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Integrals and differential equations

Jmax
SE_Z( Z¢x¢r+ae +D¢x+z {nbj)

xeA u=0

We are interested in the lattice integrals * Using twisted cohomology (or IBP)

Ly oy = / d”¢(H¢ )exp g (2
cN _I _ZAzka

The integration contour C is a curve in C and the same for

every field variable ¢,. The integration contour is chosen

such that exp(—Sg) goes to zero as we approach the * Boundary condition at 1 ~ 0 can be
boundary. The correlation functions are then given by provided by perturbative calculation

R )
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Works

V. EXAMPLE 2: ¢*-THEORY

As our second example we consider massive ¢*-theory

. PR . A J1 = Iy, Jy=1y, J3=1In.

in D = 1 space-time dimensions with L = 2 lattice points.

We set 1, = m? and A, = A. The action is given by Jo=I+1pn, Js=Lo+lyn, Je=1Iy+1p,
Jr=ho=1o. Js=ln—1lpn. Jo=1Iy—1p.

2
B+ )+ (B + ).

Sg = (¢xl - ¢x3)2 =+ 4

J1
d | />

Jy
i

1

1 0
_3@dmy 1 _1
A A
_ 2(6+4mr4mt)  32+m*)E
P A2
18(2+m?) 24-m?
A 24

3

22

2+m?
44
3(2+m?)
/12

3(2+m?)(72+4)

27
3(12+4m?+m*)

27

1
A

differential equation

NNLO |
NLO ——
Monte Carlo s—s—
4 6 8 10
A
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Very challenge for practical use

Also for ¢*-theory we give some indications for the
required CPU time on a standard laptop for larger lattices:
For example, it takes about 280 s to compute the differential
equation for D =1 space-time dimensions with L = 8
lattice points and about 1400 s to compute the differential
equation for D = 3 space-time dimensions with L = 2
lattice points in each direction.

* Only 8 lattice points

« Atleast hundred thousand points needed for practice

* Note: cutting-edge perturbative calculations have 11 variables; 9-variable
problems have been solved 20 years ago

Any idea to improve?

Thank you!
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