Observation of an isoscalar resonance with exotic $J^{PC}=1^{-+}$ quantum numbers in $J/\psi\to\gamma\eta\eta'$

Phys. Rev. Lett. 129, 192002 (2022), Phys. Rev. D 106, 072012 (2022)

刘北江

中国科学院高能物理研究所

Hadron Physics Online Forum (HAPOF), Nov. 11, 2022

Introduction

 Hadrons, the complex building blocks of our world, emerge from interaction of quarks and gluons as described by QCD

- NPQCD: How does QCD give rise to hadrons?
 - What is the origin of confinement? (Quarks and gluons not isolated in nature)
 - Role of gluons: Mass? Spin? ...
 - Quark model seems to work really well. Why?
 - Existence of states beyond Quark Model?

Hadron spectroscopy

- Testing QCD in the confinement regime
- Revealing the fundamental degrees of freedom

Atomic Spectrum: Bohr model → QED

Hadron spectrum: Quark model → QCD

Key things to search for: further possible configurations beyond quark model

QCD exotics

- QCD permits additional colorsinglet configurations
- Physical mesons
 - Linear superpositions of all allowed basis states
 - "Configuration mixing"
 - Disentanglement of contributions difficult
 - Detailed information about couplings to production and decay channels required

 \rightarrow Discovery with precision measurement

So far...

• Strong evidence for QCD exotics in heavy quark sector, e.g.Tetraquark candidates $Z_c^+ \rightarrow J/\psi\pi$,Pentaquark candidates $P_c^+ \rightarrow J/\psi p$, ...

- Light quark sector is more complicated
 - evidence for gluonic degrees of freedom remains sparse

But, an absolute necessity to claim that we understand hadrons

Beijing Electron Positron Collider (BEPCII)

Charmonium decays provide an ideal lab for light QCD exotics

- Clean high statistics data samples High cross sections of $e^+e^- \to J/\psi, \ \psi'$ Low background
- Well defined initial and final states Kinematic constraints I(J^{PC}) filter
- "Gluon-rich" process

Glueballs

- Evidence of gluon self interaction
- Gluonic Excitations provide a measurement of the excited QCD potential
- Low-lying glueballs with ordinary J^{PC} \rightarrow mixing with q \overline{q} mesons
 - ➤Observe a new peak
 - ≻ "overpopulation", e.g. $f_0(1370) \& f_0(1500) \& f_0(1710)$
 - ➢Solve the mixing scheme

Glueballs from Lattice simulations in the pure gauge theory without quarks

Scalar glueball candidate: production properties

- Scalar glueball is expected to have a large production in J/ ψ radiative decays: B(J/ $\psi \rightarrow \gamma G_{0+}$) = 3.8(9) × 10⁻³ by Lattice QCD
 - Observed B(J/ $\psi \rightarrow \gamma f_0(1710))$ is x10 larger than $f_0(1500)$
 - ► BESIII: $f_0(1710)$ largely overlapped with scalar glueball

Scalar glueball candidate: decay properties

- "Flavor-blindness of gluon" \rightarrow SU(3)_F for a pure glueball,
 - $\Gamma(G \to \pi\pi: K\bar{K}: \eta\eta: \eta\eta': \eta'\eta') = 3:4:1:0:1$

 $B(G \rightarrow \eta \eta')/B(G \rightarrow \pi \pi) < 0.04$, predicted in Phys. Rev. D 92, 121902

Using 10B of J/ ψ events, J/ $\psi \rightarrow \gamma \eta \eta'$, Phys. Rev. Lett. 129, 192002 (2022), Phys. Rev. D 106, 072012 (2022) J/ $\psi \rightarrow \gamma \eta' \eta'$, Phys.Rev.D 105 (2022) 7, 072002

Spin-exotic mesons

- States with $J^{PC} = 0^{--}$, even⁺⁻, odd⁻⁺ forbidden for $q\overline{q}$ configuration
- Finding them would be an unambiguous signature for configurations beyond simple quark model

 $\vec{J} = \vec{L} + \vec{S}$ $P = (-1)^{L+1}$ $C = (-1)^{L+S}$ Allowed J^{PC}: 0⁻⁺, 0⁺⁺, 1⁻⁻, 1⁺⁻, 2⁺⁺, ... Forbidden J^{PC}: 0⁻⁻⁻, 0⁺⁻⁻, 1⁻⁺, 2⁺⁻⁻, ...

Detailed reviews: Phys. Rev. C 82, 025208 (2010) Prog. Part. Nucl. Phys. 82, 21 (2015)

Spin-exotic mesons

- Only 3 candidates so far: All 1^{-+} isovectors
 - $\pi_1(1400)$: seen in $\eta\pi$
 - $\pi_1(1600)$: seen in $\rho\pi$, $\eta'\pi$, $b_1\pi$, and $f_1\pi$
 - $\pi_1(2015)$ (needs confirmation): seen in $b_1\pi$, and $f_1\pi$
- Some claims are controversial

Experiments:

- Hadroproduction: E852, VES, COMPASS
- $p\overline{p}$ annihilation: Crystal Barrel, OBELIX, PANDA(2026)
- Photoproduction: GlueX(major goal, 2017-)

	Decay mode	Reaction	Experiment
π ₁ (1400)	ηπ	$\pi^{-}p \rightarrow \pi^{-}\eta p$ $\pi^{-}p \rightarrow \pi^{0}\eta n$ $\pi^{-}p \rightarrow \pi^{-}\eta p$ $\pi^{-}p \rightarrow \pi^{0}\eta n$ $\bar{p}n \rightarrow \pi^{-}\pi^{0}\eta$ $\bar{p}p \rightarrow \pi^{0}\pi^{0}\eta$	GAMS KEK E852 E852 CBAR CBAR
	$ ho\pi$	$\bar{p}p \rightarrow 2\pi^+ 2\pi^-$	Obelix
	η΄π	$\pi^{-}Be \to \eta' \pi^{-} \pi^{0}Be$ $\pi^{-}p \to \pi^{-}\eta' p$	VES E852
π ₁ (1600)	$b_1\pi$	$\pi^{-}Be \rightarrow \omega\pi^{-}\pi^{0}Be$ $pp \rightarrow \omega\pi^{+}\pi^{-}\pi^{0}$ $\pi^{-}p \rightarrow \omega\pi^{-}\pi^{0}p$	VES CBAR E582
	$ ho\pi$	$\pi^{-}Pb \to \pi^{+}\pi^{-}\pi^{-}X$ $\pi^{-}p \to \pi^{+}\pi^{-}\pi^{-}p$	COMPASS E582
	$f_1\pi$	$\pi^{-}p \rightarrow p\eta\pi^{+}\pi^{-}\pi^{-}$ $\pi^{-}A \rightarrow \eta\pi^{+}\pi^{-}\pi^{-}A$	E582 VES
π ₁ (2015)	$f_1\pi$ $b_1\pi$	$\pi^- p \to \omega \pi^- \pi^0 p$ $\pi^- p \to p \eta \pi^+ \pi^- \pi^-$	E582

Spin-exotic mesons

- $\pi_1(1400)$ and $\pi_1(1600)$ can be explained as one pole with recent coupled channel analyses
 - broad width consist with LQCD calculation for 1⁻⁺ hybrid, while a two-pole scenario cannot be completely excluded
 - $\pi_1(1400)$ is also interpreted as a four-quark state or a $f_1\pi$ molecule

• 1⁻⁺ contribution observed in $\chi_{c1} \rightarrow$ $\eta' \pi^+ \pi^-$ at CLEO-c (, but without significant BW phase shift) [Phys.Rev.D 95 (2017) 3, 032002]

• No 1⁻⁺ observed in $\chi_{c1} \rightarrow \eta \pi^+ \pi^-$ at BESIII [PRD 95, 032002 (2017)]

1^{-+} Hybrids on Lattice

Prog. Part. Nucl. Phys. 82, 21 (2015)

excited flux-tube

m=1

1⁻⁺ Hybrids

- Isoscalar 1⁻⁺ is critical to establish the hybrid nonet
 - Can be produced in the gluon-rich charmonium decays
 - Can decay to $\eta\eta'$ in P-wave

$$\pi_{1} I^{G}(J^{PC}) = 1^{-}(1^{-+})$$

$$K_{1} I^{G}(J^{P}) = \frac{1}{2}^{-}(1^{-})$$

$$\eta'_{1} I^{G}(J^{PC}) = 0^{+}(1^{-+})$$

(hybrid kaons do not have exotic QNs)

PRD 83,014021 (2011), PRD 83,014006 (2011), EP.J.P 135, 945(2020)

 \rightarrow Search for η₁ (1⁻⁺) in J/ψ \rightarrow γηη'

Observation of An Exotic Isoscalar State $\eta_1(1855) (1^{-+})$ in $J/\psi \rightarrow \gamma \eta \eta'$

Phys. Rev. Lett. 129, 192002 (2022), Phys. Rev. D 106, 072012 (2022)

- Potential backgrounds are studied using an inclusive MC sample of 10B J/ψ decays
- No significant peaking background is observed in the invariant mass distribution of the η^\prime
- Backgrounds are estimated by the η' sidebands in the data

Partial wave analysis

- Similar as the analyses of $J/\psi \rightarrow \gamma \eta \eta$ [Phys.Rev. D 87, 092009]and $J/\psi \rightarrow \gamma K_S K_S$ [Phys.Rev. D 98, 072003], based on the covariant tensor amplitudes [Eur. Phys. J. A 16, 537] and the GPUPWA framework*
 - Isobars in $J/\psi \rightarrow \gamma X, X \rightarrow \eta \eta'$ and $J/\psi \rightarrow \eta X, X \rightarrow \gamma \eta'$ and $J/\psi \rightarrow \eta' X, X \rightarrow \gamma \eta$. X: constant-width, relativistic BW
- A combined unbinned maximum likelihood fit is performed for the two decay channels of η^\prime
 - sharing the same set of masses, widths, relative magnitudes, and phases
- Backgrounds estimated by η^\prime sidebands are subtracted

$$S = -(\ln \mathcal{L}_{data} - \sum_{i} \omega_i \cdot \ln \mathcal{L}_{background})$$

*The first PWA framework with GPU acceleration , J. Phys. Conf. Ser. 219, 042031(2010) ¹⁶

All kinematically allowed known resonances with 0^{++} , 2^{++} , and $4^{++}(\eta\eta')$ and 1^{+-} and $1^{--}(\gamma\eta('))$ are considered

Decay mode	0^{++}	2^{++}	4^{++}	
	$f_0(1500)$	$f_2(1525)$	$f_4(2050)$	
	$f_0(1710)$	$f_2(1565)$	$f_4(2300)$	
	$f_0(1810)[58]$	$f_2(1640)$	$f_4(2283)[57]$	
	$f_0(2020)$	$f_2(1810)$		
	$f_0(2100)$	$f_2(1910)$		
$J/\psi \to \gamma X \to \gamma \eta \eta'$	$f_0(2200)$	$f_2(1950)$		
	$f_0(2330)$	$f_2(2010)$		
	$f_0(2102)[57]$	$f_2(2150)$		
	$f_0(2330)[57]$	$f_2(2220)$		
		$f_2(2300)$		
		$f_2(2340)$		
		$f_2(2240)[57]$		
	1	1+-		PDG and
	$\omega(1420)$	$h_1(1415)$		
	$\omega(1650)$	$h_1(1595)$		[57] pp reactions at Crystal Barrel and PS172, Phys. Rept. 39
	$\phi(1680)$	- ()		
$J/\psi \to \eta^{(\prime)} X \to \gamma n n^{\prime}$	$\phi(2170)$			[58] J/ $\psi \rightarrow \gamma \phi \omega$ at BESIII, Phys. Rev. D 87,032008
	$\rho(1450)$			
	$\rho(1700)$			
	$\rho(1900)$			47

PDG-optimized set of amplitudes

Decay mode	Resonance	$M ({\rm MeV}/c^2)$	Γ (MeV)	$M_{\rm PDG}~({\rm MeV}/c^2)$	$\Gamma_{\rm PDG}~(MeV)$	B.F. $(\times 10^{-5})$	Sig.
	$f_0(1500)$	1506	112	1506	112	$3.05 {\pm} 0.07$	$\gg 30\sigma$
	$f_0(1810)$	1795	95	1795	95	$0.07 {\pm} 0.01$	7.6σ
	$f_0(2020)$	1935±5	266±9	1992	442	$1.67 {\pm} 0.07$	11.0σ
	$f_0(2100)$	2109±11	253±21	2086	284	0.33 ± 0.03	5.2σ
$J/\psi \to \gamma X \to \gamma \eta \eta'$	$f_0(2330)$	2327±4	44 ± 5	2314	144	$0.07 {\pm} 0.01$	8.5σ
	$f_2(1565)$	1542	122	1542	122	0.20 ± 0.03	6.2σ
	$f_2(1810)$	1815	197	1815	197	$0.37 {\pm} 0.03$	7.0σ
	$f_2(2010)$	2022±6	212±8	2011	202	1.36 ± 0.10	8.8σ
	$f_2(2340)$	2345	322	2345	322	0.25 ± 0.04	6.5σ
	$f_4(2050)$	2018	234	2018	234	0.11 ± 0.02	5.6σ
	$h_1(1415)$	1416	90	1416	90	$0.14 {\pm} 0.01$	10.3σ
$J/\psi \to \eta' X \to \gamma \eta \eta'$	$h_1(1595)$	1584	384	1584	384	0.41 ± 0.04	9.7σ
	$\phi(2170)$	2160	125	2160	125	0.24 ± 0.03	5.6σ
$J/\psi \to \eta X \to \gamma \eta \eta'$	$h_1(1595)$	1584	384	1584	384	0.50±0.03	11.0σ
	$ \rho(1700) $	1720	250	1720	250	0.22 ± 0.03	8.8σ

The masses and widths of the resonances near $\eta\eta'$ threshold $(f_0(1500), f_2(1525), f_2(1565))$ and $f_2(1640)$ as well as those with small fit fractions (<3%) are always fixed to the PDG values

Components with statistical significance larger than 5o

PWA projections for PDG-optimized set

Search for new resonances

scans of additional resonance with different J^{PC}, masses and widths

Baseline set of amplitudes by adding the η_1 state

Decay mode	Resonance	$M~({\rm MeV}/c^2)$	Γ (MeV)	$M_{\rm PDG}~({\rm MeV}/c^2)$	$\Gamma_{\rm PDG}~({\rm MeV})$	B.F. $(\times 10^{-5})$	Sig.
	$f_0(1500)$	1506	112	1506	112	$1.81{\pm}0.11^{+0.19}_{-0.13}$	$\gg 30\sigma$
	$f_0(1810)$	1795	95	1795	95	$0.11{\pm}0.01^{+0.04}_{-0.03}$	11.1σ
	$f_0(2020)$	$2010{\pm}6^{+6}_{-4}$	$203{\pm}9^{+13}_{-11}$	1992	442	$2.28{\pm}0.12^{+0.29}_{-0.20}$	24.6σ
$J/\psi \to \gamma X \to \gamma \eta \eta'$	$f_0(2330)$	$2312\pm7^{+7}_{-3}$	$65{\pm}10^{+3}_{-12}$	2314	144	$0.10{\pm}0.02^{+0.01}_{-0.02}$	13.2σ
	$\eta_1(1855)$	$1855 \pm 9^{+6}_{-1}$	$188{\pm}18^{+3}_{-8}$	-	-	$0.27{\pm}0.04^{+0.02}_{-0.04}$	21.4σ
	$f_2(1565)$	1542	122	1542	122	$0.32{\pm}0.05^{+0.12}_{-0.02}$	8.7 <i>σ</i>
	$f_2(2010)$	$2062{\pm}6^{+10}_{-7}$	$165{\pm}17^{+10}_{-5}$	2011	202	$0.71{\pm}0.06^{+0.10}_{-0.06}$	13.4σ
	$f_4(2050)$	2018	237	2018	237	$0.06{\pm}0.01^{+0.03}_{-0.01}$	4.6σ
	0^{++} PHSP	-	-	-	-	$1.44{\pm}0.15^{+0.10}_{-0.20}$	15.7 <i>σ</i>
$J/\psi \to \eta' X \to \gamma \eta \eta'$	$h_1(1415)$	1416	90	1416	90	$0.08{\pm}0.01^{+0.01}_{-0.02}$	10.2σ
	$h_1(1595)$	1584	384	1584	384	$0.16{\pm}0.02^{+0.03}_{-0.01}$	9.9 <i>σ</i>

- Contributions from the $f_0(2100)$, $h_1(1595)(\gamma \eta')$, $\rho(1700)(\gamma \eta')$, $\phi(2170)(\gamma \eta)$, $f_2(1810)$, and $f_2(2340)$, in the PDG-optimized set become insignificant (< 3σ), omitted
- Comparing to the PDGoptimized set, In L of the baseline set is improved by 32 and the number of free parameters reduced by 16

- An isoscalar 1^{-+} , $\eta_1(1855)$, has been observed
- Mass is consistent with LQCD calculation for the 1^{-+} hybrid (1.7~2.1 GeV/c²)

Baseline set of amplitudes

PWA fit projections

Significance for additional resonances

Decay mode	Resonance	J^{PC}	ΔS	$\Delta N dof$	Sig.
	$f_2(1525)$	2^{++}	6.3	6	1.9σ
	$f_2(1810)$	2^{++}	2.7	6	0.7σ
	$f_0(1710)$	0^{++}	3.4	2	2.1σ
	$f_2(1910)$	2^{++}	3.9	6	1.1σ
	$f_2(1950)$	2^{++}	2.6	6	0.6σ
	$f_0(2100)$	0^{++}	1.1	2	1.1σ
	$f_2(2150)$	2^{++}	2.3	6	0.5σ
$J/\psi \to \gamma X \to \gamma \eta \eta'$	$f_0(2200)$	0^{++}	0.4	2	0.4σ
	$f_2(2220)$	2^{++}	8.6	6	2.6σ
	$f_2(2300)$	2^{++}	7.2	6	2.2σ
	$f_4(2300)$	4^{++}	2.3	6	0.5σ
	$f_0(2330)$	0^{++}	1.5	2	1.2σ
	$f_2(2340)$	2^{++}	6.3	6	1.9σ
	$f_0(2102)[57]$	0^{++}	0.1	2	0.2σ
	$f_2(2240)[57]$	2^{++}	2.9	6	0.7σ
	$f_2(2293)[57]$	2^{++}	4.1	6	1.2σ
	$f_4(2283)[57]$	4^{++}	0.9	6	0.1σ
	$ \rho(1450) $	$1^{}$	3.4	2	2.1σ
	$\rho(1700)$	$1^{}$	0.8	2	0.7σ
	ho(1900)	$1^{}$	0.0	2	0σ
$J/\psi \to \eta' X \to \gamma \eta \eta'$	$\omega(1420)$	$1^{}$	5.3	2	2.8σ
	$\omega(1650)$	$1^{}$	2.6	2	1.7σ
	$\phi(1680)$	$1^{}$	4.3	2	2.5σ
	$\phi(2170)$	1	0.4	2	0.4σ
	$h_1(1415)$	1+-	1.3	4	0.5σ
	$h_1(1595)$	1^{+-}	8.1	4	2.9σ
	$ \rho(1450) $	$1^{}$	1.3	2	1.1σ
	$\rho(1700)$	$1^{}$	3.1	2	2.0σ
$J/\psi \to \eta X \to \gamma \eta \eta'$	$ \rho(1900) $	$1^{}$	6.1	2	3.0σ
	$\omega(1420)$	$1^{}$	2.5	2	1.7σ
	$\omega(1650)$	$1^{}$	0.8	2	0.7σ
	$\phi(1680)$	$1^{}$	2.1	2	1.5σ
	$\phi(2170)$	1	0.1	2	0.1σ

all insignificant (< 3σ)

• Assuming $\eta_1(1855)$ is an additional resonance, scans of with different masses and widths

 The most significant additional contribution comes from another exotic 1⁻⁺ component around 2.2 GeV (4.4σ) with a very small fit fraction

Baseline set of amplitudes

No significant contributions from additional resonances

Further checks on the 1^{-+} state $\eta_1(1855)$

- Changing the J^{PC} to the $\eta_1(1855),$ and the log-likelihoods are worse by at least 235 units
- BW Phase motion of $\eta_1(1855)$

from
$$\frac{1}{M^2 - s - iM\Gamma}$$
 to $\sqrt{\frac{1}{(M^2 - s)^2 + M^2\Gamma^2}}$

 \rightarrow In L worsen by 43 units

Further checks on the 1^{-+} state $\eta_1(1855)$

a clear asymmetry largely due to $\eta_1(1855)$ signal

Further Checks on the 1^{-+} State $\eta_1(1855)$

- Angular distribution as a function of $M(\eta\eta')$ expressed model-independently

$$\left\langle Y_{l}^{0}\right\rangle \equiv\sum_{i=1}^{N_{k}}W_{i}Y_{l}^{0}(cos\theta_{\eta}^{i})$$

- Related to the spin-0(S), spin-1(P), spin-2(D) amplitudes in ηη' by:
- $\sqrt{4\pi} \langle Y_0^0 \rangle = S^2 + P^2 + D^2$ $\sqrt{4\pi} \langle Y_1^0 \rangle = 2SPcos\phi_P + 4PDcos(\phi_P \phi_D)$ $\langle \boldsymbol{Y_1^0} \rangle = \boldsymbol{0} \text{ without P-wave contribution}$ $\sqrt{4\pi} \langle Y_2^0 \rangle = \frac{2}{\sqrt{5}}P^2 + \frac{2\sqrt{5}}{7}D^2 + 2SDcos\phi_D$ $\sqrt{4\pi} \langle Y_3^0 \rangle = \frac{6}{5}\sqrt{\frac{15}{7}}PDcos(\phi_P \phi_D)$ $\sqrt{4\pi} \langle Y_4^0 \rangle = \frac{6}{7}D^2$ Narrow structure in $\langle Y_1^0 \rangle$

> Cannot be described by resonances in $\gamma\eta(\eta')$

• $\eta_1(1855) \rightarrow \eta\eta'$ needed

For comparison

need for the η_1 (1855) P-wave

Weight sum/(10 MeV/c²)

Weight sum/(10 MeV/c²)

-10

-20

1.5

100

50

0

1.5

+Data - Sideband

-PWA fit projection (PDG optimized

 $\langle \mathbf{Y}_{0}^{0} \rangle$

2.5

 $\langle Y_{2}^{0} \rangle$

2.5

 $M(\eta\eta')(GeV/c^2)$

 $M(\eta\eta')(GeV/c^2)$

3

3

2

2

Can not be described only with 1^{+-} and 1^{--} states in $\gamma\eta(')$

Baseline set of amplitudes

PDG-optimized set of amplitudes

Systematic uncertainties (event selection)

Common systematic uncertainties								
Sources	$\eta' \to \eta \pi^+ \pi^- \eta' \to \gamma \pi^+ \pi^-$							
Pion tracking	/	2						
Four photon detection	2	4						
Number of J/ψ events	0.	43						
$\mathcal{B}(\eta \to \gamma \gamma)$	0	.2						
Total	4	.5						
Independent syste	ematic uncertainties							
Sources	$\eta' \to \eta \pi^+ \pi^-$	$\eta' \to \gamma \pi^+ \pi^-$						
Another photon detection	1	-						
Kinematic fit	1.5	2.6						
η' mass resolution	0.3	0.2						
$\mathcal{B}(\eta' \to \eta \pi^+ \pi^-)$	0.5	-						
$\mathcal{B}(\eta' \to \gamma \pi^+ \pi^-)$	-	0.4						
$\mathcal{B}(\eta \to \gamma \gamma)$ for another one	0.2	-						
Total	1.9	2.6						
Combined result	4	.8						

Combined with the weighted least squares method

Systematic uncertainties (PWA)

- BW parametrization for $f_0(1500)$
 - replace the BW with a Flatte-like form $\Gamma(s) = g\Gamma(\frac{M^2}{s})(\frac{\rho(s)}{\rho(M^2)})^{2l+1} + (1-g)\Gamma_0 \quad \text{, g \sim0.02}$
- Fixed resonance parameters
 - varying within 1 σ of the PDG values
- Background uncertainty
 - different sideband regions and normalization factors
- Additional resonances
 - adding the most significant additional resonances for each possible J^{PC} into the baseline fit individually

S	$f_0(2020)$		$f_0(2330)$		$\eta_1(1855)$		$f_2(2010)$	
Sources	ΔM	$\Delta\Gamma$	ΔM	$\Delta\Gamma$	ΔM	$\Delta\Gamma$	ΔM	$\Delta\Gamma$
Breit-Wiger formula	-1	+10	-1	+1	-1	+2	-4	+3
Resonance parameters	+1	-10	-3	+2	+2	-1	0	-2
Extra resonances	$^{+4}_{-2}$	$^{+9}_{-2}$	+7	$^{+1}_{-9}$	+4	$^{+1}_{-6}$	$^{+10}_{-5}$	+10
Backgroud uncertainty	-1	-4	+3	$^{+1}_{-7}$	+3	$^{+1}_{-5}$	-1	-5
Total	$^{+4}_{-3}$	$^{+13}_{-11}$	$^{+7}_{-3}$	$^{+3}_{-12}$	$^{+6}_{-1}$	$^{+3}_{-8}$	$^{+10}_{-7}$	$^{+10}_{-5}$

Sources	$f_0(1500)$	$f_0(1810)$	$f_0(2020)$	$f_0(2330)$	$\eta_1(1855)$	$f_2(1565)$	$f_2(2010)$	$f_4(2050)$	0 ⁺⁺ PHSP	$h_1(1415)(\gamma\eta)$	$h_1(1595)(\gamma\eta)$
Event selection						±	4.8				
Breit-Wigner formula	-1.7	+11.6	+6.9	+3.2	-1.1	+17.8	+0.2	+4.2	-0.6	-8.2	-4.1
Extra resonances	$^{+9.4}_{-1.0}$	$^{+30.4}_{-8.4}$	+10.0	$^{+7.8}_{-13.4}$	$^{+3.5}_{-10.4}$	$^{+31.5}_{-2.7}$	$^{+12.9}_{-6.5}$	$^{+44.4}_{-4.7}$	$^{+5.1}_{-12.2}$	$^{+11.0}_{-9.1}$	$^{+16.2}_{-2.2}$
Resonance parameters	-4.8	-25.6	-6.5	+3.6	-6.1	+5.5	+0.2	-1.4	-4.6	-11.4	-4.3
Backgroud uncertainty	$^{+0.5}_{-0.6}$	$^{+0.4}_{-7.5}$	$^{+0.8}_{-3.4}$	$^{+0.3}_{-10.4}$	$^{+0.2}_{-1.1}$	+11.0	-2.7	$^{+31.9}_{-6.5}$	-1.8	-8.8	$^{+8.4}_{-0.6}$
Total	$^{+10.6}_{-7.1}$	$+32.9 \\ -28.4$	$+13.1 \\ -8.8$	$+10.3 \\ -17.6$	$+5.9 \\ -13.1$	$+38.5 \\ -5.5$	$^{+13.7}_{-8.5}$	$+55.0 \\ -9.5$	+7.0 -14.0	$^{+12.0}_{-19.5}$	$+18.8 \\ -8.0$

Discussions about $f_0(1500) \& f_0(1710)$

• Significant $f_0(1500)$

$$\frac{B(f_0(1500) \to \eta \eta')}{B(f_0(1500) \to \pi \pi)} = (8.96^{+2.95}_{-2.87}) \times 10^{-2}$$

consistent with PDG

• Absence of $f_0(1710)$

 $\frac{B(f_0(1710) \to \eta \eta')}{B(f_0(1710) \to \pi \pi)} < 1.61 \times 10^{-3} @90\% \text{ C. L.}$

- Supports to the hypothesis that $f_0(1710)$ overlaps with the ground state scalar glueball –
 - Scalar glueball expected to be suppressed $B(G \to \eta \eta')/B(G \to \pi \pi) < 0.04$

Decay mode	Resonance	$M~({\rm MeV}/c^2)$	$\Gamma \ ({\rm MeV})$	$M_{\rm PDG}~({\rm MeV}/c^2)$	$\Gamma_{PDG}~(MeV)$	B.F. (×10 ⁻⁵)	Sig.
	$f_0(1500)$	1506	112	1506	112	$1.81 \pm 0.11^{+0.19}_{-0.13}$	≫30σ
	$f_0(1810)$	1795	95	1795	95	$0.11{\pm}0.01^{+0.04}_{-0.03}$	11.1 <i>σ</i>
	$f_0(2020)$	$2010{\pm}6^{+6}_{-4}$	$203{\pm}9^{+13}_{-11}$	1992	442	$2.28{\pm}0.12^{+0.29}_{-0.20}$	24.6 <i>σ</i>
$\psi/\psi \to \gamma X \to \gamma \eta \eta'$	$f_0(2330)$	$2312 \pm 7^{+7}_{-3}$	$65{\pm}10^{+3}_{-12}$	2314	144	$0.10{\pm}0.02^{+0.01}_{-0.02}$	13.2 <i>σ</i>
	$\eta_1(1855)$	$1855 \pm 9^{+6}_{-1}$	$188{\pm}18^{+3}_{-8}$	-	-	$0.27{\pm}0.04^{+0.02}_{-0.04}$	21.4 <i>σ</i>
	$f_2(1565)$	1542	122	1542	122	$0.32{\pm}0.05^{+0.12}_{-0.02}$	8.7 <i>σ</i>
	$f_2(2010)$	$2062{\pm}6^{+10}_{-7}$	$165{\pm}17^{+10}_{-5}$	2011	202	$0.71{\pm}0.06^{+0.10}_{-0.06}$	13.4 <i>σ</i>
	$f_4(2050)$	2018	237	2018	237	$0.06{\pm}0.01^{+0.03}_{-0.01}$	4.6σ
	0 ⁺⁺ PHSP	-	-	-	-	$1.44{\pm}0.15^{+0.10}_{-0.20}$	15.7 <i>σ</i>
$/\psi \to \eta' X \to \gamma \eta \eta'$	$h_1(1415)$	1416	90	1416	90	$0.08{\pm}0.01^{+0.01}_{-0.02}$	10.2 <i>σ</i>
	$h_1(1595)$	1584	384	1584	384	$0.16{\pm}0.02^{+0.03}_{-0.01}$	9.9 <i>σ</i>

Summary

- An isoscalar 1⁻⁺ , $\eta_1(1855)$, has been observed in $J/\psi \rightarrow \gamma \eta \eta'$ (>19 σ)
 - $$\begin{split} \mathsf{M} &= (1855 \pm 9^{+6}_{-1}) \ \mathsf{MeV/c^2}, \ \mathsf{\Gamma} &= (188 \pm 18^{+3}_{-8}) \ \mathsf{MeV/c^2} \\ &\qquad \mathsf{B}(\mathsf{J/\psi} \to \gamma \eta_1 (1855) \to \gamma \eta \eta') = \left(2.70 \pm 0.41^{+0.16}_{-0.35}\right) \times 10^{-6} \end{split}$$
 - An important step forward of light QCD exotics
- Further more, significant $J/\psi \rightarrow \gamma f_0(1500) \rightarrow \gamma \eta \eta'$ has been observed, while $f_0(1710)$ is insignificant
 - $B(f_0(1710) \rightarrow \eta \eta') / B(f_0(1710) \rightarrow \pi \pi) < 1.61 \times 10^{-3}$ @90% C.L., which further supports the f0(1710) has a large overlap with glueball

Prospects

- Together with $\pi_1(1600)$
 - Opens a new direction to completing the picture of the hybrid multiplets

...

- LQCD: $B(J/\psi \rightarrow \gamma \eta_1(hybrid)) \sim O(10^{-5})[2207.04694]$ • $\eta \eta'$ is not a dominate mode \rightarrow Search for more
- Interpretations: Hybrid/ $K\overline{K}_1$ Molecule/Tetraquark?

Sci.China Phys.Mech.Astron. 65 (2022) 6, 261011; CPC 46 , 051001(2022); CPL 39, 051201 (2022); PLB 834, 137478(2022); PRD 106 , 074003(2022); PRD 106, 036005(2022) ;

& Snowmass2021 summer study whitepapers

Prospects

 $\text{Isoscalar:}\,\eta_1(1855)$

- Decay properties
 - $J/\psi \rightarrow \gamma \pi a_1, \eta f_1, K_1 \overline{K}, \omega \varphi$,
- Production properties
 - $J/\psi \rightarrow \omega \eta \eta'$, $\varphi \eta \eta'$,
- Where is $\eta_1^{(\prime)}$
 - Other partners

Isovector: $\pi_1(1600)$

- $J/\psi \to \rho \eta' \pi$,
- $\chi_{c1} \rightarrow \pi \pi b_1, \pi \pi f_1, \pi \pi \eta'$,
 - LQCD predicted major decay modes: $\pi b_1, \ \pi f_1$

- Data with unprecedented statistical accuracy from BESIII provides great opportunities to study QCD exotics. Will continue to run until ~2030
- To explore the high statistics data sets, synergies between experiment and theory are essential

Stay tuned ³⁴

Thank you

Light hadron spectroscopy experiments

- Hadroproduction
 - COMPASS: finished data taking
 - VES: running
- Lepto/photoproduction
 - GlueX: finished phase-I campaign, phase II running
 - CLAS12: MesonEx program
- Charmonium decays
 - BESIII: running, 10B of J/ ψ and 3B ψ' on disk
- Further future
 - Under construction: $p\overline{p}$ at PANDA
 - Proposal: COMPASS++/AMBER
 - Proposal: STCF

Baseline set of amplitudes

PWA fit projections

Baseline set of amplitudes

.

-

Fit fractions in the PWA fit with the baseline set of amplitudes

Resonance	$f_0(1500)$	$f_0(1810)$	$f_0(2020)$	$f_0(2330)$	$h_1(1415)(\gamma\eta)$	$h_1(1595)$	$\eta_1(1855)$	$f_2(1565)$	$f_2(2010)$	$f_4(2050)$	0^{++} PHSP
$f_0(1500)$	21.9±1.4	-4.3 ± 0.4	16.2 ± 0.5	-1.0 ± 0.1	1.6 ± 0.2	-1.6 ± 0.9	0.2 ± 0.0	0.2 ± 0.1	0.6 ± 0.1	0.0 ± 0.0	13.4±1.1
$f_0(1810)$		1.4 ± 0.1	-5.6 ± 0.6	0.4 ± 0.0	-0.1 ± 0.0	0.6 ± 0.1	0.0 ± 0.0	-0.2 ± 0.0	0.1 ± 0.0	0.0 ± 0.0	2.0 ± 0.3
$f_0(2020)$			29.5±1.6	-3.7 ± 0.5	0.0 ± 0.2	-3.6 ± 0.4	0.2 ± 0.0	1.1 ± 0.1	0.1 ± 0.1	0.1 ± 0.0	$-15.9{\pm}1.8$
$f_0(2330)$				1.4 ± 0.2	0.1 ± 0.0	0.3 ± 0.1	0.0 ± 0.0	-0.1 ± 0.0	-0.2 ± 0.0	0.0 ± 0.0	2.6 ± 0.3
$h_1(1415)$					1.1 ± 0.2	-1.1 ± 0.3	-0.2 ± 0.1	0.1 ± 0.1	0.2 ± 0.1	0.0 ± 0.0	2.3 ± 0.3
$h_1(1595)$						2.1 ± 0.3	0.5 ± 0.1	-0.3 ± 0.3	0.0 ± 0.2	0.1 ± 0.0	2.3 ± 1.0
$\eta_1(1855)$							3.5 ± 0.5	0.0 ± 0.0	-0.1 ± 0.0	0.0 ± 0.0	0.1 ± 0.0
$f_2(1565)$								4.6 ± 0.7	-0.6 ± 0.8	0.0 ± 0.0	-0.9 ± 0.1
$f_2(2010)$									10.2 ± 0.8	-0.1 ± 0.1	0.2 ± 0.1
$f_4(2050)$										0.8 ± 0.2	0.0 ± 0.0
0^{++} PHSP											18.5 ± 1.9