

Observation of T_{cccc} in $J/\psi J/\psi$ mass spectrum at LHCb

安刘攀, CERN

张艳席,北京大学

21/July/2022

Observation of di- J/ψ state in 2020

- LHCb reported structure in di- J/ψ mass spectrum
 - ➤ With cccc quark content, first fully heavy tetraquark candidate

Science Bulletin (科学通报) 65 (2020) 1983

- ✓ Broad structure close to di- J/ψ mass threshold
- ✓ Narrow structure around 6900 MeV
- ✓ Hint at 7200 MeV, but not significant

LHCb

• Heavy flavor experiment covering $2 < \eta < 5$, forward rapidity

LHCb

• Heavy flavor experiment covering $2 < \eta < 5$, forward rapidity

Efficient to detect $J/\psi \rightarrow \mu^+\mu^-$ down to zero- p_T

Total J/ψ efficiency: trigger, reconstruction, particle ID etc.

LHCb luminosity

• 3 fb⁻¹ at $\sqrt{s} = 7$, 8 TeV and 6 fb⁻¹ at $\sqrt{s} = 13$ TeV

$Di-J/\psi$ sample at LHCb

Science Bulletin 65 (2020) 1983

• Full LHCb data ~9 fb⁻¹

LHCb-PAPER-2020-011: https://lhcbproject.web.cern.ch/Publications/LHCbProjectPublic/LHCb-PAPER-2020-011.html

Background:

- \triangleright Fake J/ψ : studied using J/ψ mass distribution
- $> J/\psi$ -from-b and pileup: suppressed using vertexing information

 $Di-J/\psi$ mass spectrum

T_{cccc} signal optimization

• Di- J/ψ production mechanism

DPS: two J/ψ uncorrelated, no T_{ccc} expected

 $\text{Di-}J/\psi$ mass: Smooth continuum

Fig from arXiv:2204.02649

SPS: two J/ψ correlated, may produce T_{cccc} , averagely high $p_{\rm T}$ PLB751 (2015) 479

Di- J/ψ mass: Smooth continuum + resonance(s), possible interference between them

• To enhance T_{ccc} signal: optimize di- J/ψ $p_{\rm T}$ cut or study in bins of $p_{\rm T}$

Best cut: $p_{\rm T}(di - J/\psi) > 5.2 {\rm GeV}$

$Di-J/\psi$ invariant mass (I)

- Broad structure at 6.2 6.8 GeV close to di- J/ψ mass threshold
- Narrow peak at 6.9 GeV
- Hint of another structure at 7.2 GeV
- Structure not present in J/ψ background sample

$Di-J/\psi$ invariant mass (II)

• Same structures in all high di- J/ψ p_T bins, evidence increasing with p_T

Modelling Di- J/ψ mass spectrum

- Components and distributions
 - **DPS continuum**: built from differential cross-section of single J/ψ production Yield constrained by high di- J/ψ mass region

- > SPS continuum: two body phasespace modified by exponential, $\Phi_2(m) \times e^{c \cdot m}$
- > Structures: relativistic Breit-Wigner (BW)
- Efficiency and resolution neglected

Fit without resonant structure

• Low mass region not described

Fit without resonant structure

- Small di- J/ψ p_T : low mass described by SPS+DPS
- High di- J/ψ $p_{\rm T}$: low mass not described by SPS+DPS
- Fraction of SPS increased with di- $J/\psi p_T$

Fits in bins of di- $J/\psi p_T$

Fit with resonant structure: modeling I

- Breit-Wigner (BW) for peaking structures, no interferences
 - \triangleright The threshold structure (6.2 6.8 GeV): two BWs, significance > 6 σ
 - \triangleright Structure at 6.9 GeV: single BW, significance $> 5 \sigma$

$$m[X(6900)] = 6905 \pm 11 \pm 7 \,\text{MeV}/c^2$$

 $\Gamma[X(6900)] = 80 \pm 19 \pm 33 \,\text{MeV}$

$$N[X(6900)] = 252 \pm 63$$

	m/MeV	Γ/MeV
Res1	~6250	~300
Res2	~6650	~200

Difficulty to model the dip at 6.8 GeV!

Fit with resonant structure: modeling II

- A wide BW interfering with SPS, a second BW for 6.9 GeV peak
 - Fit quality improve from $P(\chi^2) = 4.6\%$ to 15.5%
 - Caveat: too simple, SPS assumed to have J^P of the wide BW

$$m[X(6900)] = 6886 \pm 11 \pm 11 \,\mathrm{MeV}/c^2$$
 $\Gamma[X(6900)] = 168 \pm 33 \pm 69 \,\mathrm{MeV}$
 $N[X(6900)] = 784 \pm 148$
 $N[X(6900)] = 784 \pm 148$

 $M_{\text{di-}J/\psi} \text{ (MeV/}c^2\text{)}$

Wide BW $m \sim 6750 \text{ MeV}$ $\Gamma \sim 300 \text{ MeV}$

Fits in di- $J/\psi p_T$ bins

- Parameters of BW functions shared by all bins
- Mass spectrum well described simultaneously

Systematic uncertainties on mass and width

Table 1: Global significance evaluated under the various assumptions described in the text.

	Without interference		With interference	
Component	$m \; [{ m MeV}/c^2]$	$\Gamma \ [\mathrm{MeV}]$	$m [\mathrm{MeV}/c^2]$	$\Gamma \ [\mathrm{MeV}]$
sPlot weights	0.8	10.3	4.4	36.9
Experimental resolution	0.0	1.4	0.0	0.6
NRSPS+DPS modelling	0.8	16.1	3.5	9.3
X(6900) shape	0.0	0.3	0.4	0.2
Dependence on $p_{ m T}^{{ m di} ext{-}J/\psi}$	4.6	13.5	6.2	56.7
b-hadron feed-down	0.0	0.2	0.0	5.3
Structure at $7.2 \text{GeV}/c^2$	1.3	9.2	6.7	5.2
Threshold structure shape	5.2	20.5	_	_
NRSPS phase	_	_	0.3	1.3
Total	7	33	11	69

Other models (1)

One BW for threshold structure + X(6900), $P(\chi^2) = 1.2\%$

Other models (2)

Only one BW, interfering with SPS, $P(\chi^2) = 2.8\%$

Other models (3)

Threshold bump due to feed-down decays of excited charmonia

e.g.
$$X \to J/\psi \chi_c \hookrightarrow J/\psi \chi$$

Other models (4)

Including structure at 7.2 GeV: significance $< 3 \sigma$

 $m \sim 7250 \text{ MeV}, \ \Gamma \sim 100 \text{ MeV}$

Distribution of $X(6900) p_T$

SPS continuum and X(6900) have similar p_T distribution

Production of X(6900)

$$R \equiv \frac{\sigma_{X(6900)} \times \mathcal{B}[X(6900) \to J/\psi J/\psi]}{\sigma_{J/\psi J/\psi}} = [1.1 \pm 0.4 \pm 0.3]\%$$
 or $[2.6 \pm 0.6 \pm 0.8]\%$ for $p_{\rm T} > 5.2$ GeV

JHEP 06 (2017) 047

Using
$$\sigma_{J/\psi J/\psi}(LHCb) = 15.2 \pm 1.0 \pm 0.9 \text{ nb at } \sqrt{s} = 13 \text{ TeV},$$

$$\sigma_{X(6900)} \times \mathcal{B}[X(6900) \to J/\psi J/\psi] \text{(LHCb)} = 167 \pm 77 \text{ pb in } pp \text{ at } 13 \text{ TeV}$$

Summary

• First observation of fully heavy tetraquark candidate X(6900)

New name: $T_{\psi\psi}$ (6900), Exotic hadron naming convention, arXiv:2206.15233

Assuming interference:

$$m[X(6900)] = 6905 \pm 11 \pm 7 \,\text{MeV}/c^2$$

 $\Gamma[X(6900)] = 80 \pm 19 \pm 33 \,\text{MeV}$

Assuming no interference:

$$m[X(6900)] = 6886 \pm 11 \pm 11 \,\text{MeV}/c^2$$

 $\Gamma[X(6900)] = 168 \pm 33 \pm 69 \,\text{MeV}$

$$\sigma_{X(6900)} \times \mathcal{B}[X(6900) \to J/\psi J/\psi] = 167 \pm 77 \text{ pb within LHCb}$$

- Threshold structure: a few possible interpretations
 - ➤ One BW, combination of two BWs, feed-down

Prospects

- Analysis with Run1+2 data $J/\psi + \Upsilon, J/\psi + \psi(2S), J^P$ determination (?)...
- Combined analysis with ATLAS, CMS?
- Run3 in operation, statistics increased by ×4

Run 3

Proton-proton

Slides by Mike Lamont in ICHEP2022

- 6.8 TeV
- Levelled to a maximum luminosity 2.05 × 10³⁴ cm⁻²s⁻¹ in ATLAS and CMS
- Levelled to a target of $^{\sim}1.4 \times 10^{31}$ cm $^{-2}$ s $^{-1}$ and 2×10^{33} cm $^{-2}$ s $^{-1}$ in ALICE and LHCb respectively
- ~1.8×10¹¹ protons/bunch in 2023 2025 long levelling times!

Mode	ATLAS/CMS	LHCb	ALICE
proton-proton	250 - 270 fb ⁻¹	$25 - 30 \text{ fb}^{-1}$	200 pb ⁻¹
lead-lead	7 nb ⁻¹	1 nb ⁻¹	7 nb ⁻¹
proton-lead	0.5 pb ⁻¹	0.1 pb ⁻¹	0.25 pb ⁻¹
oxygen-oxygen	0.5 nb ⁻¹	0.5 nb ⁻¹	0.5 nb ⁻¹
proton-oxygen	LHCf 1.5 nb ⁻¹	2.0 nb ⁻¹	

Experiment		
all		
LHCf		
TOTEM		
TOTEM, ATLAS		
LHCb		

Backup slides

Signal stability

- \triangleright Combinatorial backgrounds show smooth J/ψ -pair mass distribution
- ➤ Structures are stable with respect to different data-taking periods
- > Residual backgrounds with multiple use of muon track produce no such structure
- \triangleright Residual contamination from b-hadron decays has a smooth distribution
- >Variation of detection efficiency with respect to mass is marginal
- ightharpoonup Contribution from partially reconstructed $\Upsilon o J/\psi X$ decays is expected to be negligibly small