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Challenges in Physics

Confinement QCD
§ Nature of QCD confinement 
§ Its relationship to the dynamical 

chiral  symmetry breaking 
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New physics beyond the 
Standard Model (SM)
§ New sources of CP violation
§ Dark matter
§ Dark energy

η and ηꞌ decays provide sensitive probes to explore both fundamental issues



Why η is a unique probe for QCD and BSM physics?

u All its possible strong and EM decays are forbidden in the lowest order so 
that  η has narrow decay width (Γη =1.3KeV compared to Γw=8.5 MeV) 

Enhance  the higher order contributions (by a factor of ~7000
compared to w decays). Sensitive to weakly interacting forces.

u A Goldstone boson due to  spontaneous breaking of 
QCD chiral symmetry

h is one of key mesons bridging our 
understanding of low-energy hadron dynamics
and underlying QCD  

u Eigenstate of P, C, CP, and G:
tests for C, CP

G PCI J =0 0+ -+

u Its quantum numbers are the same as Higgs or vacuum (except parity) 
and its decays are  flavor-conserving

effectively free of SM backgrounds for new physics search. 
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Rich η (and ηꞌ) Physics 
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Standard Model Tests:
• Chiral symmetry and anomalies
• Extract η-ηꞌ mixing angle and 

quark mass ratio
• Theory inputs to HLbL for (g-2)μ
• QCD scalar dynamics

Fundamental Symmetry Tests:
• C, CP violations
• P, CP violations
• Lepton flavor violations

BSM Physics in Dark Sector:
• Vector bosons (B boson, dark 

photon and X boson)
• Dark scalars
• Pseudoscalars (ALPs)
• BSM weak decays

Phys. Rept. 945 (2022) 1-105
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Low-Energy QCD Symmetries and Light Mesons

)1()1()3()3( BARL UUSUSU ´´´

q QCD Lagrangian in Chiral limit (mq→0) is invariant under:

q UA(1) is explicitly broken:
(Chiral anomalies) 
Ø Γ(p0→gg), Γ(h→gg), Γ(h¢→gg)
Ø Non-zero mass of h0

q Chiral symmetry SUL(3)xSUR(3) 
spontaneously breaks to SU(3)
Ø 8 Goldstone Bosons (GB)

q SUL(3)xSUR(3) and SU(3) are 
explicitly broken: 
Ø GB are massive
Ø Mixing of p0, h, h¢

The π0, η, η¢ system provides a rich laboratory to study the  symmetry 
structure of QCD at low energies.



Axial Anomaly and Γ(𝑃 → 𝛾𝛾)

Γ π 0 → γγ( ) = α
2Nc

2mπ
3

576π 3Fπ
2 = 7.760 eV

u P→gg decay proceeds primarily via the chiral anomaly in  QCD.
u The chiral anomaly prediction is exact for massless quarks:

P
k1

k2
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For 𝜋!:

u Γ(p0®gg) is one of the few quantities in confinement region that QCD can 
calculate precisely at ~1% level to higher orders! It offers the most 
sensitive test to chiral anomaly 

u Γ(𝜂(#)®gg) is sensitive to the mixing angle due to SU(3) breaking



Transition Form Factor and (𝑔 − 2)!
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HLbL



Time-like Transition Form Factor  𝜂(#) → 𝛾∗𝛾
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P



Space-like Transition Form Factor 𝜂(#) → 𝛾∗𝛾
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• Collider: 𝑒!𝑒" → 𝜂($) 𝑒!𝑒"

• Virtual Primakoff: 𝑒!𝐴 → 𝜂($) 𝑒!𝐴

Experimental approaches:

Slope: 𝑄!=−𝑞!



Status of TFF Slope Parameters
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SM allowed  h®p0gg
A rare window to probe interplay of VMD & scalar resonances in 
ChPT to calculate O(p6) LEC’s in the chiral Lagrangian
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uThe major contributions to h→p0gg are two O(p6)  counter-terms in the
chiral Lagrangian       an unique probe for the high order ChPT. 

L. Ametller, J, Bijnens, and F. Cornet, Phys. Lett., B276,  185 (1992) 

ρ, ω
a0, a2

u Shape of Dalitz distribution is sensitive to the role of scalar resonances.

LEC’s are dominated by resonances

Gasser, Leutwyler 84; Ecler, Gasser, Pich, de Rafael1989; 
Donoghue, Ramirez, Valencia 1989



Primakoff Program at JLab 6 & 12 GeV

Precision measurements of 
electromagnetic properties of 
p0, h, h¢ via Primakoff effect

b) Transition Form Factors 
at Q2 of 0.001-0.3 GeV2/c2:

F(gg*→ p0), F(gg* →h), F(gg* →h¢)
Input to Physics:

Ø precision tests of chiral
symmetry and anomalies

Ø determination of light quark 
mass ratio

Ø h-h¢ mixing angle
Ø input to calculate HLbL in (g-2)μ

Input to Physics:
Ø p0,h and h¢ electromagnetic

interaction radii
Ø is the h¢ an approximate 

Goldstone boson?
Ø input to calculate HLbL in (g-2)μ
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a) Two-Photon Decay Widths:
1) Γ(p0→gg) @ 6 GeV
2) Γ(h→gg)
3) Γ(h¢→gg)



Primakoff Program at JLab 6 & 12 GeV

Precision measurements of 
electromagnetic properties of 
p0, h, h¢ via Primakoff effect

b) Transition Form Factors 
at Q2 of 0.001-0.5 GeV2/c2:

F(gg*→ p0), F(gg* →h), F(gg* →h¢)
Input to Physics:

Ø precision tests of chiral
symmetry and anomalies

Ø determination of light quark 
mass ratio

Ø h-h¢ mixing angle
Ø input to calculate HLbL in (g-2)μ

Input to Physics:
Ø p0,h and h¢ electromagnetic

interaction radii
Ø is the h¢ an approximate 

Goldstone boson?
Ø input to calculate HLbL in (g-2)μ
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a) Two-Photon Decay Widths:
1) Γ(p0→gg) @ 6 GeV
2) Γ(h→gg)
3) Γ(h¢→gg)

1.50% accuracy

Science 368, 506-509 (2020)



Primakoff Program at JLab 6 & 12 GeV

b) Transition Form Factors 
at Q2 of 0.001-0.5 GeV2/c2:

F(gg*→ p0), F(gg* →h), F(gg* →h¢)
Input to Physics:

Ø precision tests of chiral
symmetry and anomalies

Ø determination of light quark 
mass ratio

Ø h-h¢ mixing angle
Ø input to calculate HLbL in (g-2)μ

Input to Physics:
Ø p0,h and h¢ electromagnetic

interaction radii
Ø is the h¢ an approximate 

Goldstone boson?
Ø input to calculate HLbL in (g-2)μ

14

a) Two-Photon Decay Widths:
1) Γ(p0→gg) @ 6 GeV
2) Γ(h→gg)
3) Γ(h¢→gg) On-Going PrimEx-eta 

experiment

• Two data sets were collected 
in 2019 and in 2021.

• The third run is scheduled for 
2022

Precision measurements of 
electromagnetic properties of 
p0, h, h¢ via Primakoff effect



Physics for Γ(h→gg) Measurement 
2. Extract h-h¢mixing angle:1. Resolve long standing discrepancy 

between previous collider and 
Primakoff measurements:

15

0.1

0.2

0.3

0.4

0.5

0.6

0.7
MD1 90

ASP 90

CBAL 88

JADE 85

Cornell
(Primakoff)

KLOE

JLab
Proposed

Exp.

Experiments

η→
γγ

  D
ec

ay
 W

id
th

 (k
eV

)

4. Improve all partial decay widths
in the h-sector 

3. Improve calculation of the h-pole
contribution to Hadronic 
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A clean probe for quark mass ratio:

Ø 𝜂→3π decays through isospin violation:
Ø is small 
Ø Amplitude:
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αem
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Precision Determination Light Quark Mass Ratio 
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A clean probe for quark mass ratio:

Ø 𝜂→3π decays through isospin violation:
Ø is small 
Ø Amplitude:
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αem
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PrimEx-eta Experiment on Γ(h→gg)  in Hall D  

Ø Tagged photon beam (~8.0-11.7 GeV).
Ø Pair spectrometer  and a TAC detector for the photon flux control.
Ø Liquid Hydrogen (3.5% R.L.) and 4He targets (~4% R.L.)
Ø The h decay photons are detected by Forward Calorimeter (FCAL); the charged decay 

particles of h are detected by the GlueX spectrometer.
Ø CompCal and FCAL to measure electron Compton scattering for control  of overall 

systematics.



Preliminary Results on the h Yield
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h Yield from phase I data: Simulations:

η → 𝛾𝛾

η → 𝜋!𝜋!𝜋!

More details presented by Igal Jaegle, Y07.00003

𝛾 + "𝐻𝑒 → η + "𝐻𝑒𝑟#

𝐸!: 8 − 11 𝐺𝑒𝑉 𝜋𝑟"

pre
lim

ina
ry 



Space-Like Transition Form Factors 
(Q2 : 0.001-0.3 GeV2/c2)

• Direct measurement of slopes

– Interaction radii:
Fγγ*P(Q2)≈1-1/6 ) <r2>PQ2

– ChPT for large Nc predicts relation 
between the three slopes. Extraction of 
Ο(p6) low-energy constant in the chiral 
Lagrangian

• Input for hadronic light-by-light 
calculations in muon (g-2) 

20
Phys.Rev.D65,073034

F(gg*→ h)

Eur.Phys.J. C75, 414 (2015)

No data



Space-Like Transition Form Factors 
(Q2 : 0.001-0.3 GeV2/c2)

• Direct measurement of slopes

– Interaction radii:
Fγγ*P(Q2)≈1-1/6 ) <r2>PQ2

– ChPT for large Nc predicts relation 
between the three slopes. Extraction of 
Ο(p6) low-energy constant in the chiral 
Lagrangian

• Input for hadronic light-by-light 
calculations in muon (g-2) 

21
Phys.Rev.D65,073034

F(gg*→ h)

Projected E12-22-003
on  F(gg*→ p0)



Discrete Symmetries 
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Class III has much weaker experimental constraint, offer a 
opportunity for new physics search.

vA new C- and T-violating, and P-conserving interaction was 
proposed by Bernstein, Feinberg and Lee  Phys. Rev.,139, B1650 (1965)
and Lee  



Class II: P-, CP-Violation in 𝜂(#) → 𝜋𝜋
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Class II: P-, CP-Violation via Strange-Quark-Muon 
Operators
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• Offer good opportunities for P-, CP-violation tests



Class II: P-, CP-Violation via Scalar Operators (cont.)
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• 𝜇-polarization asymmetry  in 𝜂(#) → 𝜇%𝑢&, 𝜂(#) → 𝛾𝜇%𝑢&, 𝜂(#) → 𝜋'𝜇%𝑢&

• Angular asymmetry in decay planes:

JHEP 01, 031 (2019) 
hep-ph/0202002

𝜂(#) → 𝜇%𝑢&𝑒%𝑒& 𝜂(#) → 𝜋%𝜋&𝑒%𝑒&



Class III: C- and CP-Violation
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Class III: C- and CP-Violation in 𝜂($) → 𝜋"𝜋!𝜋*, 𝜂$ → 𝜋"𝜋!𝜂
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• CP-violation from these processes is not bounded by EDM.

• Complementary to nEDM searches even in the case of T and P odd 
observables, since the flavor structure of the 𝜂 is different from the 
nucleus



Lepton Flavor violations
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• 𝜂($) → 𝜇"𝑒! + 𝑐. 𝑐.

• 𝜂($) → 𝛾𝜇"𝑒! + 𝑐. 𝑐.

• 𝜂($) → 𝜇"𝜇"𝑒!𝑒! + 𝑐. 𝑐.

PDG limit:



Lepton Universality Tests
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• 𝜂 → 𝛾𝜇"𝜇! vs  𝜂 → 𝛾𝑒"𝑒!

• 𝜂 → 𝜇"𝜇!𝜇"𝜇! vs  𝜂 → 𝑒"𝑒!𝜇"𝜇!

• 𝜂 → 𝜋*𝜇"𝜇! vs  𝜂 → 𝜋*𝑒"𝑒!
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Open questions:
• What is dark matter?
• How is the matter-antimatter asymmetry generated? 
• What dynamics is responsible for neutrino masses? 
• What physics underlies the Higgs sector and sets the weak scale? 
• Why is CP conserved by the strong interactions? 

BSM Physics in Dark Sector 



Motivation for New Physics
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Dark Sector 

• New gauge forces, bosons and 
fermions beyond SM.

• The stability of dark matter can be 
explained by the dark charge 
conservation.



Where to Search for Dark Matter?
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Sub-GeV region represents a good discovery opportunity



Motivation for sub-GeV New Physics
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If these anomalies are interpreted in terms of new 
physics, all point to new forces with mediator 
particles in the MeV–GeV mass range!



Landscape of BSM Physics Search 
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Complementary to other types of experiments, η/ηꞌ decays offer unique 
sensitivity for sub-GeV new physics that are flavor-conserving, light quark-
coupling, PC-conserving.  

arXiv:1504.04855

η/ηꞌ d
ecays 



Portals Coupling SM and Dark Sector 
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Standard Model: Dark Sector:
Gauge Interactions?

Dark matter?

14

How to look for dark sectors?

SU(3)XSU(2)XU(1)

Standard Model:

+ 3 generations of 
matter

Dark Sector:

Gauge Interactions?

Matter?

14Sunday, 29 January, 17

Portals:    
vector
Scalar
Fermion
ALP 

κBµνVµν
H +H (εS +λS2 )

SU(3)× SU(2)×U(1)

ξLHN
Fermion: 𝜂 → 𝜋'𝐻,

𝑤𝑖𝑡ℎ 𝐻 → 𝜈𝑁!, 𝑁! → ℎ#𝑁(, ℎ# → 𝑒%𝑒&

Phys. Rept. 945 (2022) 1-105, arXiv:2207.06905, arXiv:2203.07651 



World Competition in η Decays 
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barrel
calorimeter

time-of
-flight

forward calorimeter 

photon beam

electron
beamelectron
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superconducting
magnet 

target

tagger magnet

tagger to detector distance
is not to scale

diamond
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central drift
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forward drift
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JEF at JLab
CBELSA/TAPS at ELSA

e+e- Collider

Fixed-target

Photoproduction

hadroproduction

Proposed REDTOP

New Experiments:
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JLab Eta Factory (JEF) Experiment 

37

u Simultaneously produce η/ηꞌ on LH2 target with 8.4-11.7 GeV tagged 
photon beam via  γ+p → η/ηꞌ+p

u Reduce non-coplanar backgrounds by detecting recoil protons 
with GlueX detector

u Upgraded Forward Calorimeter with High resolution, high granularity
PWO insertion (FCAL-II)  to detect multi-photons from the η/ηꞌ decays

FCAL-II

u The GlueX detector  will detect the charged products from the η/ηꞌ decays



Uniqueness of JEF Experiment
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JEF: gp→ηp (Eγ=8.4-11.7 GeV)A2 at MAMI: gp→ηp (Eγ=1.5 GeV)
(P.R. C90, 025206)

η →p0p0p0

1. Two-orders of magnitude background suppression comparing to all 
other experiments:
a) η/η’ energy boost;  b) FCAL-II; c) exclusive detections

3. The only facility can simultaneously produce tagged η and ηꞌ with similar
rates (~5x107 per 100 days)      

2. Capability of running in parallel with GlueX and other experiments in Hall D 
high-statistics data set
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FIG. 12: Four photon invariant mass distributions for the signal ⌘ ! ⇡0�� events (blue solid

curves), ⌘ ! 3⇡0 background (dash-dotted curves), and other hadronic backgrounds predicted by

PYTHIA (red dashed curves). The black solid curves correspond to the sum of the signal and

backgrounds. All yields are normalized to 1 day of taking data with GlueX at high luminosity.

(top left) N�(insert) > 0; (top right) N�(insert) > 1; (bottom left) N�(insert) > 2; (bottom

right) N�(insert) > 3.

peak (E� = 8.4–9.0 GeV) and is 7.3% above the coherent peak (E� = 9.0–11.7 GeV).

The backgrounds due to mis-matching of the incident photon are manageable and can be

subtracted by using out-of-time side bands for the data analysis. We will use the beam

energy of 8.4–11.7 GeV for the ⌘(0) decay measurement.

37

Signal+backgrounds
h®p0gg signal
η →p0p0p0 background
other backgroundsother backgrounds

1 day’s running  



Production Rate

39

h h’

Tagged mesons 6.5x107 4.9x107

JEF for 100 days of beam:

Previous Experiments:

Experiment Total h Total h’
CB at AGS 107 -
CB MAMI-B 2x107 -
CB MAMI-C 6x107 106

WASA-COSY ~3x107 (p+d), ~5x108 (p+p) -
KLOE-II 3x108 5x105

BESIII ~107 ~5x107

JEF offers a competitive η/η’ production rate with much cleaner backgrounds 
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Main JEF Physics Objectives 

1. Search for sub-GeV hidden bosons 
vector:

• Leptophobic vector B ꞌ

• Hidden or dark photon: 

scalar S:

Axion-Like Particles (ALP): 

2. Directly constrain CVPC new physics:                           

3. Precision tests of low-energy QCD:
• Interplay of VMD & scalar dynamics in ChPT:              
• Transition Form Factors of η(ꞌ) :

4. Improve the quark mass ratio via Dalitz distributions of h®3p

η($) → 3𝛾, η($)→ 2𝜋&𝛾, η($)→ 𝜋'𝜋(𝜋&



A Key Channel: h®p0gg

v Search for sub-GeV gauge bosons 
• A leptophobic vector Bꞌ:
h®g Bꞌ, Bꞌ®p0g

• An scalar S: 
h®p0S, S®gg

A 100 keV-100 MeV 
electrophobic scalar can
solve proton radius and
(g-2)μ puzzles. 

PR,D100,095020; Nucl.Phy.B,114638.
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v A rare window to probe interplay 
of VMD & scalar resonance in 
ChPT

PL, B221, 80
PR,D89,114008 

100 days’ beam

100 days’ beam

PR,C78,015206 

Phys. Rept. 945 (2022) 1-105



Test Charge Conjugation Invariance

u C is maximally violated in the weak 
force and is well tested.

u Assumed in SM for electromagnetic 
and strong forces, but it is not 
experimentally well tested  
(current direct constraint: Λ ≥ 1 GeV)

42

Mode Branching Ratio 
(upper limit)

No. γ’s

3γ < 1.6•10-5

3                       
π0γ < 9•10-5

2π0γ < 5•10-4

5                       3γπ0 Nothing published

3π0γ < 6•10-5

7                        
3γ2π0 Nothing published

C Violating η neutral decays 
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Experimental Improvement on C-violating η→3γ

u SM contribution: 
BR(η→3γ) <10-19 via P-violating
weak interaction.

u A calculation due to  new 
physics by Tarasov suggests: 
BR(h®3g)< 10-2

Sov.J.Nucl.Phys.,5,445 (1967)

Proj. JEF

Improve BR upper limit by one order of 
magnitude to directly tighten the constraint on 
CVPC new physics

(100 days’ beam)



u A clean probe for quark mass ratio:

Ø decays through isospin violation:
Ø is small 
Ø Amplitude:

u Uncertainties in quark mass ratio 

44
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m2

md
2 −mu

2

αem

A = (mu −md )A1 +αemA2

m̂ =
mu +md

2

𝐴(𝑠, 𝑡, 𝑢) =
1
𝑄!

𝑚"
!

𝑚#
! (𝑚#

! −𝑚"
! )
𝑀(𝑠, 𝑡, 𝑢)
3 3𝐹#!

Improve Quark-Mass Ratio via 𝜂→3π Dalitz Distributions

Phys. Rept. 945 (2022) 1-105



Current Status of the JEF Experiment
1. Non-rare decay data has been collecting  with the GlueX spectroscope 

experiment since 2016.
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3. Rare decay data  with FCAL-II is 
expected in 2024.

PWO module Undergraduate workforce 

• Mass production of 1600 PWO 
modules is on-going.

• Engineering design for 
calorimeter frame is finalized.

• Installation of the PWO insert  is 
scheduled for 2023.

(2x2x20 cm3)

2. A PWO insert  to upgrade FCAL is under construction.:



A New Proposal: REDTOP

46arXiv:2203.07651 up to ~5x013 η per year!
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REDTOP Detector

• JEF may still lead in rare neutral decays
• REDTOP  will have the best sensitivity for rare charged modes.



48arXiv:2203.07651 
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Summary

u The η/η’ decays offer sensitive probes for SM tests and BSM physics 
searches. 

Ø Precision tests of SM: chiral anomaly test, the role of scalar dynamics in 
ChPT; transition form factors of h/h’ to calculate HLbL contributions in (g-2)μ ;
improve the light quark mass ratio and the h-h’ mixing angle

Ø Test fundamental symmetries: search for new sources of CP violations
Ø Search for sub-GeV  hidden forces and hidden particles: vector, scalar, 

fermion and  ALP portals.

u Experimental perspectives:

Ø Precision frontier (highly suppressed backgrounds): the JLab Primakoff
experimental program and the JEF experiment. 

Ø High intensity frontier (up to ~5x1013 η per year): REDTOP

u A global experimental efforts at different facilities will offer opportunities 
for discoveries in the η sector.

53Thanks for support by NSF PHY-1812396 and PHY-2111181


