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QCD on the lattice

@ In QCD, the structure of hadrons and their interactions at low energies cannot be
studied in perturbation theory — QCD on the lattice

Ui,
Z Retr(1 — Puu(x)) v o w
Xy AN

+ Zw( Yu(Viu+ V5) - V#V,t)w—l-Zzme

@ The covariant derivative and the plaquette:

Vit = 5 (UG m)lx+ ah) — ()
Pu(x) = U(x,pu)U(x + afi, v)U(x + ab, u) " U(x,v)

tr(Pu(x)) = Nc— % a4tr(GN,,(x)GW(X)) + 0(a%)
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Masses of stable particles

o Composite fields: ¢.(t,p) = >, e P*d(x)ivPu(x), x = (x, t)
@ The Euclidean path integral
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S. Diirr et al., Science 322 (2008) 1224
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The low-energy spectrum of QCD

2000
] <0
1500~ Ei;z% =
= L e
> J
= 1000 | N
= , E P
500; ——K — experiment
1 == width
o input
1 ¢ QcCD
0

Meson and baryon spectrum in QCD, S. Diirr et al., Science 322 (2008) 1224
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The no-go theorem

@ The scattering observables cannot be directly extracted from the amplitudes
calculated on the lattice (Maiani and Testa, 1990)

@ Example: the timelike form factor of the pion, t’,t — oo and t’ > t:

Ro—p(t',t) = (0| Tr(t', p)r(t, —p)Au(0)[0)

~ Y e P ET R0 (0, p)|p) (PlE(0, —p)|m) (n| A, (0)[0) + - --

@ The state with minimum energy: E, — 2M, < 2w(p) = 2,/ M2 + p?
> (n|A,(0)]0) is not related to the form factor

@ In a finite volume, the three-momentum is quantized
— states lying above threshold can be reached
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“Scattering” in a finite volume

Impose (periodic) boundary conditions

The spatial size of the box, L, is finite

Assume the temporal size L; > L, Ly — o0

. 2
Three-momenta are quantized p = T n, nec Z3

Discrete energy levels: E, 1 — E, = O(L*2)

No asymptotic states

How does one extract the scattering observables:
phase shift, cross section,. .. from the measured quantities?
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EFT meets lattice

@ When R < L, well-separated hadrons can be formed
@ Scale separation is possible
@ Since p ~ 1/L and R ~ 1/m, then p < m: non-relativistic
o Polarization effects, caused by creation/annihilation of the particles, are

exponentially small and can be neglected
e The relativistic kinematics should be implemented explicitly: non-rest frames
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Non-relativistic EFT: essentials

@ Propagator:

1 1 1
= — + .
m? —p2  2w(p)(w(p) — p° —ie) = 2w(p)(w(p) + p° — ic)
particle anti —;;rtic/e

@ The vertices in the Lagrangian conserve particle number:

G
2 = 6100~ w)Ew)o + L 616100+ 2 ¢1oT6To00 + -

@ Only bubble diagrams: T [ = >< + ><>< e

K -matrix

1
p* + O(p*)

1
o Effective-range expansion: K_l(p) = pcotd(p) = - 4 >
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The Lischer equation (Liischer, 1991)

@ Crucial point: R < L. The energy spectrum can be calculated by using the same
EFT in a finite volume

@ Couplings Cp, Dy, . .. describe the short-range physics. They are the same,
according to the decoupling theorem

@ Loop diagram in a finite volume ><><

Z/ dk® 1
A(P) =15 2mi 2w(k)(w(k) — kO — ie)2w(P — k)(w(P — k) — PO + kO — jc)
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Phase shift from the energy levels

@ The Lischer zeta-function:
pL 2 p? 2
—=— Z5o(L: 43) , = =
@ The finite-volume spectrum is determined by the poles of the scattering T-matrix
(the determinant of the linear equation vanishes)
@ The Lischer equation in the absence of partial-wave mixing:

Ji(P)

2
peotd(p) = Z5o(1; )

— measuring energy levels, one extracts phase shift at the same energy
@ Resonances: analytic continuation into the complex plane

NREFT serves as a bridge between finite and infinite volume
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The Lellouch-Liischer formula (Lellouch & Liischer, 2001)

e Final-state interactions lead to an irregular L-dependence of the matrix element

K ™ K ™
(v O+
\ﬂ' s
@ The non-relativistic Lagrangian
C
L = o0~ w)@w)o + - 616160 + - + KI(i0, — wic)(2wi)K

+ g(KTpp +h.c)

@ Calculate the decay matrix element in a finite and in the infinite volume, extract g
@ Matrix elements are related through

<n‘leK>L = ¢2(L) <7T7T; OUt’Hw‘K>OO
~——
depends on phase shift
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From two to three particles

Why three particles on the lattice?
@ Three-pion decays of K, n,w

o a1(1260) — pm — 37 and a1(1420) — £(980)7 — 37
Decays of exotica: X(3872), Y (4260), ...

Roper resonance: /N and 7N final states

Nuclear reactions

Few-body physics
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Lattice vs. continuum: observables

Infinite volume:

@ Three-particle bound states

o Elastic scattering

@ Rearrangement reactions, breakup

@ The mass and width of the three-particle resonances

@ Resonance matrix elements (complex): e.g., (wnm|Hw|K)
Finite volume:

@ Two- and three-particle energy levels

e Matrix elements between eigenstates (real)

How does one connect these two sets? EFT serves as a bridge!
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Scale separation in the three-particle sector

Two-particle scattering: The wave function always in the asymptotic form near the
walls: no off-shell effects!

I
L / L /‘

R R

2 particles 3 particles

@ The three-particle wave function near the box walls is not always described by the
asymptotic wave function
@ Is the three-particle spectrum determined solely in terms of the S-matrix?
K. Polejaeva and AR, 2012: Yes!
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Three-particle quantization condition

@ Three different but equivalent formulations of the three-particle quantization
condition are available

o RFT (Relativistic Field Theory): Hansen & Sharpe, 2014
o NREFT (Non-Relativistic Effective Field Theory): Hammer, Pang & AR, 2017
e FVU (Finite-Volume Unitarity): Mai & Déring, 2017

@ Enables one to extract scattering observables in the three-body sector from the
measured finite-volume spectrum

@ Alternative approaches: Bricefio & Davoudi, 2013; Aoki et al, 2014; Guo, 2017
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Particle-dimer picture

@ Dimer: an alternative description of an infinite bubble sum;

@ Mathematically equivalent to the standard treatment — not an approximation

dimer : >O<+>OO< +o = >=<

@ Particle-dimer Lagrangian:
fc
L =¢M(i0; —w)2w)p+ o TIT + (TT[QOqﬁqﬁ +- ]+ h.c.)

@ Higher partial waves can be included (introducing dimers with spin); Derivative
terms should be added

e Matching: fy,... < Cp,... <> a,r,...
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Particle-dimer picture in the three-particle sector

@ The particle-dimer Lagrangian in the three-particle sector
L = hoTTT¢T¢+

e Matching: hg,... <> Dg,...

@ Terms with higher derivatives, higher dimer spin and orbital momentum should be
added
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The scattering equation in the infinite volume (CM frame)

Bethe-Salpeter equation

N dPk
M(p.ai E) = Z(p.a; E) + 7 [ G 20k )l E)M(k.q; )

1
)= 2w(p + a)(w(p) + w(a) + w(p +a) — E)

Z(p,q; E + Ho+ -+

2-body amplitude: 4w (k*)r1(k; E) = k* cot §(k*) + % —m?

———
=k*
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Finite volume (CM frame)

_ B _ 8w . 71(k; E) _
M(p,q; E) = Z(p,q,E)—i-fL3 g Z(p,q; E) 2w (k) M, (k,q; E)
dw(k ) Yk E) = k*cotd(k*) — —— Z&(1; ¢3) q _ KL

LA™ Ly SO0 0 " 2r

@ Poles in the amplitude — finite-volume spectrum:  det((877, )" — Z) =0

T U M. Déring et al., 2018

'''''
............

.....
e
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Quantization condition: essentials

e Two-body interactions as an input: k* cot §(k*) fitted in the two-particle sector

e Extracting short-range quantities encoded in the three-body couplings Ho, . . .
— should be fitted to the three-particle energies

o Finally, solve the equations in the infinite volume to arrive at the S-matrix
elements!

@ The approach is inherently three-dimensional: on-shell S-matrix elements are
extracted

@ Cubic box breaks relativistic invariance in a finite volume

What are the implications of the relativistic invariance?
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Rewriting quantization condition in the invariant form

1
2w(K = p —q)(w(p) + w(q) + w(K — p — q) — K?)
! o+

2w(K —p —q)(w(p) + w(q) — w(K—p —q) — K°)

low—energy polynomial

= L + Ho +
T o (ptq—K2Z-—m
@ Conjecture: low-energy polynomial can be removed by renormalization
@ The kernel is singular at high momenta, breaks unitarity already at threshold,
gives rise to the spurious levels in a finite volume

Can the explicit Lorentz-invariance be reconciled with unitarity in the QC?‘
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Explicitly Lorentz-invariant QC
(F. Miiller, J.-Y. Pang, AR and J.-J. Wu, JHEP 02 (2022) 158)

e Choose “quantization axis” in direction of an arbitrary unit vector v*, v =1
@ The Lagrangian:

. 1
2 = 61(1(v0) — w) @O+ 3 0T, TH 4 4 (z TH . O h>
l 4

o Here, w, = \/m? + 02 — (v0)2 and OF"#* denote the covariant operators,
constructed out of two ¢ fields

@ The propagator:
d*k e—ik(x—y)
(2m)* 2wy (k) (wy (k) — (vk) — ig)

(01 Té(x)¢' (x)[0) =
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The threshold expansion and the loop

There is no explicit v#-dependence of the loop >O<

dPk 1
I(P) = / (2m)Pi 2w, (k)(wy (k) — (vk) — ie)2w, (P — k)(wy, (P — k) — (VP — vk) — ig)
1 1 1

2y (K)(wy (K) — (k) —i2) 2 — k2 2wy (K)(wo(K) + (vK) —7e)

low—energy polynomial

Hence I(P)*/ d°k 1 o= InO—_1
' ) (@n)Pi (m? — k2)(m2 — (P — k)2 — ie) 1672 o+ 1

4m? 1/2
= 1—7
7 ( P2+is>
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Relativistic invariant QC in the three-body sector

T[_(P k)

Mi(p,q) = Z(p,q Ze (N2 + m? — (vk)?)Z(p, k) 0 M (k,q)
(P) = NPE
p* cotd(p*) — NG ZB (1 q3)
1 -
2P 9) = B (K= p— o) (p) + wi(@) ¥ (K —p—q)— (WK) —7e T 0T

@ Quantization condition:
dete/ =0, g = L32W(p)5gq(87TTL(K —p))t = Z(p, q)

@ Relativistic invariance is achieved by choosing v# = K /v K?
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Three-particle decays (F. Miiller and AR, JHEP 03 (2021) 152)

a) Decays through the weak or electromagnetic interactions; isospin-breaking decays:
pole on the real axis
Example: K — 37

b) Decays through strong interactions, the pole moves into the complex plane
Example: N(1440) — 7N

@ Final-state interactions lead to the irregular volume-dependence in the matrix

element
K
RS " G

An analog of the LL formula in the three-particle sector?‘
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The Lagrangian describing decays

@ Three-particle picture:
z = ¢* (id: — w)(zw)¢+ KT (idr — WK)(sz)K
+ ¢*¢*¢¢ + 36 ¢T¢T¢*¢¢>¢ + = (K%w +he)+
@ Particle-dimer picture
&L = ¢(i0r — w)(2w)o + KT (ide — wi)(2wic)K

+ @(TT¢¢+h c)+ho T Toplp+ go(KT T +hc) +
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The wave function

(n) (n)
Mipa k)| = I
KO—E, n—
A
(n) _ 87 7Lk En) (m
wL (P) L3 zk:z(pvkr En) 2W(k) wL (p)

@ — ®\|-

v (v (ah) |

_ KO
KO—E, E K

3
v ({p}) = Z 817L(—Pas En) " (—Pa)

T.({p},{a}; K°)

+ regular

28/32



Derivation of the three-particle LL formula

@[ -l "

@ Finite volume:

87 E,
L3/l o K| = |22 5 Zw g) L9 En)

2w(q)

@ Infinite volume:

(m(ky)m(k2)m(k3); out|Hw |K) o

. KO T Aﬁ . . oT(—Q?KO)
azlsm ,K)<1+8 / (%)3/\4( K, q,K)izw(q) >
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The 3-particle LL factor

(w(ke)m(ke)m(ks); out|Hw |K)oo = P3({k})L>?(n|Hw|K).

2871'7' ka,KO <1+87T/A(;!7::_(;3,M(ka,q;Ko)T(_q;K0))

@s({k}) 2
3 - .
i e i

2w(q)

@ At lowest order, the coupling gy describes the short-range part of the K — 37
amplitude.
@ The derivative couplings g1, g2, ... emerge at higher orders. The three-particle LL

factor becomes a matrix
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Conclusions & outlook

Ex.1

Ex.2

In the analysis of lattice data, EFT can be used to systematically relate the finite-
and infinite-volume observables. This facilitates the extraction of scattering
observables from lattice data

The crucial point: decoupling of short- and long-range physics
Even the Lorentz invariance is explicitly broken in a finite volume, the extraction
of the scattering observables can be performed in a manifestly invariant form

Using EFT, the power-law volume dependence of the three-particle decay
amplitude can be explicitly calculated — a 3-particle analog of the LL formula
Outlook

e Long-range forces in a finite volume: one-pion exchange, Coulomb force
e The Roper resonance
o Boxed exotica
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Thank you very much for your attention!
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