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QCD on the lattice

In QCD, the structure of hadrons and their interactions at low energies cannot be
studied in perturbation theory → QCD on the lattice
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The covariant derivative and the plaquette:

∇µψ(x) =
1

a
(U(x , µ)ψ(x + aµ̂)− ψ(x))

Pµν(x) = U(x , µ)U(x + aµ̂, ν)U(x + aν̂, µ)−1U(x , ν)−1

tr(Pµν(x)) = Nc −
1

2
a4tr(Gµν(x)Gµν(x)) + O(a5)
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Masses of stable particles

Composite fields: φπ(t,p) =
∑

x e
−ipxd̄(x)iγ5u(x), x = (x, t)

The Euclidean path integral

Dπ(t) = 〈Tφπ(t, 0)φ†π(0, 0)|0〉 =

∫
DUDψDψ̄e−S φπ(t, 0)φ†π(0, 0)∫

DUDψDψ̄e−S

If t →∞, then

Dπ(t) → |〈0|φπ(0, 0)|π〉|2e−Mπt + · · ·

Cπ(t) = ln
Dπ(t)

Dπ(t + a)
→ aMπ + · · ·
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The low-energy spectrum of QCD
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5 / 32



The no-go theorem

The scattering observables cannot be directly extracted from the amplitudes
calculated on the lattice (Maiani and Testa, 1990)

Example: the timelike form factor of the pion, t ′, t →∞ and t ′ � t:

Rp−p(t ′, t) = 〈0|Tφπ(t ′,p)φπ(t,−p)Aµ(0)|0〉

∼
∑
n

e−w(p)t′−(En−w(p))t〈0|φπ(0,p)|p〉〈p|φ(0,−p)|n〉〈n|Aµ(0)|0〉+ · · ·

The state with minimum energy: En → 2Mπ < 2w(p) = 2
√
M2
π + p2

↪→ 〈n|Aµ(0)|0〉 is not related to the form factor

In a finite volume, the three-momentum is quantized
↪→ states lying above threshold can be reached
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“Scattering” in a finite volume

a

a

L

a

Impose (periodic) boundary conditions

The spatial size of the box, L, is finite

Assume the temporal size Lt � L, Lt →∞
Three-momenta are quantized p =

2π

L
n , n ∈ Z3

Discrete energy levels: En+1 − En = O(L−2)

No asymptotic states

How does one extract the scattering observables:
phase shift, cross section,. . . from the measured quantities?
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EFT meets lattice

Ψ
in

Ψ
out

R

L

When R � L, well-separated hadrons can be formed

Scale separation is possible

Since p ∼ 1/L and R ∼ 1/m, then p � m: non-relativistic

Polarization effects, caused by creation/annihilation of the particles, are
exponentially small and can be neglected
The relativistic kinematics should be implemented explicitly: non-rest frames
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Non-relativistic EFT: essentials

Propagator:

1

m2 − p2
=

1

2w(p)(w(p)− p0 − iε)︸ ︷︷ ︸
particle

+
1

2w(p)(w(p) + p0 − iε)︸ ︷︷ ︸
anti−particle

The vertices in the Lagrangian conserve particle number:

L = φ†(i∂t − w)(2w)φ+
C0

4
φ†φ†φφ+

D0

36
φ†φ†φ†φφφ+ · · ·

Only bubble diagrams: T = + + · · ·

K-matrix

Effective-range expansion: K−1(p) = p cot δ(p) = −1

a
+

1

2
rp2 + O(p4)
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The Lüscher equation (Lüscher, 1991)

Crucial point: R � L. The energy spectrum can be calculated by using the same
EFT in a finite volume

Couplings C0,D0, . . . describe the short-range physics. They are the same,
according to the decoupling theorem

Loop diagram in a finite volume

JL(P) =
1

L3

∑
k

∫
dk0

2πi

1

2w(k)(w(k)− k0 − iε)2w(P− k)(w(P− k)− P0 + k0 − iε)
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Phase shift from the energy levels

The Lüscher zeta-function:

JL(P) ∝ 2√
πLγ

ZP
00(1; q2

0) , q0 =
pL

2π
, q2

0 =
P2

4
−m2

The finite-volume spectrum is determined by the poles of the scattering T -matrix
(the determinant of the linear equation vanishes)

The Lüscher equation in the absence of partial-wave mixing:

p cot δ(p) =
2√
πLγ

ZP
00(1; q2

0)

↪→ measuring energy levels, one extracts phase shift at the same energy

Resonances: analytic continuation into the complex plane

NREFT serves as a bridge between finite and infinite volume
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The Lellouch-Lüscher formula (Lellouch & Lüscher, 2001)

Final-state interactions lead to an irregular L-dependence of the matrix element

K π

π
+ + · · ·

K

π

π

The non-relativistic Lagrangian

L = φ†(i∂t − w)(2w)φ+
C0

4
φ†φ†φφ+ · · ·+ K †(i∂t − wK )(2wK )K

+ g(K †φφ+ h.c.)

Calculate the decay matrix element in a finite and in the infinite volume, extract g
Matrix elements are related through

〈n|HW |K 〉L = Φ2(L)︸ ︷︷ ︸
depends on phase shift

〈ππ; out|HW |K 〉∞
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From two to three particles

Why three particles on the lattice?

Three-pion decays of K , η, ω

a1(1260)→ ρπ → 3π and a1(1420)→ f0(980)π → 3π

Decays of exotica: X (3872), Y (4260), . . .

Roper resonance: πN and ππN final states

Nuclear reactions

Few-body physics

τ

ν

ρ

π

π

π

a1(1260)
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Lattice vs. continuum: observables

Infinite volume:

Three-particle bound states

Elastic scattering

Rearrangement reactions, breakup

The mass and width of the three-particle resonances

Resonance matrix elements (complex): e.g., 〈πππ|HW |K 〉
Finite volume:

Two- and three-particle energy levels

Matrix elements between eigenstates (real)

How does one connect these two sets? EFT serves as a bridge!
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Scale separation in the three-particle sector

Two-particle scattering: The wave function always in the asymptotic form near the
walls: no off-shell effects!
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The three-particle wave function near the box walls is not always described by the
asymptotic wave function
Is the three-particle spectrum determined solely in terms of the S-matrix?

K. Polejaeva and AR, 2012: Yes!
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Three-particle quantization condition

Three different but equivalent formulations of the three-particle quantization
condition are available

RFT (Relativistic Field Theory): Hansen & Sharpe, 2014

NREFT (Non-Relativistic Effective Field Theory): Hammer, Pang & AR, 2017

FVU (Finite-Volume Unitarity): Mai & Döring, 2017

Enables one to extract scattering observables in the three-body sector from the
measured finite-volume spectrum

Alternative approaches: Briceño & Davoudi, 2013; Aoki et al, 2014; Guo, 2017
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Particle-dimer picture

Dimer: an alternative description of an infinite bubble sum;

Mathematically equivalent to the standard treatment – not an approximation

+ + · · · →dimer :

Particle-dimer Lagrangian:

L = φ†(i∂t − w)(2w)φ+ σT †T +

(
T †
[ f0

2
φφ+ · · ·

]
+ h.c.

)
Higher partial waves can be included (introducing dimers with spin); Derivative
terms should be added

Matching: f0, . . .↔ C0, . . .↔ a, r , . . .
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Particle-dimer picture in the three-particle sector

→

D0
H0

The particle-dimer Lagrangian in the three-particle sector

L3 = h0T
†Tφ†φ+ · · ·

Matching: h0, . . .↔ D0, . . .

Terms with higher derivatives, higher dimer spin and orbital momentum should be
added

18 / 32



The scattering equation in the infinite volume (CM frame)

= + + +

Bethe-Salpeter equation

M(p,q;E ) = Z (p,q;E ) + 8π

∫ Λ d3k

(2π)32w(k)
Z (p, k;E )τ(k;E )M(k,q;E )

Z (p,q;E ) =
1

2w(p + q)(w(p) + w(q) + w(p + q)− E )
+ H̃0 + · · ·

2-body amplitude: 4w(k∗)τ−1(k;E ) = k∗ cot δ(k∗) +

√
s2

4
−m2︸ ︷︷ ︸

=k∗

19 / 32



Finite volume (CM frame)

ML(p,q;E ) = Z (p,q;E ) +
8π

L3

Λ∑
k

Z (p,q;E )
τL(k;E )

2w(k)
ML(k,q;E )

4w(k∗)τ−1
L (k;E ) = k∗ cot δ(k∗)− 2√

πLγ
ZP

00(1; q2
0) , q0 =

k∗L

2π

Poles in the amplitude → finite-volume spectrum: det((8πτL)−1 − Z ) = 0
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Quantization condition: essentials

Two-body interactions as an input: k∗ cot δ(k∗) fitted in the two-particle sector

Extracting short-range quantities encoded in the three-body couplings H̃0, . . .
– should be fitted to the three-particle energies

Finally, solve the equations in the infinite volume to arrive at the S-matrix
elements!

The approach is inherently three-dimensional: on-shell S-matrix elements are
extracted

Cubic box breaks relativistic invariance in a finite volume

What are the implications of the relativistic invariance?
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Rewriting quantization condition in the invariant form

Z → 1

2w(K− p− q)(w(p) + w(q) + w(K− p− q)− K 0)

+
1

2w(K− p− q)(w(p) + w(q)− w(K− p− q)− K 0)︸ ︷︷ ︸
low−energy polynomial

+H̃0 + · · ·

=
1

(p + q − K )2 −m2
+ H̃0 + · · ·

Conjecture: low-energy polynomial can be removed by renormalization

The kernel is singular at high momenta, breaks unitarity already at threshold,
gives rise to the spurious levels in a finite volume

Can the explicit Lorentz-invariance be reconciled with unitarity in the QC?
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Explicitly Lorentz-invariant QC
(F. Müller, J.-Y. Pang, AR and J.-J. Wu, JHEP 02 (2022) 158)

Choose “quantization axis” in direction of an arbitrary unit vector vµ, v2 = 1

The Lagrangian:

L = φ†(i(v∂)− wv )(2wv )φ+
∑
`

σ`T
†
µ1···µ`

Tµ1···µ` +
1

2

(∑
`

T †µ1···µ`
Oµ1···µ` + h.c.

)

Here, wv =
√
m2 + ∂2 − (v∂)2 and Oµ1···µ` denote the covariant operators,

constructed out of two φ fields

The propagator:

〈0|Tφ(x)φ†(x)|0〉 =

∫
d4k

(2π)4

e−ik(x−y)

2wv (k)(wv (k)− (vk)− iε)
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The threshold expansion and the loop

There is no explicit vµ-dependence of the loop

I (P) =

∫
dDk

(2π)D i

1

2wv (k)(wv (k)− (vk)− iε)2wv (P − k)(wv (P − k)− (vP − vk)− iε)

1

2wv (k)(wv (k)− (vk)− iε)
=

1

m2 − k2
+

1

2wv (k)(wv (k) + (vk)− iε)︸ ︷︷ ︸
low−energy polynomial

+ · · ·

Hence, I (P) =

∫
dDk

(2π)D i

1

(m2 − k2)(m2 − (P − k)2 − iε)
+ · · · =

σ

16π2
ln
σ − 1

σ + 1
+ · · ·

σ =

(
1− 4m2

P2 + iε

)1/2
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Relativistic invariant QC in the three-body sector

ML(p, q) = Z (p, q) +
8π

L3

∑
k

θ(Λ2 + m2 − (vk)2)Z (p, k)
τL(P − k)

2w(k)
ML(k, q)

τL(P) =
2
√
P2

p∗ cot δ(p∗)− 2√
πLγ

ZP
00(1; q2

0)

Z (p, q) =
1

2wv (K − p − q)(wv (p) + wv (q) + wv (K − p − q)− (vK )− iε
+ H̃0 + · · ·

Quantization condition:

det A = 0 , Apq = L32w(p)δ3
pq(8πτL(K − p))−1 − Z (p, q)

Relativistic invariance is achieved by choosing vµ = Kµ/
√
K 2
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Three-particle decays (F. Müller and AR, JHEP 03 (2021) 152)

a) Decays through the weak or electromagnetic interactions; isospin-breaking decays:
pole on the real axis

Example: K → 3π

b) Decays through strong interactions, the pole moves into the complex plane
Example: N(1440)→ ππN

Final-state interactions lead to the irregular volume-dependence in the matrix
element

π
+ · · ·

K π

π
π +

K π

π

+
K

π

π

π

An analog of the LL formula in the three-particle sector?
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The Lagrangian describing decays

Three-particle picture:

L = φ†(i∂t − w)(2w)φ+ K †(i∂t − wK )(2wK )K

+
C0

4
φ†φ†φφ+

D0

36
φ†φ†φ†φφφ+

G0

6
(K †φφφ+ h.c.) + · · ·

Particle-dimer picture

L = φ†(i∂t − w)(2w)φ+ K †(i∂t − wK )(2wK )K

+
f0
2

(T †φφ+ h.c.) + h0T
†Tφ†φ+ g0(K †Tφ+ h.c.) + · · ·
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The wave function

ML(p,q;K 0)

∣∣∣∣
K 0→En

=
ψ

(n)
L (p)ψ

(n)
L (q)

En − K 0
+ regular

ψ
(n)
L (p) =

8π

L3

Λ∑
k

Z (p, k;En)
τL(k;En)

2w(k)
ψ

(n)
L (p)

TL = + ML

TL({p}, {q};K 0)

∣∣∣∣
K 0→En

=
Ψ

(n)
L ({p})Ψ

(n)
L ({q})

En − K 0
+ regular

Ψ
(n)
L ({p}) =

3∑
α=1

8πτL(−pα,En)ψ
(n)
L (−pα)
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Derivation of the three-particle LL formula

FL = + ML

Finite volume:

L3/2|〈n|HW |K 〉L| =

∣∣∣∣∣g0

f0

8π

L3

∑
q

ψ
(n)
L (−q)

τL(−q;En)

2w(q)

∣∣∣∣∣
Infinite volume:

〈π(k1)π(k2)π(k3); out|HW |K 〉∞

=
g0

f0

3∑
α=1

8πτ(−kα;K 0)

(
1 + 8π

∫ Λ d3q

(2π)3
M(−kα,−q;K 0)

τ(−q;K 0)

2w(q)

)
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The 3-particle LL factor

〈π(k1)π(k2)π(k3); out|HW |K 〉∞ = Φ3({k})L3/2〈n|HW |K 〉L

Φ3({k}) = ±

3∑
α=1

8πτ(−kα;K 0)

(
1 + 8π

∫ Λ d3q

(2π)3
M(−kα,−q;K 0)

τ(−q;K 0)

2w(q)

)
8π

L3

∑
q

ψ
(n)
L (−q)

τL(−q;En)

2w(q)

At lowest order, the coupling g0 describes the short-range part of the K → 3π
amplitude.

The derivative couplings g1, g2, . . . emerge at higher orders. The three-particle LL
factor becomes a matrix
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Conclusions & outlook

In the analysis of lattice data, EFT can be used to systematically relate the finite-
and infinite-volume observables. This facilitates the extraction of scattering
observables from lattice data

The crucial point: decoupling of short- and long-range physics

Ex.1 Even the Lorentz invariance is explicitly broken in a finite volume, the extraction
of the scattering observables can be performed in a manifestly invariant form

Ex.2 Using EFT, the power-law volume dependence of the three-particle decay
amplitude can be explicitly calculated – a 3-particle analog of the LL formula

Outlook

Long-range forces in a finite volume: one-pion exchange, Coulomb force
The Roper resonance
Boxed exotica

31 / 32



Thank you very much for your attention!
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