
Tatsuya Narikawa, Nami Uchikata 
(ICRR, The University of Tokyo)

Follow-up analyses of the BNS 
signals GW170817 and GW190425 
by using PN waveform models

JGW-G2214036
arXiv:2205.06023

1

LIGO G2200305

https://gwdoc.icrr.u-tokyo.ac.jp/cgi-bin/private/DocDB/ShowDocument?docid=14036
https://arxiv.org/abs/2205.06023
https://dcc.ligo.org/LIGO-G2200305


(1) Science targets of data analyzing BNS-GWs 

(2) Brief review on BNS data analyses 

(3) Follow-up analyses of GW170817 with PNTidal 

2

Contents

arXiv:2205.06023

https://arxiv.org/abs/2205.06023


10 Chapter 2. Extreme Matter, Extreme Environs
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Figure 2.3: Phase diagram of hot and dense
matter shows approximate phase boundaries
and the most relevant degrees of freedom.
The regions occupied by cold NSs (blue
shaded region) and the those encountered
during the merger (green shaded region) are
also shown.

Gravitational-wave observations by the 3G network could shed light on many critical questions about
the nature of NSs: Does matter encountered in NSs and BNS mergers contain novel phases not realized
inside nuclei and heavy-ion collisions? How do nuclear reactions and neutrinos shape NS merger dynamics
and nucleosynthesis? How do the properties of nuclei that are far from stability impact the EM emission
from material ejected during NS mergers? Do large scale (magneto)hydrodynamic instabilities play a role in
merging BNS systems? Can we combine GW and EM signatures to validate multi-physics simulations of
BNS and NSBH mergers to predict ejecta, nucleosynthesis, and the gamma-ray burst mechanism?

2.2 Demographics of Compact Binary Mergers
A key question about compact binary mergers is their demographics, as this could reveal their formation
mechanism. Localization of merger events to less than galactic scales (⇠ 30 kpc) is essential to unambiguously
infer associations of mergers with their host galaxies. Without an EM counterpart the vast majority of events
will have error boxes that greatly exceed the typical radii of potential host galaxies. The merger fraction split
between early type and star-formation galaxies will provide a fascinating insight into the fraction of mergers
that are created with short gravitational fuses [192] that are comparable to the evolutionary timescales of
massive stars and those that extend out to a Hubble time. Their locations [193, 194] within the hosts will give
insights into the kick velocities imparted to the binaries during their SN explosions.

EM follow-up of BNS mergers will be critical in pinning down host galaxies. BBH mergers, not believed
to produce any EM counterparts, will not be resolved well enough to unambiguously identify their hosts.
The situation is more optimistic for NSBH mergers. Theoretical predictions suggest that when the mass
ratio is not too extreme depending on the black hole spin, conditions could be favorable for the creation of
an accretion disk around that might rival the absolute visual magnitude of the GW170817 kilonova, and,
therefore, be detectable out to z = 0.5 in the reddest filters. If such mergers occur in the globular cluster cores
it will be difficult to identify host clusters much beyond Virgo, and those in Virgo do not require a 3G GW
detectors for discovery.

Based on our current understanding, galaxies are assembled by the merger of smaller proto-galaxies
and star formation peaks near z ⇠ 2 [195]. Identification of kilonovae beyond z ⇠ 0.5 requires hour-long
integrations on 8m class facilities like LSST or Subaru and therefore determining the host galaxies of BNS
mergers near the peak of star formation will not be routine in the absence of a gamma-ray burst jet pointing
towards the Earth, even with ELTs. Nevertheless, at redshifts z < 0.5 3G detectors will work in concert with
astronomy facilities to enable thousands of host galaxy identifications from BNS and NSBH mergers thanks
to the identification of a kilonova. At larger distances, the identification will be possible only through the
detection of an associated gamma-ray burst afterglow, which can be much more luminous than a kilonova if
the jet is directed towards the Earth.

BNS coalescences are valuable laboratories for nuclear 
astrophysics

Gravitational-Wave Astronomy with
the Next-Generation Earth-Based

Observatories
Exploring the Universe from Planck to Hubble Scales

GWIC, GWIC-3G, GWIC-3G-SCT-Consortium
Schematic phase diagram for dense nuclear matter

QCD

Nuclear physics

NS EOS

BNS-GWs

BNS-GWs can provide complementary information on the 
macroscopic properties of neutron stars and the dense matter.
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Review [Lattimer&Prakash2016; Baiotti2019; Dietrich, Hinderer, Samajdar 2021; 
Chatziioannou2020]

(1) Science targets of data analyzing BNS-GWs
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Fig. 3 Cartoon depicting the definition of tidal deformability. The tidal field E due to the
spacetime curvature of the companion causes the NS to deform as the matter adjusts to a
new equilibrium configuration. The relevant quantity influencing the GWs is the induced
change in the multipole structure of the NS’s exterior spacetime Q. The multipoles are also
impacted by spin effects, and dynamical tidal effects.

the presence of a companion is small, with a description of the interaction
zone where the NSs behave almost as point masses with small corrections due
to their finite size [213,442], see also [184,513,281,303,302,535]. For weakly
self-gravitating bodies described by PN gravity see also the seminal series of
papers by Damour, Soffel, Xu [164]. As will be discussed in detail in Sec. 4, the
multipole moments defined for the spacetime in the vicinity of the NSs play
a key role for communicating information about NS matter between these
descriptions. The multipole structure is affected by a variety of tidal effects,
spins, and more complicated spin-tidal interactions. In addition to affecting
the dynamics, the NS’ multipole moments also give rise to additional imprints
on the asymptotic gravitational radiation. The radiation can be described by
double perturbation expansion around flat spacetime and an infinite series of
radiative multipole moments, as explained in detail in the review article [86].
The radiative moments are related in a complicated way, i.e., nonlinearly and
non-locally in retarded time, to the total multipole moments of the binary
system, which comprise contributions from the orbital motion and the NSs’
multipoles. Problems such as the relativistic two-body problem that involve
different scales can also efficiently be treated with effective-field-theory meth-
ods, see [335,436,466,219] for comprehensive reviews and references.

2.2.1 Dominant tidal effects

In Newtonian gravity, tidal effects arise from the response of the NS to the
gradient of the companion’s gravitational field across its matter distribution.
From the perspective of the NS, the companion is orbiting and produces a time-
varying tidal field that slowly sweeps up in frequency. This quasi-periodic tidal
forcing can excite characteristic oscillation modes in the NS that depend on
the properties of matter in its interior. These concepts carry over to a General
Relativistic description, where the modes are the NS’s quasi-normal modes. A
NS has a broad spectrum of modes [300], several of which have sufficiently low
frequencies to be relevant for the inspiral. The tidal excitation can either be a

[Dietrich+2020]

When binary orbital separations are small, 
each star is tidally distorted by its 
companion.

λ := −
Qij

Eij
Qij: tidally induced quadrupole moment
Eij: companion's tidal field

The tidal deformability of NS matter affects the GW signals  
and characterizes NS EOS models.

Tidal deformability λ

PNTidal [Flanagan&Hinderer08; Damour, Nagar, Villain 2012; 
Henry, Faye, Blanchet 2020; Narikawa, Uchikata, Tanaka 2021]
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Λ̃ = 16
13 [(1 + 11X2)X4

1Λ1 + (1 ↔ 2)]

Λ̃ = 16
13

(1 + 12q)Λ1 + (12 + q)q4Λ2
(1 + q)5

Binary tidal deformability

: individual onesΛ1,2 = λ1,2/m5
1,2 X1,2 = m1,2/(m1 + m2) : mass ratio

λ [Hinderer08; Damour&Nagar2009; 
Postnikov+2010]



PN waveform phase

ΨBNS( f ) = ΨBBH( f ) + ΨTidal( f )

∼ ℳ−5/3f −5/3 [1 + a1PN(η)x2 + a1.5PN(η, χeff)x3

+ a2PN(η, χ2
i , κs)x4 + . . . + a5PN(Λ̃)x10 + . . . ]

:chirp mass 
Measurable very well

ℳ

x = (πMf )2/3 = v2

η: symmetric mass ratio 
Difficult to measure well

χeff: spin 
Difficult to measure well

κ: spin-induced QM 
NS EOSs

Λ: tidal deformability 
NS EOSs

Sophisticated models: EOB, IMRPhenom and NR calibrated models are 
constructed by extension of the PN theory.

5

for TF2_PNTidal

PN formalism review [Blanchet2014; Poisson&Will2014; Isoyama, Nakano, Sturani 2020] 
TF2 (3.5PN) [Dhurandhar+1994; Buonanno+2009] Spin summarized in [Khan+2016] 
PNTidal [Flanagan&Hinderer08; Damour, Nagar, Villain 2012; Henry+2020; Narikawa+2021]

modeling has advanced in recent years.

v: orbital velocity 

Post-Newtonian (PN) theory is theoretically rigid and can efficiently 
describe the inspiral regime.



GW inference on GW170817 [LVC 2017, 2018]

From M and q, we obtain a measure of the component
masses m1 ∈ ð1.36; 2.26ÞM⊙ and m2 ∈ ð0.86; 1.36ÞM⊙,
shown in Fig. 4. As discussed in Sec. I, these values are
within the range of known neutron-star masses and below
those of known black holes. In combination with electro-
magnetic observations, we regard this as evidence of the
BNS nature of GW170817.
The fastest-spinning known neutron star has a dimension-

less spin≲0.4 [153], and the possible BNS J1807-2500B has
spin≲0.2 [154], after allowing for a broad range of equations
of state. However, among BNS that will merge within a
Hubble time, PSR J0737-3039A [155] has the most extreme
spin, less than ∼0.04 after spin-down is extrapolated to
merger. If we restrict the spin magnitude in our analysis to
jχj ≤ 0.05, consistent with the observed population, we
recover the mass ratio q ∈ ð0.7; 1.0Þ and component masses
m1 ∈ ð1.36;1.60ÞM⊙ andm2 ∈ ð1.17; 1.36ÞM⊙ (see Fig. 4).
We also recover χeff ∈ ð−0.01; 0.02Þ, where the upper limit
is consistent with the low-spin prior.
Our first analysis allows the tidal deformabilities of the

high-mass and low-mass component, Λ1 and Λ2, to vary
independently. Figure 5 shows the resulting 90% and
50% contours on the posterior distribution with the
post-Newtonian waveform model for the high-spin and

low-spin priors. As a comparison, we show predictions
coming from a set of candidate equations of state for
neutron-star matter [156–160], generated using fits from
[161]. All EOS support masses of 2.01 # 0.04M⊙.
Assuming that both components are neutron stars described
by the same equation of state, a single function ΛðmÞ is
computed from the static l ¼ 2 perturbation of a Tolman-
Oppenheimer-Volkoff solution [103]. The shaded regions in
Fig. 5 represent the values of the tidal deformabilitiesΛ1 and
Λ2 generated using an equation of state from the 90% most
probable fraction of the values ofm1 andm2, consistent with
the posterior shown in Fig. 4. We find that our constraints on
Λ1 and Λ2 disfavor equations of state that predict less
compact stars, since the mass range we recover generates
Λ values outside the 90% probability region. This is con-
sistent with radius constraints from x-ray observations of
neutron stars [162–166]. Analysis methods, in development,
that a priori assume the same EOS governs both stars should
improve our constraints [167].
To leading order in Λ1 and Λ2, the gravitational-wave

phase is determined by the parameter

~Λ ¼ 16

13

ðm1 þ 12m2Þm4
1Λ1 þ ðm2 þ 12m1Þm4

2Λ2

ðm1 þm2Þ5
ð1Þ

[101,117]. Assuming a uniform prior on ~Λ, we place a 90%
upper limit of ~Λ ≤ 800 in the low-spin case and ~Λ ≤ 700 in
the high-spin case. We can also constrain the functionΛðmÞ
more directly by expanding ΛðmÞ linearly about m ¼
1.4M⊙ (as in [112,115]), which gives Λð1.4M⊙Þ ≤ 1400
for the high-spin prior and Λð1.4M⊙Þ ≤ 800 for the low-
spin prior. A 95% upper bound inferred with the low-spin
prior, Λð1.4M⊙Þ ≤ 970, begins to compete with the 95%
upper bound of 1000 derived from x-ray observations
in [168].
Since the energy emitted in gravitational waves depends

critically on the EOS of neutron-star matter, with a wide
range consistent with constraints above, we are only able to
place a lower bound on the energy emitted before the onset
of strong tidal effects at fGW∼600Hz asErad > 0.025M⊙c2.
This is consistent with Erad obtained from numerical
simulations and fits for BNS systems consistent with
GW170817 [114,169–171].
We estimate systematic errors from waveform modeling

by comparing the post-Newtonian results with parameters
recovered using an effective-one-body model [124] aug-
mented with tidal effects extracted from numerical relativity
with hydrodynamics [172]. This does not change the
90% credible intervals for component masses and effective
spin under low-spin priors, but in the case of high-spin priors,
we obtain the more restrictive m1 ∈ ð1.36; 1.93ÞM⊙, m2 ∈
ð0.99; 1.36ÞM⊙, and χeff ∈ ð0.0; 0.09Þ. Recovered tidal
deformabilities indicate shifts in the posterior distributions
towards smaller values, with upper bounds for ~Λ and
Λð1.4M⊙Þ reduced by a factor of roughly (0.8, 0.8) in the

FIG. 4. Two-dimensional posterior distribution for the compo-
nent massesm1 andm2 in the rest frame of the source for the low-
spin scenario (jχj < 0.05, blue) and the high-spin scenario
(jχj < 0.89, red). The colored contours enclose 90% of the
probability from the joint posterior probability density function
for m1 and m2. The shape of the two dimensional posterior is
determined by a line of constant M and its width is determined
by the uncertainty inM. The widths of the marginal distributions
(shown on axes, dashed lines enclose 90% probability away from
equal mass of 1.36M⊙) is strongly affected by the choice of spin
priors. The result using the low-spin prior (blue) is consistent with
the masses of all known binary neutron star systems.

PRL 119, 161101 (2017) P HY S I CA L R EV I EW LE T T ER S week ending
20 OCTOBER 2017

161101-6

Δℳ

Δq

: measured well. q: not measured well.  
q-χeff correlation
ℳ

For reference, we also show Λ1–Λ2 contours for a repre-
sentative subset of theoretical EOSmodels that span the range
of plausible tidal parameters using piecewise-polytrope
fits from Refs. [136,137]. The values of Λ1 and Λ2 are
calculated using the samples for the source-frame masses
m1 and m2 contained in the 90% credible region for
PhenomPNRT. The widths of these bands are determined
by the small uncertainty in chirp mass. The lengths of these
bands are determined by the uncertainty in mass ratio. Most
of their support is near the Λ1 ¼ Λ2 line corresponding to
the equal-mass case and ends at the 90% lower limit for the
mass ratio. The predicted values of the tidal parameters for
the EOSs MS1, MS1b, and H4 lie well outside of the 90%
credible region for both the low-spin and high-spin priors,
and for all waveform models. This can be compared to
Fig. 5 of Ref. [3], where H4 was still marginally consistent
with the 90% credible region.
The leading tidal contribution to the GW phase evolution

is a mass-weighted linear combination of the two tidal
parameters Λ̃ [138]. It first appears at 5PN order and is
defined such that Λ̃ ¼ Λ1 ¼ Λ2 when m1 ¼ m2:

Λ̃ ¼ 16

13

ðm1 þ 12m2Þm4
1Λ1 þ ðm2 þ 12m1Þm4

2Λ2

ðm1 þm2Þ5
: ð5Þ

In Fig. 11, we show marginalized posteriors of Λ̃ for the
two spin priors and four waveformmodels. Because there is
only one combination of the component tidal deformabil-
ities that gives Λ̃ ¼ 0, namely, Λ1 ¼ Λ2 ¼ 0, when using
flat priors in Λ1 and Λ2, the prior distribution for Λ̃ falls to
zero as Λ̃ → 0. This means that the posterior for Λ̃ must
also fall to zero as Λ̃ → 0. To avoid the misinterpretation
that there is no evidence for Λ̃ ¼ 0, we reweight the
posterior for Λ̃ by dividing by the prior used, effectively
imposing a flat prior in Λ̃. In practice, this is done by
dividing a histogram of the posterior by a histogram of the
prior. The resulting histogram is then resampled and
smoothed with kernel density estimation. We have verified
the validity of the reweighting procedure by comparing the
results to runs where we fixΛ2 ¼ 0 and use a flat prior in Λ̃.
This differs from the reweighting procedure only in the
small, next-to-leading-order tidal effect.
After reweighting, there is still some support at Λ̃ ¼ 0.

For the high-spin prior, we can only place a 90% upper
limit on the tidal parameter, shown in Fig. 11 and listed in
Tables II and IV. For the TaylorF2 model, this 90% upper
limit can be directly compared to the value reported in
Ref. [3]. We note, however, that due to a bookkeeping error,
the value reported in Ref. [3] should have been 800 instead
of 700. Our improved value of 730 is about 10% less than
this corrected value. As with the Λ1–Λ2 posterior (Fig. 10),
the three models with the NRTidal prescription predict 90%
upper limits that are consistent with each other and less than
the TaylorF2 results by about 10%. For the low-spin prior,

we can now place a two-sided 90% HPD credible interval
on Λ̃ that does not contain Λ̃ ¼ 0. This 90% HPD interval
is the smallest interval that contains 90% of the probability.
The PDFs for the NRTidal waveform models are

bimodal. The secondary peak’s origin is the subject of
further investigation, but it may result from a specific noise
realization, as similar results have been seen with injected
waveforms with simulated Gaussian noise (see Fig. 4 of
Ref. [138]).
In Fig. 11, we also show posteriors of Λ̃ (gray PDFs)

predicted by the same (EOSs) as in Fig. 10, evaluated using
the masses m1 and m2 sampled from the posterior. The
sharp cutoff to the right of each EOS posterior corresponds
to the equal-mass-ratio boundary. Again, as in Fig. 10, the

FIG. 11. PDFs of the combined tidal parameter Λ̃ for the high-
spin (top panel) and low-spin (bottom panel) priors. Unlike in
Fig. 6, the PDFs have been reweighted by dividing by the original
prior for Λ̃ (also shown). The 90% HPD credible intervals are
represented by vertical lines for each of the four wave-
form models: TaylorF2, PhenomDNRT, SEOBNRT, and
PhenomPNRT. For the high-spin prior, the lower limit on the
credible interval is Λ̃ ¼ 0. The seven gray PDFs are those for the
seven representative EOSs using the masses estimated with
the PhenomPNRT model. Their normalization constants have
been rescaled to fit in the figure. For these EOSs, a 1.36 M⊙ NS
has a radius of 10.4 km (WFF1), 11.3 km (APR4), 11.7 km (SLy),
12.4 km (MPA1), 14.0 km (H4), 14.5 km (MS1b), and
14.9 km (MS1).

B. P. ABBOTT et al. PHYS. REV. X 9, 011001 (2019)

011001-12

: measured, less compact EOS 
models are disfavored.
Λ̃

[De+2018; Dai+2018; LVC2019; 
Narikawa+2018,2019; Chatziioannou2020]

Spin priors
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For reference, we also show Λ1–Λ2 contours for a repre-
sentative subset of theoretical EOSmodels that span the range
of plausible tidal parameters using piecewise-polytrope
fits from Refs. [136,137]. The values of Λ1 and Λ2 are
calculated using the samples for the source-frame masses
m1 and m2 contained in the 90% credible region for
PhenomPNRT. The widths of these bands are determined
by the small uncertainty in chirp mass. The lengths of these
bands are determined by the uncertainty in mass ratio. Most
of their support is near the Λ1 ¼ Λ2 line corresponding to
the equal-mass case and ends at the 90% lower limit for the
mass ratio. The predicted values of the tidal parameters for
the EOSs MS1, MS1b, and H4 lie well outside of the 90%
credible region for both the low-spin and high-spin priors,
and for all waveform models. This can be compared to
Fig. 5 of Ref. [3], where H4 was still marginally consistent
with the 90% credible region.
The leading tidal contribution to the GW phase evolution

is a mass-weighted linear combination of the two tidal
parameters Λ̃ [138]. It first appears at 5PN order and is
defined such that Λ̃ ¼ Λ1 ¼ Λ2 when m1 ¼ m2:

Λ̃ ¼ 16

13

ðm1 þ 12m2Þm4
1Λ1 þ ðm2 þ 12m1Þm4

2Λ2

ðm1 þm2Þ5
: ð5Þ

In Fig. 11, we show marginalized posteriors of Λ̃ for the
two spin priors and four waveformmodels. Because there is
only one combination of the component tidal deformabil-
ities that gives Λ̃ ¼ 0, namely, Λ1 ¼ Λ2 ¼ 0, when using
flat priors in Λ1 and Λ2, the prior distribution for Λ̃ falls to
zero as Λ̃ → 0. This means that the posterior for Λ̃ must
also fall to zero as Λ̃ → 0. To avoid the misinterpretation
that there is no evidence for Λ̃ ¼ 0, we reweight the
posterior for Λ̃ by dividing by the prior used, effectively
imposing a flat prior in Λ̃. In practice, this is done by
dividing a histogram of the posterior by a histogram of the
prior. The resulting histogram is then resampled and
smoothed with kernel density estimation. We have verified
the validity of the reweighting procedure by comparing the
results to runs where we fixΛ2 ¼ 0 and use a flat prior in Λ̃.
This differs from the reweighting procedure only in the
small, next-to-leading-order tidal effect.
After reweighting, there is still some support at Λ̃ ¼ 0.

For the high-spin prior, we can only place a 90% upper
limit on the tidal parameter, shown in Fig. 11 and listed in
Tables II and IV. For the TaylorF2 model, this 90% upper
limit can be directly compared to the value reported in
Ref. [3]. We note, however, that due to a bookkeeping error,
the value reported in Ref. [3] should have been 800 instead
of 700. Our improved value of 730 is about 10% less than
this corrected value. As with the Λ1–Λ2 posterior (Fig. 10),
the three models with the NRTidal prescription predict 90%
upper limits that are consistent with each other and less than
the TaylorF2 results by about 10%. For the low-spin prior,

we can now place a two-sided 90% HPD credible interval
on Λ̃ that does not contain Λ̃ ¼ 0. This 90% HPD interval
is the smallest interval that contains 90% of the probability.
The PDFs for the NRTidal waveform models are

bimodal. The secondary peak’s origin is the subject of
further investigation, but it may result from a specific noise
realization, as similar results have been seen with injected
waveforms with simulated Gaussian noise (see Fig. 4 of
Ref. [138]).
In Fig. 11, we also show posteriors of Λ̃ (gray PDFs)

predicted by the same (EOSs) as in Fig. 10, evaluated using
the masses m1 and m2 sampled from the posterior. The
sharp cutoff to the right of each EOS posterior corresponds
to the equal-mass-ratio boundary. Again, as in Fig. 10, the

FIG. 11. PDFs of the combined tidal parameter Λ̃ for the high-
spin (top panel) and low-spin (bottom panel) priors. Unlike in
Fig. 6, the PDFs have been reweighted by dividing by the original
prior for Λ̃ (also shown). The 90% HPD credible intervals are
represented by vertical lines for each of the four wave-
form models: TaylorF2, PhenomDNRT, SEOBNRT, and
PhenomPNRT. For the high-spin prior, the lower limit on the
credible interval is Λ̃ ¼ 0. The seven gray PDFs are those for the
seven representative EOSs using the masses estimated with
the PhenomPNRT model. Their normalization constants have
been rescaled to fit in the figure. For these EOSs, a 1.36 M⊙ NS
has a radius of 10.4 km (WFF1), 11.3 km (APR4), 11.7 km (SLy),
12.4 km (MPA1), 14.0 km (H4), 14.5 km (MS1b), and
14.9 km (MS1).

B. P. ABBOTT et al. PHYS. REV. X 9, 011001 (2019)

011001-12

NRTidal [Dietrich+2017]



Current estimated BNS merger rate 320+ 490
−240 Gpc−3yr−1 [LVC 2021]

[Chatziioannou 2022]
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FIG. 1. Radius 90% uncertainty as a function of the un-
certainty in the combined tidal deformability for di↵erent
NS masses and radii. The top axis gives the corresponding
SNR, achieved with either a single source or a combination
of sources. Estimates are based on GW170817’s �⇤̃ ⇠ 650
at SNR 32. Solid (dot-dashed) vertical lines are projected re-
sults from a GW170817-like event (a catalog of BNSs) with
di↵erent detectors and observing durations.

cally weaker binary tidal interactions. An SNR of 1000,
achieved either by observing a GW170817-like event with
3G detectors or with 4 years of Voyager operation, would
result in a measurement of ⇤̃ to 20 and R to 50 � 200m
for di↵erent NS masses. A more moderate total SNR of
200 from ⇠100 sources would lead to a ⇤̃ (R) uncertainty
of 100 (1km) at 1.6M�, consistent with the more detailed
simulations of [23]. The final constraint achieved on NS
radii will be a combination of these per-mass estimates
depending on the astrophysical NS mass distribution.

The above are not detailed predictions about the ex-
pected NS constraints from future detectors; such es-
timates would require a precise treatment of -among
others- the BNS merger rate, its redshift distribution,
the NS mass distribution, the broadband detector per-
formance, the network duty cycle, etc. However, they
provide a projection that GWs could result in a ⇠100m
radius measurement within the decade with Voyager and
beyond with 3G detectors. This radius constraint would
also improve if e↵ects such as dynamical tides [61–63] are
detected as they are qualitatively di↵erent than the stan-
dard adiabatic tides considered here and not captured by
the ⇢�1 scaling. Reaching this projected precision relies
on ascertaining that every aspect of the GW analysis in-
duces potential systematic errors that are fully quantified
and brought below statistical uncertainties.

GRAVITATIONAL WAVE ANALYSIS

Analysis of GW data d to extract source parameters ✓
relies on modeling the signal with a waveform template

h(✓) under some model for the detector noise. The like-
lihood function in the frequency domain is [64, 65]

logL ⇠ �
1

2
(d � h(✓)|d � h(✓)), (1)

with the noise-weighted inner product

(a|b) ⌘ 2

Z
a⇤(f)b(f) + b⇤(f)a(f)

Sn(f)
df, (2)

where an asterisk denotes complex conjugation and Sn(f)
is the power spectral density (PSD) of the noise. The
likelihood and a prior for ✓ give the posterior probability.
The above allows us to identify the ingredients of pa-

rameter estimation:

(i) the data d,

(ii) the noise PSD Sn(f),

(iii) the waveform model h(✓),

as well as the main assumptions:

(iv) the detector noise is stationary, leading to a diag-
onal noise covariance matrix and an inner product
that is a one-dimensional frequency integral, and

(v) the detector noise is gaussian, which leads to the
gaussian functional form of the likelihood.

Each of the above introduces systematic uncertainties
that will a↵ect inference at some level.

ASSUMPTION: GAUSSIAN NOISE

The functional form of the likelihood is dictated by the
assumption of gaussian detector noise. Gaussianity can
be violated by instrumental artifacts, known as glitches,
or multiple GW signals temporally overlapping. Glitches
are a common occurrence, with a rate of . 1 per minute
in the LIGO detectors in O3a [44] and already coinciding
with signals, notably GW170817 [8, 66]. Overlapping
signals are expected to be rare in advanced LIGO but a
possibility for 3G detectors [67–70].
The temporal coincidence of glitches and signals has

led to the development of mitigation techniques that si-
multaneously model the signal and the glitch [71] or use
auxiliary channel information [72–75]. In the context of
tidal inference, glitches are relevant when overlapping
with the signal at frequencies &400Hz. Though O3a
was dominated by glitches with peak frequencies below
100Hz [44], improved detector sensitivity could bring new
glitch families. A prominent glitch will be modeled to-
gether with the signal [71], leading to unbiased signal pa-
rameters. However, this does not preclude the possibility
of a stealth bias [76], where the glitch is not loud enough
to be identified but could still a↵ect tidal inference.

Projected EOS constraints from expected BNS coalescences
In O4 and O5, statistical uncertainty in radius .ΔR ∼ )(1) km [Landry+2020]

We estimate the total SNR accumulated by such a
catalog of BNS detections by adopting a ρ−4 distribution
[57], appropriate for detectors up to Voyager that get the
majority of their sources from redshifts up to 0.3 [46]. We
simulate 100 source catalogs and compute the total SNR
by summing the per-event SNRs in quadrature to find a
median total SNR of 60(200)[450] f650g with 10(100)
[500] f1000g sources. The total SNR from 3G detectors
is expected to be Oð104Þ [58]. These estimates are
conservative if dedicated high-frequency detectors join
the network [59,60].
The corresponding NS radius accuracy is shown in

Fig. 1 for different NS masses and radii, assuming we
can perfectly convert a (m; Λ̃) measurement to R. Since we
are interested in the expected radius uncertainty and not the
details of the calculation, we use the relations of [61–64]
between the masses, tides, and radius. In practice such
relations carry additional systematic uncertainty, so
approaches that model the whole NS equation of state
hierarchically would be preferred in the regime of inform-
ative measurements. However, our goal here is an estimate
of the expected radius uncertainty and not the details of
which analysis can achieve it, so such relations are
appropriate.
The Λ ∼ ðR=mÞ5 scaling results in increased radius

uncertainty with higher/lower NS mass/radius due to
intrinsically weaker binary tidal interactions. An SNR of
1000, achieved either by observing a GW170817-like event
with 3G detectors or with 4 years of Voyager operation,
would result in a measurement of Λ̃ to 20 and R to
50–200 m for different NS masses. A more moderate total
SNR of 200 from ∼100 sources would lead to a Λ̃ (R)

uncertainty of 100 (1 km) at 1.6 M⊙, consistent with the
more detailed simulations of [23]. The final constraint
achieved on NS radii will be a combination of these per-
mass estimates depending on the astrophysical NS mass
distribution.
The above are not detailed predictions about the

expected NS constraints from future detectors; such
estimates would require a precise treatment of—among
others—the BNS merger rate, its redshift distribution, the
NS mass distribution, the broadband detector performance,
the network duty cycle, etc. However, they provide a
projection that GWs could result in a ∼100 m radius
measurement within the decade with Voyager and beyond
with 3G detectors. This radius constraint would also
improve if effects such as dynamical tides [65–67] are
detected as they are qualitatively different than the standard
adiabatic tides considered here and not captured by the ρ−1

scaling. Reaching this projected precision relies on ascer-
taining that every aspect of the GW analysis induces
potential systematic errors that are fully quantified and
brought below statistical uncertainties.

II. GRAVITATIONAL WAVE ANALYSIS

Analysis of GW data d to extract source parameters θ
relies on modeling the signal with a waveform template
hðθÞ under some model for the detector noise. The like-
lihood function in the frequency domain is [68,69]

logL ∼ −
1

2
ðd −hðθÞjd −hðθÞÞ; ð1Þ

with the noise-weighted inner product

ðajbÞ≡ 2

Z
a#ðfÞbðfÞ þ b#ðfÞaðfÞ

SnðfÞ
df; ð2Þ

where an asterisk denotes complex conjugation and
SnðfÞ is the power spectral density (PSD) of the noise.
The likelihood and a prior for θ give the posterior
probability.
The above allows us to identify the ingredients of

parameter estimation:
(i) the data d,
(ii) the noise PSD SnðfÞ,
(iii) the waveform model hðθÞ,

as well as the main assumptions:
(iv) the detector noise is stationary, leading to a diagonal

noise covariance matrix and an inner product that is
a one-dimensional frequency integral, and

(v) the detector noise is gaussian, which leads to the
Gaussian functional form of the likelihood.

Each of the above introduces systematic uncertainties that
will affect inference at some level.

FIG. 1. Radius 90% uncertainty as a function of the uncertainty
in the combined tidal deformability for different NS masses and
radii. The top axis gives the corresponding SNR, achieved with
either a single source or a combination of sources. Estimates are
based on GW170817’s ΔΛ̃ ∼ 650 at SNR 32. Solid (dot-dashed)
vertical lines are projected results from a GW170817-like event (a
catalog of BNSs) with different detectors and observing durations.
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matrix is then diagonal with a (assumed known) variance
related to SnðfÞ. Neither noise stationarity nor a perfect
knowledge of SnðfÞ are strictly true, introducing a potential
systematic in parameter estimation.
Tidal effects influence the signal for a few tens of

milliseconds, during which the noise is most likely sta-
tionary. However, the entire signal lasts for longer as a
GW170817-like signal is 2(5) f10gminutes from merger at
23(16) f12g Hz, putting a strain on the stationarity
assumption. Efforts to subtract nonstationary noise
[84,85] or correct for it at the analysis level [86] are under
way, with a further option of abandoning the frequency
domain altogether [87,88]. Spectral lines in the data
[89–91] and finite analysis segments [92] can also intro-
duce nondiagonal terms in the covariance matrix.
Under the assumption of stationarity the noise PSD itself

can be computed using either off-source [68,93] data that
assume stationarity from even longer data segments or it
can be modeled based on source data [89,94]. Uncertainty
in the PSD estimation can also be marginalized over
[75,95–97]. PSD errors could cause parameter biases
[94], however these should primarily affect the amplitude
of the GW signal and less so its phase evolution.
To test this we simulate a BNS in Gaussian noise and

analyze it with a misestimated noise PSD in the (400,
1000) Hz range. The PSD is based on the LIGO design
sensitivity and we alter its strain sensitivity in the relevant
frequency range by some percentage compared to the true
value used for the simulated data. The resulting Λ̃ posterior
is shown in Fig. 2 showing PSD misestimation does not
affect tidal parameter recovery for PSD relative errors of up
to # 10%.

V. INGREDIENT: DATA

The data d correspond to the relative displacement of the
interferometer test masses, tracked through interfering laser
light incident on photodetectors. Converting the photodetec-
tor output to strain is achieved through a calibration process
whose uncertainties could affect parameter estimation if
left unaccounted for [98,99]. Detector calibration relies on
detector strain induced by photon calibrators [100], resulting
in an estimate for the systematic error and corresponding
statistical uncertainty for the detector frequency-domain
amplitude and phase response [101–105].
During first half of O3 the calibration uncertainty

(systematic and statistical) was determined to be no more
than 4° in phase in the LIGO detectors at the 68% level,
corresponding to 7° at the 90% level [103], with similar
estimates for the second half of O3 [104]. A conservative
phase calibration error of 10° is compared in Fig. 3 against
the GW phase shift for different NS radii. The phase
calibration uncertainty is comparable to the GW dephasing
induced by a 100–200 m change in the radius.
Astrophysical parameter estimation studies margina-

lize over calibration uncertainty [106], a procedure that

effectively increases measurement uncertainties, though the
result is small at current sensitivities. Though calibration
uncertainty is typically treated as being uncorrelated
between different frequencies, using a physical calibration
model that correctly encodes calibration error across
frequencies could further mitigate the effect on parameter
estimation [107,108]. Improvements in photon calibration
[109], alternative methods such as the Newtonian calibrator
[110,111], and even astrophysical calibration [112,113]
could reduce the impact of calibration error which is
currently comparable to the target radius uncertainty of
100 m.

VI. INGREDIENT: WAVEFORM MODEL

The final ingredient of the analysis, and the most
commonly considered one in the context of systematics,
is the waveform model [5]. The effect of waveform
systematics has been investigated for GW170817 by
employing a diverse set of waveform models including
post-Newtonian [6,114], effective-one-body [115–120],
and phenomenological models calibrated to numerical
relativity simulations [121–124]. The main conclusion is
that current statistical uncertainties dominate over wave-
form systematics [12,125].
Studies of simulated signals using a wide variety of

waveforms suggest, however, that waveform systematics
could become significant for ρ≳ 100 [5,126–128], corre-
sponding to GW170817 at design sensitivity or 50 sources
at the Aþ timescale. Waveform biases increase with Λ̃,
and thus less massive or bigger NSs, and could be due to
modeling error in the point-particle or the tidal sectors of
the waveform [5]. Additionally, numerical errors in the

FIG. 3. GW frequency-domain phase difference between sig-
nals from BNSs with different radii relative to 13 km up to
different frequencies. Solid (dashed) lines denote absolute (noise-
weighted) phase differences. The shaded region marks a 10°
calibration uncertainty, relevant only for the absolute phase
difference. Unbiased tidal and radius inference hinges on wave-
form models achieving phase evolution accuracies better than the
induced tidal effect.
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Review ① BNS signal injection studies

An increase of SNR (~100) yields biases in the estimates of .Λ̃

EOB-NR hybrid waveform injections

SNR=100

with the data, and for those approximants that do not include
tidal terms, the search rails against the limits on themasses, as
well as on the physical limit χ ≤ 1 for the spins. This is most
clear in the plot of the posterior distribution for q. Figure 5
also includes a plot of the logarithm of the likelihood; we see
that the TaylorF2 and IMRPhenomD approximants can-
not be made to match the data as accurately as the tidal
approximants, and so their likelihoods are lower. (More
generous limits on the masses in the parameter recovery may
lead to a higher likelihood for these approximants, but we do
not expect it to be as high as for the approximants that include
tidal terms, since biases in the masses and spins can only
partiallymimic themissing tidal effects.)We also see that the
TaylorF2Tides approximant, although it contains tidal
terms, is not as accurate as the NRtidal approximants,
for which the tidal terms have been tuned to NR waveforms.
We now move on to measurements of the tidal deform-

ability, Λ̃, for whichwe can compare the accuracy of different
tidal approximants. In Fig. 6, the left two panels show the
results for SLy injections (at SNRs 25 and 100), and the two
right panels show the results for MS1b. The results shown
here are entirely consistent with the systematics tests per-
formed for the LIGO-Virgo Collaboration analysis of the
properties of GW170817 [12]. In particular, all tidal approx-
imants agree within their 90% credible intervals at SNRs
measured to date, for both soft and stiff EOSs, and for all
configurations the TaylorF2Tides approximant can be used
to place an upper bound on Λ̃, as in Refs. [3,12].

It is interesting to note, however, at an SNR of 100, the
measurement using the NRtidal approximants is biased
away from the injected value of the hybrid, which was
constructed from the TEOBResum approximant. This is an
indication that we do not have sufficient control over
systematics for high-SNR setups. A possible explanation
for this behavior is that tidal effects in the NRtidalmodel
are larger than in theTEOBResummodel used to produce the
injected signals, as alreadyhighlighted inFig. 10ofRef. [67].
Another possible explanation is that this is due to differences
between the NRtidal and TEOBResum approximants in
the BH limit. The agreement of TaylorF2Tides in the
bottom-left panel of Fig. 6 is accidental. (We believe that
this is due to a compensation of two effects: TaylorF2Tides

models underestimating tidal effects and therefore overesti-
mating Λ̃, and systematics errors in the point-particle
description [124].) We note also that at SNR 100, the
TEOBResum approximant provides a biased measurement
forMS1b. Thismay be surprising at first, sinceTEOBResum
was used in the construction of the MS1b hybrid, but the
approximant is used only up to the hybridization frequency,
fromwhich point onwards theNRwaveform is used. There is
an SNR of ∼16 from the hybridization frequency up to the
merger. As already stated, there are also systematic
differences between TEOBResum and TEOBResum_ROM
[104]. We found a phase difference between our hybrid and
the waveform generated using TEOBResum_ROM of about
∼4 rad atmerger for theMS1b case and∼0.8 rad for the SLy

FIG. 6. Measurements of the tidal deformability parameter. The two panels on the left show results for the SLy signal injected at SNR
25 (top) and 100 (bottom). The two panels on the right show results for the MS1b signal injected at SNR 25 (top) and 100 (bottom).
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constructed from the TEOBResum approximant. This is an
indication that we do not have sufficient control over
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for this behavior is that tidal effects in the NRtidalmodel
are larger than in theTEOBResummodel used to produce the
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Another possible explanation is that this is due to differences
between the NRtidal and TEOBResum approximants in
the BH limit. The agreement of TaylorF2Tides in the
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mating Λ̃, and systematics errors in the point-particle
description [124].) We note also that at SNR 100, the
TEOBResum approximant provides a biased measurement
forMS1b. Thismay be surprising at first, sinceTEOBResum
was used in the construction of the MS1b hybrid, but the
approximant is used only up to the hybridization frequency,
fromwhich point onwards theNRwaveform is used. There is
an SNR of ∼16 from the hybridization frequency up to the
merger. As already stated, there are also systematic
differences between TEOBResum and TEOBResum_ROM
[104]. We found a phase difference between our hybrid and
the waveform generated using TEOBResum_ROM of about
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FIG. 6. Measurements of the tidal deformability parameter. The two panels on the left show results for the SLy signal injected at SNR
25 (top) and 100 (bottom). The two panels on the right show results for the MS1b signal injected at SNR 25 (top) and 100 (bottom).
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where pure tidal EOB waveforms using the SEOBNRv4T
model [78,106] were injected and recovered. We note that
these injected waveforms lacked a post-merger part and that
the study restricted the characterization of systematic effects
to tidal waveform models, since no recovery with pure BBH
approximantswas carried out.However, it has beengenerally
found that the TaylorF2Tides approximant predicts larger
tidal deformabilities than the NRTidal models, which we
can verify within our extended study.
In the following, we provide details about the construc-

tion of the hybrid waveforms, including the discussion
about the TEOBResum model and employed NR data.

A. EOB waveform

We use the TEOBResum waveform model in the
frequency regime from 30 Hz to ∼500 Hz. TEOBResum
is determined by seven input parameters: the binary mass
ratio q and the l¼ 2, 3, 4 tidal polarizability parameters
κA;Bl . The latter are related to the ΛA;B

l tidal deformability
parameters by

κAl ¼ q−1X2lþ1
A ð2l − 1Þ!!ΛA

l ; ð4Þ

κBl ¼ qX2lþ1
B ð2l − 1Þ!!ΛB

l ; ð5Þ

with XA;B ¼ MA;B=ðMA þMBÞ. For our equal-mass
(MA ¼ MB ¼ 1.35) SLy and MS1b fiducial BNSs, one
has κA2 ¼κB2 ¼36.7749 and κA2 ¼κB2 ¼144.0378, respectively.
Using the publicly available TEOBResum code,2 we

generate waveforms starting at a frequency of 30 Hz, which
corresponds to ∼60 s before the time of merger. We restrict
our analysis to the dominant (2,2) mode throughout
the paper.

B. Numerical-relativity data

The numerical simulations were performed with the BAM
code [107,108], which solves the Einstein equations using
the Z4c decomposition [109,110], and have been previously

published in Ref. [75]. The NR data are publicly available at
http://www.computational-relativity.org/; cf. [105].
The two binary configurations used in this work describe

equal-mass BNS systems with a total mass of 2.70 M⊙, i.e.,
a chirp massM¼ðMAMBÞ3=5=ðMAþMBÞ1=5¼1.1752M⊙.
The two waveforms differ in their choice of the EOS
modeling the supranuclear matter inside the NS. The NR
waveforms start at an initial dimensionless frequency
ðMA þMBÞω22 ¼ 0.038, which corresponds to 455 Hz.
They cover ∼10 orbits prior to merger, the merger itself,
and post-merger. The merger frequencies fmerger are
2010 Hz and 1405 Hz for waveforms with the SLy and
the MS1b EOS, respectively, and the frequency content of
the post-merger signal reaches up to ∼4000 Hz. At the
moment of merger, the phase uncertainty as estimated in
[75] is Δϕ ¼ % 0.40 rad for the SLy and Δϕ ¼ % 3.01 rad
for the MS1b setup. The larger phase uncertainty of the
MS1b setup gets partially compensated for by the fact that
this setup has also significantly larger tidal effects due to
the stiffer EOS. For a more detailed discussion about
uncertainties in NR simulations, we refer to Ref. [111].

C. Hybrid waveform

To hybridize the tidal EOB and NR waveforms modeling
the same physical BNS system, we first align the two
waveforms. This is done by minimizing

Iðδt; δϕÞ ¼
Z

tf

ti
dtjϕNRðtÞ − ϕEOBðtþ δtÞ þ δϕj2; ð6Þ

with δϕ and δt being relative phase and time shifts. ϕNR
and ϕEOB denote the phases of the NR and tidal EOB
waveform, respectively. The alignment is done in a time
window ½ti; tf' that corresponds to the dimensionless
frequency window [0.04, 0.06]. Previous comparisons have
shown that in this interval the agreement between the NR
and EOB waveforms is excellent [75,76,79]. Additionally,
our particular choice for this window allows us to average
out the phase oscillations linked to the residual eccentricity
ð10−2Þ of the NR simulations.

Hybrid EOB NR

FIG. 1. A hybrid waveform used in this study, with MA ¼ MB ¼ 1.35 M⊙ and employing the SLy EOS. The hybrid (thin, cyan line)
consists of a tidal EOB part (red) and an NR part (dotted blue). The alignment interval is marked by the yellow shaded region in the right
panel. The time t ¼ 0 denotes the start of the NR simulation.

2https://bitbucket.org/account/user/eob_ihes/ projects/EOB.
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are larger than in theTEOBResummodel used to produce the
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Another possible explanation is that this is due to differences
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mating Λ̃, and systematics errors in the point-particle
description [124].) We note also that at SNR 100, the
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an SNR of ∼16 from the hybridization frequency up to the
merger. As already stated, there are also systematic
differences between TEOBResum and TEOBResum_ROM
[104]. We found a phase difference between our hybrid and
the waveform generated using TEOBResum_ROM of about
∼4 rad atmerger for theMS1b case and∼0.8 rad for the SLy

FIG. 6. Measurements of the tidal deformability parameter. The two panels on the left show results for the SLy signal injected at SNR
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GW170817’s network SNR (straight orange line), and
largely below the threshold corresponding to a network
SNR or 80 (straight black line)—i.e., the SNR above which
all of our injections are performed. By tightening the
constraints and enforcing ϵ2 ¼ 1 (dashed lines), we find
that already at the SNR of GW170817, none of the
considered waveforms are faithful enough to ensure that
no waveform systematics will be observed. However, not
all our injections give largely biased or incompatible
results. These facts indicate that these criteria give neces-
sary but not sufficient rules to identify biases and highlight
the strong dependence of the criteria themselves on the
arbitrarily chosen value of ϵ2.
To test the procedure outlined in Sec. II B, we

obtain an estimate of the biased values Λ̃E by applying
Eq. (24), and minimizing the quantity P

iðhTEOBResumSi −

hIMRPhenomPv2NRTidal;TaylorF2i jhTEOBResumSi − hIMRPhenomPv2NRTidal;TaylorF2i Þ,
where the sum is performed over the network inter-
ferometers considered (Livingston, Hanford and Virgo,
in our case). In particular, for each waveform
hIMRPhenomPv2NRTidal;TaylorF2, we fix the intrinsic
parameters ðmA;mB; χA; χBÞ to their real injected values,
and vary ΛA ¼ ΛB over the one-dimensional interval
Λ̃ ∈ ½minð0; Λ̃inj − 500Þ; Λ̃inj þ 500&. The simplifying
choice of imposing ΛA ¼ ΛB can be justified by consid-
ering that in our injection study we were unable to
distinguish q ¼ 1 from q ≠ 1 systems. While this might
not be true for more asymmetric systems than those studied
in the present paper, the issue can be easily circumvented
by employing Binary-Love universal relations [113]. The
straightforward procedure described leads to the values
displayed in Table I. We find that the Λ̃E values computed,
while often slightly overestimated with respect to the
medians of the distributions of the tidal parameters recov-
ered through PE, fall into the 90% Λ̃ credible limits in the
large majority of cases, thus providing a good approxima-
tion of the overall behavior of the approximants employed.
Due to the overestimate of Λ̃E, the bias ΔΛ̃B ¼ jΛ̃E − Λ̃injj
is larger than the real bias ΔΛ̃true ¼ jΛ̃median − Λ̃injj for
the TaylorF2 approximant, and smaller for
IMRPhenomPv2NRTidal. Estimates of waveform sys-
tematics based on the above method might then be slightly
optimistic (pessimistic) when comparing TEOBResumS to
IMRPhenomPv2NRTidal (TaylorF2).

V. GW170817

We now apply the approach developed and tested in the
previous sections to the analysis of GW170817.
We perform a Bayesian analysis of GW170817 using

the IMRPhenomPv2NRTidal, TaylorF2, and
TEOBResumS approximants, involving pbilby [116].
We adopt an almost identical configuration to the one
presented in Ref. [117] (see also Ref. [6]). In more detail,

we consider a strain of 128 s around the GPS time
1187008882.43 s. Data are downloaded directly from the
GWOSC [118], in its cleaned and deglitched version (v2).
We employ the PSDs provided by Ref. [6], and we fix the
sky location to the one provided by EM constraints.
Further, as we are mainly interested in estimating the
intrinsic parameters of the source, we marginalize over
distance, time, and phase. The sampling is performed with
uniform priors in chirp mass M ∈ ½1.18; 1.21&M⊙ and
mass ratio q ∈ ½0.125; 1&, with the additional constraints
mA;mB ∈ ½1.001; 4.314&M⊙. The quadrupolar tidal coef-
ficients ΛA, ΛB are uniformly sampled in the interval
[0, 5000]. The main differences with respect to the analysis
of Ref. [117] lie in (i) the different spin priors employed,
which are taken to be aligned to the orbital angular
momentum and such that ðχA; χBÞ ∈ ½−0.05; 0.05&, and
(ii) the high-frequency cutoff of 1024 Hz that we impose
(instead of the 2048 Hz of Ref. [117]).
Using the formalism of the Fisher matrix outlined in

Sec. II A, we investigate in which frequency region the tidal
information is effectively extracted, in accordance with the
extracted posterior samples: the Fisher matrix element IΛ̃ Λ̃
has its main support in the frequency band from 200 Hz
to 1.5 kHz. Subsequently, we compute fthr according to
Eq. (15) and, in order to achieve a more realistic result, we
neglect the contributions above merger frequency fmrg,
where this quantity is estimated using numerical relativity
fits introduced in Ref. [119]. As shown in Fig. 9, we find
that the SNR of GW170817 is located at frequencies lower

FIG. 8. Analysis of GW170817 data. Marginalized one-
dimensional Λ̃ posteriors, obtained by analyzing the data up
to fmax ¼ 1024 Hz with three approximants: TaylorF2
(blue), IMRPhenomPv2NRTidal (red), and TEOBResumS
(black). The posteriors shown are reweighted to flat in Λ̃ prior,
as is done in, e.g., Ref. [6]. The public bilby posteriors from
Ref. [117] (gray) are also displayed. Note that the bilby
analysis uses fmax ¼ 2048 Hz.
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Review ② GW170817 analyses: Waveform systematics in Λ̃

[Gamba+, 2021]

NRTidal gives smaller estimates of  for GW170817 than TEOBResumS and 
TaylorF2_PNTidal. 

Λ̃

Reanalyses with fhigh=1024 Hz focusing on inspiral regime

← (fhigh=2048 Hz) in [LVC 2018]

[LVC2019; Narikawa+2019; Gamba+2021; Ashton&Dietrich2021]
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Inspiral-only analyses, with 
fhigh=1024 Hz, give larger 
and less tighter  than the 

IMR analyses, with 
fhigh=2048 Hz. 

[Dai+2018; Narikawa+19]
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Review ③ GW170817 analyses: Waveform model 
comparison with a “hypermodel” approach

[Ashton & Dietrich 2021]

Figure 1 | Combined and individual posterior densities for the mass and tidal deformability of GW170817. The dashed curve provides the prior distribution estimated
by drawing samples. In the right-hand column, we include the distributions of the log-likelihood and log-prior of the posterior samples.

Waveform GW170817 GW190425 GW200311 103121 Joint
Prob. [%] Odds Prob. [%] Odds Prob. [%] Odds Odds

IMRPhenomD NRTidalv2 23.2± 0.6 1.40± 0.04 (1.6± 0.3) 25.0± 0.7 1.20± 0.04 25.3± 0.4 0.99± 0.02 1.7 ± 0.1
SEOBNRv4 ROM NRTidalv2 20.5± 0.6 1.59± 0.05 (1.9± 0.4) 21.3± 0.7 1.41± 0.06 25.0± 0.4 1.01± 0.02 2.3 ± 0.2
SEOBNRv4T surrogate 23.8± 0.6 1.37± 0.04 (1.4± 0.3) 23.5± 0.7 1.28± 0.05 24.5± 0.4 1.03± 0.02 1.8 ± 0.1
TEOBResumS 32.5± 0.6 — 30.1± 0.7 — 25.2± 0.4 — —

Table 1 | The posterior probability, as a percentage, for each waveform and data set analysed in this work. Next to the probability, we also provide the odds against the
TEOBResumS waveform (calculated from the ratio of the posterior probability). For GW170817, we also give the odds calculated from a Nested Sampling approach
in brackets. All uncertainties are stated as 1� bounds. Uncertainties on the posterior probabilities are derived from Poisson statistics, while the uncertainties on the
Nested Sampling odds are derived from estimates reported by the DYNESTY algorithm.

the odds calculated from the Nested Sampling approach is larger than
that of the hypermodels approach. The reason for this is explained in
Section 5, but we note here that, while we can reduce the uncertainty in
either approach by additional computation effort, the uncertainty of the
hypermodel approach is minimised for nearly equally favoured models,
making it well suited to problems such as this.

Finally, we note that the TEOBResumS model can include the
impacts of higher-order mode waveform content. For the primary
analyses in this work, we restricted the TEOBResumS to only model
the ` = 2,m = ±2 mode (all other waveform approximants only
model this mode). To explore if higher-order mode content is measur-
able in GW170817, we repeat our Nested Sampling analysis (using a
massively-parallelised approach49) for the TEOBResumS waveform,
but include all modes up to the ` = 4,m = ±4 harmonics. We
then compare the posterior and Bayesian evidence between the anal-
ysis with and without higher-order modes and find they are identical,
i.e., we do not find any evidence for higher-order modes in GW170817.
This is expected: for systems with near-equal component masses, less
than 0.2% of the total emitted gravitational-wave energy is released in
higher-order modes50.

GW190425: Next, we analyse the second observed binary neutron star
merger GW19042513. Unlike GW170817, no electromagnetic counter-
part was identified alongside GW190425. Moreover, the event had an

SNR of only 1351. Therefore the data individually places weaker con-
straints on the tidal deformability (though it still does contribute some
information13).

We apply our hypermodel analysis to GW190425 in a man-
ner identical to our analysis of GW170817 (except that, with-
out an electromagnetic counterpart, we must include the prior un-
certainty about the sky position). In Table 1, we provide the
posterior probability. Remarkably, we find a consistent pattern
emerging: TEOBResumS is the most successful model at pre-
dicting the data. The ranking of the other three waveforms is
nearly the same, SEOBNRv4 ROM NRTidalv2 ranks last with
IMRPhenomD NRTidalv2 and SEOBNRv4T surrogate compa-
rable to within their stated uncertainties (though their ordering is
flipped as compared to GW170817).

Like GW170817, and in agreement with previous analyses13, all
four waveform models predict identical posteriors for all parameters
except ⇤̃ (see Section 6 for additional figures). For ⇤̃ we find a sub-
tle difference in predictions for TEOBResumS compared to the other
waveforms.

Comparing GW190425 and GW170817, we obtain consistent but
weaker inferences about the probability of the four waveforms and in-
ferences of the tidal parameters, which is expected since GW190425 is
an intrinsically quieter source.

3

Figure 1 | Combined and individual posterior densities for the mass and tidal deformability of GW170817. The dashed curve provides the prior distribution estimated
by drawing samples. In the right-hand column, we include the distributions of the log-likelihood and log-prior of the posterior samples.
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either approach by additional computation effort, the uncertainty of the
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the ` = 2,m = ±2 mode (all other waveform approximants only
model this mode). To explore if higher-order mode content is measur-
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higher-order modes50.
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nearly the same, SEOBNRv4 ROM NRTidalv2 ranks last with
IMRPhenomD NRTidalv2 and SEOBNRv4T surrogate compa-
rable to within their stated uncertainties (though their ordering is
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Like GW170817, and in agreement with previous analyses13, all
four waveform models predict identical posteriors for all parameters
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tle difference in predictions for TEOBResumS compared to the other
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TEOBResumS is the most successful at predicting GW170817 data.
Although the odds do not exceed the threshold of a significant preference 
to TEOBResumS, they stress that the mild preference to TEOBResumS 
over NRTidalv2 and SEOBNRv4T is worthy of further investigation.
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the odds calculated from the Nested Sampling approach is larger than
that of the hypermodels approach. The reason for this is explained in
Section 5, but we note here that, while we can reduce the uncertainty in
either approach by additional computation effort, the uncertainty of the
hypermodel approach is minimised for nearly equally favoured models,
making it well suited to problems such as this.

Finally, we note that the TEOBResumS model can include the
impacts of higher-order mode waveform content. For the primary
analyses in this work, we restricted the TEOBResumS to only model
the ` = 2,m = ±2 mode (all other waveform approximants only
model this mode). To explore if higher-order mode content is measur-
able in GW170817, we repeat our Nested Sampling analysis (using a
massively-parallelised approach49) for the TEOBResumS waveform,
but include all modes up to the ` = 4,m = ±4 harmonics. We
then compare the posterior and Bayesian evidence between the anal-
ysis with and without higher-order modes and find they are identical,
i.e., we do not find any evidence for higher-order modes in GW170817.
This is expected: for systems with near-equal component masses, less
than 0.2% of the total emitted gravitational-wave energy is released in
higher-order modes50.

GW190425: Next, we analyse the second observed binary neutron star
merger GW19042513. Unlike GW170817, no electromagnetic counter-
part was identified alongside GW190425. Moreover, the event had an

SNR of only 1351. Therefore the data individually places weaker con-
straints on the tidal deformability (though it still does contribute some
information13).

We apply our hypermodel analysis to GW190425 in a man-
ner identical to our analysis of GW170817 (except that, with-
out an electromagnetic counterpart, we must include the prior un-
certainty about the sky position). In Table 1, we provide the
posterior probability. Remarkably, we find a consistent pattern
emerging: TEOBResumS is the most successful model at pre-
dicting the data. The ranking of the other three waveforms is
nearly the same, SEOBNRv4 ROM NRTidalv2 ranks last with
IMRPhenomD NRTidalv2 and SEOBNRv4T surrogate compa-
rable to within their stated uncertainties (though their ordering is
flipped as compared to GW170817).

Like GW170817, and in agreement with previous analyses13, all
four waveform models predict identical posteriors for all parameters
except ⇤̃ (see Section 6 for additional figures). For ⇤̃ we find a sub-
tle difference in predictions for TEOBResumS compared to the other
waveforms.

Comparing GW190425 and GW170817, we obtain consistent but
weaker inferences about the probability of the four waveforms and in-
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Review ④ GW170817 analyses: Constraints on NS EOSs
[LVC 2018]

Less compact EOS models are disfavored.

Independent EOSs 
EOS-insensitive universal relations 
Spectral EOS parametrization

the nuclear saturation density. This is chosen because such
low densities do not significantly impact the global proper-
ties of the NS [114]. Different low density EOSs can
produce a difference in radius, for a given m, of order
0.1 km. Though use of a specific parametrization makes our
results model-dependent, we have checked that they are
consistent with another common EOS parametrization, the
piecewise polytropic one [115,116], as also found in [117].
In this analysis, we follow the methodology detailed in

[117], developed from the work of [118], to sample directly
in an EOS parameter space. We sample uniformly in all
EOS parameters within the following ranges: γ0 ∈ ½0.2; 2",
γ1 ∈ ½−1.6; 1.7", γ2 ∈ ½−0.6; 0.6", and γ3 ∈ ½−0.02; 0.02"
and additionally impose that the adiabatic index
ΓðpÞ ∈ ½0.6; 4.5". This choice of prior ranges for the
EOS parameters was chosen such that our parametrization
encompasses a wide range of candidate EOSs [110] and
leads to NSs with a compactness below 0.33 and a tidal
deformability above about 10. Then for each sample, the
four EOS parameters and the masses are mapped to a
ðΛ1;Λ2Þ pair through the Tolman-Oppenheimer-Volkoff
(TOV) equations describing the equilibrium configuration
of a spherical star [119]. The two tidal deformabilities are
then used to compute the waveform template.
Sampling directly in the EOS parameter space allows for

certain prior constraints to be conveniently incorporated
in the analysis. In our analysis, we impose the following
criteria on all EOS and mass samples: (i) causality, the
speed of sound in the NS (

ffiffiffiffiffiffiffiffiffiffiffiffiffi
dp=dϵ

p
) must be less than the

speed of light (plus 10% to allow for imperfect para-
metrization) up to the central pressure of the heaviest star
supported by the EOS; (ii) internal consistency, the EOS
must support the proposed masses of each component; and
(iii) observational consistency, the EOS must have a
maximum mass at least as high as previously observed
NS masses, specifically 1.97 M⊙. Another condition the
EOS must obey is that of thermodynamic stability; the EOS
must be monotonically increasing (dϵ=dp > 0). This con-
dition is built into the parametrization [110], so we do not
need to explicitly impose it.
Results.—We begin by demonstrating the improvement

in the measurement of the tidal deformability parameters
due to imposing a common but unknown EOS for the two
NSs. In Fig. 1 we show the marginalized joint posterior
PDF for the individual tidal deformabilities. We show
results from our analysis using the ΛaðΛs; qÞ relation in
green and the parametrized EOS without a maximum mass
constraint in blue. These are compared to results from [52],
where the two tidal deformability parameters are sampled
independently, in orange. The shaded region marks the
Λ2 < Λ1 region that is naturally excluded when a common
realistic EOS is assumed, but is not excluded from the
analysis of [52]. In both cases imposing a common EOS
leads to a smaller uncertainty in the tidal deformability
measurement. The area of the 90% credible region for the

Λ1-Λ2 posterior shrinks by a factor of ∼3, which is
consistent with the results of [106] for soft EOSs and
NSs with similar masses. The tidal deformability of a
1.4 M⊙ NS can be estimated through a linear expansion
of ΛðmÞm5 around 1.4 M⊙ as in [5,48,120] to be Λ1.4 ¼
190þ 390

−120 at the 90% level when a common EOS is imposed
(here and throughout this paper we quote symmetric credible
intervals). Our results suggest that “soft” EOSs such as
APR4, which predict smaller values of the tidal deform-
ability parameter, are favored over “stiff” EOSs such as H4
or MS1, which predict larger values of the tidal deform-
ability parameter and lie outside the 90% credible region.
We next explore what inferences we can make about

the structure of NSs. We do this using the spectral EOS
parametrization described above in combination with the
requirement that the EOS must support NSs up to at least
1.97 M⊙, a conservative estimate based on the heaviest
known pulsar [65]. From this we obtain a posterior for the
NS interior pressure as a function of rest-mass density. The
result is shown in Fig. 2, along with marginalized posteriors
for central densities and central pressures and predictions of
the pressure-density relationship from various EOS models.
The pressure posterior is shifted from the 90% credible
prior region (marked by the purple dashed lines) and
towards the soft floor of the parameterized family of

FIG. 1. Marginalized posterior for the tidal deformabilities of
the two binary components of GW170817. The green shading
shows the posterior obtained using the ΛaðΛs; qÞ EOS-insensitive
relation to impose a common EOS for the two bodies, while the
green, blue, and orange lines denote 50% (dashed) and 90%
(solid) credible levels for the posteriors obtained using EOS-
insensitive relations, a parametrized EOS without a maximum
mass requirement, and independent EOSs (taken from [52]),
respectively. The gray shading corresponds to the unphysical
region Λ2 < Λ1 while the seven black scatter regions give the
tidal parameters predicted by characteristic EOS models for this
event [113,115,121–125].
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credible interval width for the radius measurement of
almost a factor of 2, from 5.9 to 3.6 km.
Discussion.—In this Letter, we complement our analy-

sis of the tidal effects of GW170817 in [52] with a
targeted analysis that assumes astrophysically plausible
NS spins and tidal parameters, as well as the same EOS
for both NSs. This additional prior information enables us
to measure NS radii with an uncertainty less than 2.8 km
if consistency with observed pulsar masses is enforced,
and 3.6 km using GW data alone at the 90% credible
level. We observe that, in both cases, the data are
informative and drive the upper bounds on the NS radii
and the stiffness of the EOS. Simultaneously, the pressure
at twice the nuclear saturation density is measured to be
pð2ρnucÞ ¼ 3.5þ 2.7

−1.7 × 1034 dyn=cm2. Our results are con-
sistent with x-ray binary observations (see, e.g.,
[19,20,126,127]) and suggest that NS radii are not large.
Additionally, our results can be compared to tidal
inference based on the electromagnetic emission of
GW170817 [128–130].
Our results are comparable and consistent with studies

that use the tidal measurement from [5] to obtain bounds on
NS radii. Using our bound of Λ1.4 < 800 (the only tidal
parameter in [5], which assumed a common EOS for both
NSs) and different EOS parametrizations, several studies
found R1.4≲13.5 km [56,58,62,64]. Reference [63] arrives
at a similar conclusion using our Λ̃ < 800 constraint [5]
(though see [52] for an amended Λ̃ bound) and the
observation that Λ̃ is almost insensitive to the binary mass
ratio [99]. Our improved estimate of Λ1.4 ¼ 190þ 390

−120 , and

R1 ¼ 10.8þ 2.0
−1.7 km and R2 ¼ 10.7þ 2.1

−1.5 km for the EOS-
insensitive-relation analysis is roughly consistent with
these estimates (see for example Fig. 1 of [62,58]). If
we additionally enforce the heaviest observed pulsar
to be supported by placing direct constraints on the
EOS parameter space, we get further improvement in
the radius measurement, with R1 ¼ 11.9þ 1.4

−1.4 km and
R2 ¼ 11.9þ 1.4

−1.4 km.
A recent analysis of the GW170817 data was performed

in De et al. [53] using the TaylorF2 model, imposing that
the two NSs have the same radii which, under the additional
assumption that Λ ∝ C−6 (an alternative to the Λ-C relation
used here [104]), directly relates the two tidal deformabil-
ities as Λ1 ¼ q6Λ2. After our paper appeared as a preprint,
De et al. obtained a revised estimate of the common NS
radius 8.9 km < R̂ < 13.2 km. Despite using a lower low
frequency cutoff—and hence more data—than our study,
the result of De et al. corresponds to a width of 4.3 km,
which is wider than the uncertainty on radii computed
under our EoS-insensitive analysis. There are differences in
several details of the setup of the two analyses (most
notably, frequency range, data calibration, the noise PSD
estimation, waveform model, parameter priors, assumed
relations between radii and Λs and treatment of corre-
sponding uncertainties), each of which may be responsible
for part of the observed discrepancies.
Our results, and specifically the lower radius limit, do

not constitute observational proof of tidal effects in
GW170817, as our analysis has explicitly assumed that
the coalescing bodies were NSs both in terms of their spins

FIG. 3. Marginalized posterior for the massm and areal radius R of each binary component using EOS-insensitive relations (left panel)
and a parametrized EOS where we impose a lower limit on the maximum mass of 1.97 M⊙ (right panel). The top blue (bottom orange)
posterior corresponds to the heavier (lighter) NS. Example mass-radius curves for selected EOSs are overplotted in gray. The lines in the
top left denote the Schwarzschild BH (R ¼ 2m) and Buchdahl (R ¼ 9m=4) limits. In the one-dimensional plots, solid lines are used for
the posteriors, while dashed lines are used for the corresponding parameter priors. Dotted vertical lines are used for the bounds of the
90% credible intervals.
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On 17 August 2017, the LIGO and Virgo observatories made the first direct detection of gravitational
waves from the coalescence of a neutron star binary system. The detection of this gravitational-wave signal,
GW170817, offers a novel opportunity to directly probe the properties of matter at the extreme conditions
found in the interior of these stars. The initial, minimal-assumption analysis of the LIGO and Virgo data
placed constraints on the tidal effects of the coalescing bodies, which were then translated to constraints on
neutron star radii. Here, we expand upon previous analyses by working under the hypothesis that both bodies
were neutron stars that are described by the same equation of state and have spins within the range observed in
Galactic binary neutron stars. Our analysis employs two methods: the use of equation-of-state-insensitive
relations between various macroscopic properties of the neutron stars and the use of an efficient
parametrization of the defining function pðρÞ of the equation of state itself. From the LIGO and Virgo
data alone and the first method, we measure the two neutron star radii as R1 ¼ 10.8þ 2.0

−1.7 km for the heavier
star and R2 ¼ 10.7þ 2.1

−1.5 km for the lighter star at the 90% credible level. If we additionally require that the
equation of state supports neutron stars with masses larger than 1.97 M⊙ as required from electromagnetic
observations and employ the equation-of-state parametrization, we further constrain R1 ¼ 11.9þ 1.4

−1.4 km and
R2 ¼ 11.9þ 1.4

−1.4 km at the 90% credible level. Finally, we obtain constraints on pðρÞ at supranuclear densities,
with pressure at twice nuclear saturation density measured at 3.5þ 2.7

−1.7 × 1034 dyn cm−2 at the 90% level.

DOI: 10.1103/PhysRevLett.121.161101

Introduction.—Since September 2015, the Advanced
LIGO [1] and Advanced Virgo [2] observatories have
opened a window on the gravitational-wave (GW) universe
[3,4]. A new type of astrophysical source of GWs was
detected on 17 August 2017, when the GW signal emitted
by a low-mass coalescing compact binary was observed
[5]. This observation coincided with the detection of a γ-ray
burst, GRB 170817A [6,7], verifying that the source binary
contained matter, which was further corroborated by a
series of observations that followed across the electromag-
netic spectrum; see e.g., [8–12]. The measured masses of
the bodies and the variety of electromagnetic observations
are consistent with neutron stars (NSs).
Neutron stars are unique natural laboratories for studying

the behavior of cold high-density nuclear matter. Such
behavior is governed by the equation of state (EOS), which
prescribes a relationship between pressure and density. This
determines the relation between NS mass and radius, as
well as other macroscopic properties such as the stellar
moment of inertia and the tidal deformability (see e.g.,
[13]). While terrestrial experiments are able to test and
constrain the cold EOS at densities below and near the
saturation density of nuclei ρnuc ¼ 2.8 × 1014 g cm−3 (see
e.g., [14–17] for a review), currently they cannot probe the
extreme conditions in the deep core of NSs. Astrophysical

measurements of NS masses, radii, moments of inertia and
tidal effects, on the other hand, have the potential to offer
information about whether the EOS is soft or stiff and what
the pressure is at several times the nuclear saturation
density [16,18–20].
GWs offer an opportunity for such astrophysical mea-

surements to be performed, as the GW signal emitted by
merging NS binaries differs from that of two merging
black holes (BHs). The most prominent effect of matter
during the observed binary inspiral comes from the tidal
deformation that each star’s gravitational field induces on
its companion. This deformation enhances GW emission
and thus accelerates the decay of the quasicircular inspiral
[21–23]. In the post-Newtonian (PN) expansion of the
inspiral dynamics [24–32], this effect causes the phase of
the GW signal to differ from that of a binary BH (BBH)
from the fifth PN order onwards [21,33,34]. The leading-
order contribution is proportional to each star’s tidal
deformability parameter, Λ ¼ ð2=3Þk2C−5, an EOS-sensi-
tive quantity that describes how much a star is deformed in
the presence of a tidal field. Here k2 is the l¼ 2 relativistic
Love number [35–39], C≡Gm=ðc2RÞ is the compact-
ness, R is the areal radius, and m is the mass of the NS.
The deformation of each NS due to its own spin also
modifies the waveform and depends on the EOS.
This effect enters the post-Newtonian expansion as a
contribution to the (lowest order) spin-spin term at the*Full author list given at the end of the Letter.
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GW170817: Measurements of Neutron Star Radii and Equation of State
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On 17 August 2017, the LIGO and Virgo observatories made the first direct detection of gravitational
waves from the coalescence of a neutron star binary system. The detection of this gravitational-wave signal,
GW170817, offers a novel opportunity to directly probe the properties of matter at the extreme conditions
found in the interior of these stars. The initial, minimal-assumption analysis of the LIGO and Virgo data
placed constraints on the tidal effects of the coalescing bodies, which were then translated to constraints on
neutron star radii. Here, we expand upon previous analyses by working under the hypothesis that both bodies
were neutron stars that are described by the same equation of state and have spins within the range observed in
Galactic binary neutron stars. Our analysis employs two methods: the use of equation-of-state-insensitive
relations between various macroscopic properties of the neutron stars and the use of an efficient
parametrization of the defining function pðρÞ of the equation of state itself. From the LIGO and Virgo
data alone and the first method, we measure the two neutron star radii as R1 ¼ 10.8þ 2.0

−1.7 km for the heavier
star and R2 ¼ 10.7þ 2.1

−1.5 km for the lighter star at the 90% credible level. If we additionally require that the
equation of state supports neutron stars with masses larger than 1.97 M⊙ as required from electromagnetic
observations and employ the equation-of-state parametrization, we further constrain R1 ¼ 11.9þ 1.4

−1.4 km and
R2 ¼ 11.9þ 1.4

−1.4 km at the 90% credible level. Finally, we obtain constraints on pðρÞ at supranuclear densities,
with pressure at twice nuclear saturation density measured at 3.5þ 2.7

−1.7 × 1034 dyn cm−2 at the 90% level.

DOI: 10.1103/PhysRevLett.121.161101

Introduction.—Since September 2015, the Advanced
LIGO [1] and Advanced Virgo [2] observatories have
opened a window on the gravitational-wave (GW) universe
[3,4]. A new type of astrophysical source of GWs was
detected on 17 August 2017, when the GW signal emitted
by a low-mass coalescing compact binary was observed
[5]. This observation coincided with the detection of a γ-ray
burst, GRB 170817A [6,7], verifying that the source binary
contained matter, which was further corroborated by a
series of observations that followed across the electromag-
netic spectrum; see e.g., [8–12]. The measured masses of
the bodies and the variety of electromagnetic observations
are consistent with neutron stars (NSs).
Neutron stars are unique natural laboratories for studying

the behavior of cold high-density nuclear matter. Such
behavior is governed by the equation of state (EOS), which
prescribes a relationship between pressure and density. This
determines the relation between NS mass and radius, as
well as other macroscopic properties such as the stellar
moment of inertia and the tidal deformability (see e.g.,
[13]). While terrestrial experiments are able to test and
constrain the cold EOS at densities below and near the
saturation density of nuclei ρnuc ¼ 2.8 × 1014 g cm−3 (see
e.g., [14–17] for a review), currently they cannot probe the
extreme conditions in the deep core of NSs. Astrophysical

measurements of NS masses, radii, moments of inertia and
tidal effects, on the other hand, have the potential to offer
information about whether the EOS is soft or stiff and what
the pressure is at several times the nuclear saturation
density [16,18–20].
GWs offer an opportunity for such astrophysical mea-

surements to be performed, as the GW signal emitted by
merging NS binaries differs from that of two merging
black holes (BHs). The most prominent effect of matter
during the observed binary inspiral comes from the tidal
deformation that each star’s gravitational field induces on
its companion. This deformation enhances GW emission
and thus accelerates the decay of the quasicircular inspiral
[21–23]. In the post-Newtonian (PN) expansion of the
inspiral dynamics [24–32], this effect causes the phase of
the GW signal to differ from that of a binary BH (BBH)
from the fifth PN order onwards [21,33,34]. The leading-
order contribution is proportional to each star’s tidal
deformability parameter, Λ ¼ ð2=3Þk2C−5, an EOS-sensi-
tive quantity that describes how much a star is deformed in
the presence of a tidal field. Here k2 is the l¼ 2 relativistic
Love number [35–39], C≡Gm=ðc2RÞ is the compact-
ness, R is the areal radius, and m is the mass of the NS.
The deformation of each NS due to its own spin also
modifies the waveform and depends on the EOS.
This effect enters the post-Newtonian expansion as a
contribution to the (lowest order) spin-spin term at the*Full author list given at the end of the Letter.
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Motivated by these, we will do the following.

What we learn: 
・Injection study tendency: NRTidal underestimate . TEOBResumS 
gives the best estimate. TF2_PNTidal is broadly consistent with the 
injected . 
・GW170817 analyses: NRTidal might bias  smaller.

Λ̃

Λ̃
Λ̃

Waveform systematics & Waveform model comparison:  
❶ Comparison among point-particle part,  
❷ Comparison among different PN orders in PNTidal,  
❸ Comparison between PNTidal and NR calibrated models, and  
❹ Constraints on NS EOSs

13

(3) Follow-up analyses of GW170817 and GW190425 with 
PNTidal focusing on the inspiral regime (fhigh=1000 Hz).

arXiv:2205.06023

https://arxiv.org/abs/2205.06023


Point-particle phasing

TF2g - TF2

TF2+ - TF2

TF2+ - TF2g

TF2 (up to 3.5PN for phase, 3PN for amplitude)

14

TF2g [Messina+, 2019] TF2+ [Kawaguchi+, 2018]

alined for 10 Hz < f < 100 Hz
demonstrated for un-equal mass 
binary with 1.68+1.13 M◉

Extended models: 
TF2g (5.5PN for phase) is derived by the Taylor expansion of the EOB formula, 
TF2+ (6PN for phase and amplitude) is derived by the fitting to SEOBNRv2

TF2+ - TF2g is less than 
0.5 (rad) up to 1500 Hz.



Post-Newtonian (PN) approximation: solve the Einstein eqs. 
by a series in v/c. 
PN theory is theoretically rigid and can efficiently describe 
the GW emission in the inspiral regime. (valid for slow-
motion and weak-field)

PN tidal theory

PN tidal phase has been derived up to 2.5PN (relative 5+2.5PN) order 
[Flanagan&Hinderer08; Damour, Nagar, Villain2012]. (PNTidal) 

Recently, the complete and correct PN tidal phase up to 2.5PN order have been 
derived 
[Henry, Faye, Blanchet 2020; Narikawa, Uchikata, Tanaka 2021]. 

However, the correct PNTidal model has not been used in BNS analyses yet. 
In this work, we first use it in BNS analyses.
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Note on tidal phase in terms of component ⇤

Tatsuya Narikawa

(Dated: July 14, 2021)
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is the symmetric mass ratio, XA = mA/Mtot, A=1,2, and z is the source redshift.

The corrected GW tidal phase in Henry, Faye and Blanchet [2] in terms of the dimensionless tidal deformability of
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where the red terms correspond to the corrected one.

[1] M. Agathos, J. Meidam, W. Del Pozzo, T. G. F. Li,

M. Tompitak, J. Veitch, S. Vitale and C. Van Den

Broeck, “Constraining the neutron star equation of state

with gravitational wave signals from coalescing binary

neutron stars,” Phys. Rev. D 92, no.2, 023012 (2015)

[arXiv:1503.05405 [gr-qc]].

[2] Q. Henry, G. Faye and L. Blanchet, “Tidal e↵ects in the

gravitational-wave phase evolution of compact binary sys-

tems to next-to-next-to-leading post-Newtonian order,”

Phys. Rev. D 102, 044033 (2020) [arXiv:2005.13367 [gr-

qc]].

We rewrote the complete and corrected form derived by Henry, Faye, and 
Blanchet (2020) for the mass quadrupole interactions as a function of the 
dimensionless tidal deformability , in a convenient way for analysis, by Λ1,2

[Narikawa, Uchikata, Tanaka (2021)]

incorrect 5+2.5PN

incomplete 5+2PN

correct 5+2.5PN
complete 5+2PN

Note on tidal phase in terms of component ⇤
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where x = [⇡Mtot(1 + z)f ]2/3 is the dimensionless PN expansion parameter, Mtot = m1 + m2 is the total mass,

⌘ = m1m2/(m1 +m2)
2
is the symmetric mass ratio, XA = mA/Mtot, A=1,2, and z is the source redshift.

The corrected GW tidal phase in Henry, Faye and Blanchet [2] in terms of the dimensionless tidal deformability of
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where the red terms correspond to the corrected one.
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M. Tompitak, J. Veitch, S. Vitale and C. Van Den

Broeck, “Constraining the neutron star equation of state

with gravitational wave signals from coalescing binary

neutron stars,” Phys. Rev. D 92, no.2, 023012 (2015)

[arXiv:1503.05405 [gr-qc]].

[2] Q. Henry, G. Faye and L. Blanchet, “Tidal e↵ects in the

gravitational-wave phase evolution of compact binary sys-

tems to next-to-next-to-leading post-Newtonian order,”

Phys. Rev. D 102, 044033 (2020) [arXiv:2005.13367 [gr-

qc]].

ΛA = λA/m5
AXA = mA/(mA + mB)Agathos et al (2015) [App. B in Damour+2012]

The old GW tidal phase (incomplete and incorrect)

̶> We have implemented it and used it in BNS analyses.

The updated complete and corrected GW tidal phase
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The terms at 5+1PN and 5+2PN give larger phase shift. This is related to the 
half-PN orders at 5+1.5PN and 5+2.5PN being repulsive.

Tidal phasing

demonstrated for un-equal mass 
binary, 1.68+1.13 M◉

different PN orders, from 5PN through 5+2.5PN, in PNTidal

PNTidal (old): [Agathos+, 2015]. 
PNTidal (corrected): [Henry+, 2020].

An increase of PN order does not lead to a monotonic change in the phase shift.

5+2PN
5+1PN

5+2.5PN

5+1.5PN

larger shift

17

No large difference 
between the phase 
shift for old and 
corrected PNTidal 
phase models.



Phase employs the PNTidal formula by multiplying the  by a nonlinear correctionΛ̃

• calibrated by hybrid waveform (SEOBNRv2T + NR)  
• calibrated only up to 1000 Hz to avoid post-inspiral uncertainties.

KyotoTidal [Kawaguchi+, 2018]

Nonlinear correction

4

FIG. 1. Tidal phase in the frequency domain divided by
the leading, Newtonian (relative 5PN-order) tidal phase for-
mula. Here, we use (m1, m2) = (1.35M�, 1.35M�). We
show ⇤̃ = 1000 (blue, dot-dashed), 400 (blue, dashed), and
100 (blue, dotted) for the KyotoTidal model. The NRTidal

model (red) and the 5+2.5PN-order tidal-part phase formula,
5+2.5PNTidal (green) are also presented, which are indepen-
dent from ⇤̃ when divided by the leading tidal phase e↵ect.

The TF2 PNTidal model and the TF2+ PNTidal model
denote the waveform models employing TF2 and
TF2+ as the point-particle parts of gravitational
waves, respectively. Both the TF2 PNTidal and the
TF2+ PNTidal models employ the 2.5PN-order (relative
5+2.5PN-order) tidal-part phase formula [39]

 PNTidal
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where x = (⇡Mtotf)2/3 is the dimensionless PN pa-
rameter, Mtot = m1 + m2 is the total mass, and
⌘ = m1m2/(m1 + m2)2 is the symmetric mass ra-
tio. The tidal-part amplitude for both TF2 PNTidal and
TF2+ PNTidal employ the 5+1PN-order amplitude for-
mula given by [39]
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where dL is the luminosity distance to the source.
The TF2+ KyotoTidal model is a NR calibrated wave-

form model for inspiraling BNS mergers [28, 29]. The
TF2+ KyotoTidal model employs TF2+ as the point-
particle parts and extends the 2.5PN-order (relative
5+2.5PN-order) tidal-part phase formula [39] by multi-
plying ⇤̃ by a nonlinear correction to model the tidal part

to the gravitational-wave phase. The functional forms of
the tidal-part phase is

 KyotoTidal

tidal
=

3

128⌘


�39

2
⇤̃
⇣
1 + a⇤̃2/3

x
p
⌘�

x
5/2

⇥
✓
1 +

3115

1248
x� ⇡x

3/2 +
28024205

3302208
x
2 � 4283

1092
⇡x

5/2

◆
,

(8)

where a = 12.55 and p = 4.240. The tidal-part amplitude
is extended by adding the higher-order PN tidal e↵ects
to Eq. (7) as
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where b = 4251 and r = 7.890. In the KyotoTidalmodel,
the hybrid waveforms constructed from high-precision
NR waveforms and the SEOBNRv2T waveforms [61, 64–
67] are used for model calibration. The phase di↵er-
ence between the TF2+ KyotoTidal model and the hy-
brid waveforms is smaller than 0.1 rad up to 1000 Hz for
300 . ⇤̃ . 1900 and for the mass ratio q = m2/m1  1
between 0.73 and 1 [28]. In [28], it is shown that the
mismatch between the TF2+ KyotoTidal model and the
hybrid waveforms is always smaller than 1.1⇥ 10�5.
The NRTidal model is another approach to describe

tidal e↵ects calibrated by NR waveforms [42]3. The
TF2+ NRTidal model employs TF2+ as the point-particle
parts. For the tidal e↵ects, this model extends the linear-
order e↵ects by e↵ectively adding the higher-order terms
of the tidal deformability to the gravitational-wave phase.
As shown in Ref. [42], the expression of the tidal phase
is given by the form of a Padé function:

 NRTidal

tidal
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where d̃1 = ñ1 � 3115/1248, the other parameters
are (ñ1, ñ3/2, ñ2, ñ5/2) = (�17.428, 31.867, �
26.414, 62.362) and d̃3/2 = 36.089. We do not consider
the tidal-part amplitude for this model according to the
original form [42].
In Fig. 1, we show di↵erences in the phase evolu-

tion of tidal part among the KyotoTidal, NRTidal, and
5+2.5PNTidal models. A di↵erence in the treatment of
the tidal e↵ects makes di↵erent ⇤̃-dependence. The tidal

3
During the completion stage of this work, a new model NRTidalv2

has come out in Ref. [43]

5PN 5+1PN 5+1.5PN 5+2PN 5+2.5PN
(PNTidal based on Damour+, 2012)

Amplitude is extended by adding the higher-order effects to PNTidal.
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FIG. 8. (Top panel) The same as Fig. 7 but for ⇤̃. (Bottom
panel) The statistical error in the measurement of ⇤̃ as a
function of ⇤̃. The upper-bound frequency is set to be 1000Hz
and the signal-to-noise ratio is set to be 50.

is because these works employ higher upper-bound fre-
quency than in Fig. 8: The upper-bound frequency is set
to be the frequency of the innermost-stable-circular or-
bit (f ⇡1500–1800Hz) or the frequency at the contact of
stars (f ⇡1200–1800Hz) in Refs. [2, 3]. Indeed, we obtain
the values consistent with Refs. [2, 3] if we employ the
same upper-bound frequency as in Refs. [2, 3].

V. SUMMARY

In this paper, we derived a frequency-domain model
for gravitational waves from inspiraling binary neutron
stars employing the hybrid waveforms composed of the

latest numerical-relativity waveforms and the TEOBv2
waveforms. In this work, we restrict the frequency range
of gravitational waves from 10Hz to 1000Hz to focus
on the inspiral-stage waveforms. We obtained the tidal
correction to the gravitational-wave phase as

 tidal =
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and to the gravitational-wave amplitude as

Atidal =
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We showed that our waveform model reproduces the
phase of the hybrid waveforms in the frequency domain
within 0.1 rad error for 300 . ⇤̃ . 1900 and for both
equal-mass and unequal-mass binaries. We note that the
model parameters are determined using the hybrid wave-
form of a specific equal-mass binary. The relative error
of the tidal-part wave-amplitude model is always within
5% for f . 900Hz, and in particular, is always within
10% for ⇤̃  850.
We checked the validity of our waveform model by com-

puting the distinguishability from the hybrid waveforms.
We showed that our waveform model is not distinguish-
able from the hybrid waveforms even for the case that
the signal-to-noise ratio is 200. We found that the dis-
tinguishability between the TEOBv2 waveforms and the
hybrid waveforms is as small as that of our waveform
model for ⇤̃ . 600, but it becomes larger for larger val-
ues of ⇤̃. Large values of distinguishability were found
between the hybrid waveforms and waveform models em-
ploying PN tidal formulas of Eqs. (3.5) and (3.6). In
particular, we reconfirmed that the lack of the higher
PN order terms in the point-particle part of gravitational
waves is problematic: We found that the PN waveform
model employing TaylorF2 as the point-particle approx-
imant of gravitational waves is distinguishable from the
hybrid waveforms for the case that the signal-to-noise ra-
tio is larger than 25 irrespectively to the values of Mc,
⌘, and ⇤̃.
We also computed the systematic errors of our wave-

form model in the measurement of binary parameters em-
ploying the hybrid waveforms as hypothetical signals. We
found that the systematic error of our waveform model
in the measurement of ⇤̃ is always smaller than 20. On
the other hand, we found that ⇤̃ can be overestimated
by an order of 100 for ⇤̃ & 600 by employing PN tidal
formulas of Eqs. (3.5) and (3.6).
We estimated the statistical errors in the measurement

of binary parameters employing the standard Fisher-
matrix analysis. We obtained results consistent with the

5PN 5+1PN Polynomial function
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NRTidal 
(NR calibrated)

Pade approximation

[Dietrich+, 2017]

4

FIG. 1. Tidal phase in the frequency domain divided by
the leading, Newtonian (relative 5PN-order) tidal phase for-
mula. Here, we use (m1, m2) = (1.35M�, 1.35M�). We
show ⇤̃ = 1000 (blue, dot-dashed), 400 (blue, dashed), and
100 (blue, dotted) for the KyotoTidal model. The NRTidal

model (red) and the 5+2.5PN-order tidal-part phase formula,
5+2.5PNTidal (green) are also presented, which are indepen-
dent from ⇤̃ when divided by the leading tidal phase e↵ect.

The TF2 PNTidal model and the TF2+ PNTidal model
denote the waveform models employing TF2 and
TF2+ as the point-particle parts of gravitational
waves, respectively. Both the TF2 PNTidal and the
TF2+ PNTidal models employ the 2.5PN-order (relative
5+2.5PN-order) tidal-part phase formula [39]
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where x = (⇡Mtotf)2/3 is the dimensionless PN pa-
rameter, Mtot = m1 + m2 is the total mass, and
⌘ = m1m2/(m1 + m2)2 is the symmetric mass ra-
tio. The tidal-part amplitude for both TF2 PNTidal and
TF2+ PNTidal employ the 5+1PN-order amplitude for-
mula given by [39]
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where dL is the luminosity distance to the source.
The TF2+ KyotoTidal model is a NR calibrated wave-

form model for inspiraling BNS mergers [28, 29]. The
TF2+ KyotoTidal model employs TF2+ as the point-
particle parts and extends the 2.5PN-order (relative
5+2.5PN-order) tidal-part phase formula [39] by multi-
plying ⇤̃ by a nonlinear correction to model the tidal part

to the gravitational-wave phase. The functional forms of
the tidal-part phase is
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where a = 12.55 and p = 4.240. The tidal-part amplitude
is extended by adding the higher-order PN tidal e↵ects
to Eq. (7) as
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where b = 4251 and r = 7.890. In the KyotoTidalmodel,
the hybrid waveforms constructed from high-precision
NR waveforms and the SEOBNRv2T waveforms [61, 64–
67] are used for model calibration. The phase di↵er-
ence between the TF2+ KyotoTidal model and the hy-
brid waveforms is smaller than 0.1 rad up to 1000 Hz for
300 . ⇤̃ . 1900 and for the mass ratio q = m2/m1  1
between 0.73 and 1 [28]. In [28], it is shown that the
mismatch between the TF2+ KyotoTidal model and the
hybrid waveforms is always smaller than 1.1⇥ 10�5.
The NRTidal model is another approach to describe

tidal e↵ects calibrated by NR waveforms [42]3. The
TF2+ NRTidal model employs TF2+ as the point-particle
parts. For the tidal e↵ects, this model extends the linear-
order e↵ects by e↵ectively adding the higher-order terms
of the tidal deformability to the gravitational-wave phase.
As shown in Ref. [42], the expression of the tidal phase
is given by the form of a Padé function:
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where d̃1 = ñ1 � 3115/1248, the other parameters
are (ñ1, ñ3/2, ñ2, ñ5/2) = (�17.428, 31.867, �
26.414, 62.362) and d̃3/2 = 36.089. We do not consider
the tidal-part amplitude for this model according to the
original form [42].
In Fig. 1, we show di↵erences in the phase evolu-

tion of tidal part among the KyotoTidal, NRTidal, and
5+2.5PNTidal models. A di↵erence in the treatment of
the tidal e↵ects makes di↵erent ⇤̃-dependence. The tidal

3
During the completion stage of this work, a new model NRTidalv2

has come out in Ref. [43]

NRTidalv2 
(NR calibrated)

Pade approximation

[Dietrich+, 2019]
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26.414, 62.362) and d̃3/2 = 36.089. We do not consider
the tidal-part amplitude for this model according to the
original form [39].

The TF2+ NRTidalv2 model is an upgraded model of
the TF2+ NRTidal model [40]. The upgrades are a new
expression for the tidal phase which is calibrated to more
accurate NR waveforms.
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where d = 13477.8.

In Fig. 1, we show di↵erences in the phase evolution of
tidal part among the KyotoTidal, NRTidal, NRTidalv2,
and 5+2.5PNTidal models. A di↵erence in the treat-
ment of the tidal e↵ects makes di↵erent ⇤̃-dependence.
The tidal phase divided by the leading (relative 5PN-
order) tidal phase formula for the KyotoTidal model
depend on the binary tidal deformability ⇤̃ due to the
nonlinear correction. Since the NRTidal, NRTidalv2,
and 5+2.5PNTidalmodels employ the linear-order e↵ects
of the tidal deformability, they are independent from ⇤̃
when divided by the leading tidal e↵ect. Fig. 1 shows
good agreement between the TF2+ KyotoTidal model
and the TF2+ NRTidalv2 model for ⇤̃ ' 1000 below
1000 Hz as suggested in Ref. [40]. The NRTidal model
gives the largest phase shift, the second is the NRTidalv2
model, the third is the KyotoTidal model, and the
5+2.5PNTidal model gives the smallest, for ⇤̃  1000,
up to ⇠1000 Hz. The TF2+ KyotoTidal model is cal-
ibrated only up to 1000 Hz and overestimates tidal ef-
fects at frequencies over 1000 Hz. The KyotoTidalmodel
gives the largest phase shift at frequency over 1200 Hz
for ⇤̃ = 1000, and larger phase shift than the one for the
NRTidalv2 model at frequency over about 1000 Hz (1400
Hz) for ⇤̃ = 1000 (400).

C. Source parameters

The source parameters and their prior probability dis-
tributions are chosen to follow those adopted in our re-
cent work [48], and we mention specific choices made in
this work.
We fix the sky location to the position of AT

2017gfo, which is the electromagnetic counterpart of
GW170817 [58], for our all analyses and estimates of the
remaining source parameters. Specifically, we estimate
the luminosity distance to the source dL, the binary incli-
nation ✓JN, which is the angle between the total angular
momentum and the line of sight, the polarization angle  ,
the coalescence time tc, the phase at the coalescence time
�c, component masses m1,2, where we assume m1 � m2,
the orbit-aligned dimensionless spin components of the
stars �1,2 and the binary tidal deformability ⇤̃.
For our analysis, we assume a uniform distribution

as the detector-frame component mass prior m1,2 ⇠
U [0.83, 7.7]M� with an additional constraint on the
detector-frame chirp mass Mdet ⇠ U [1.184, 2.168]M�,
where the chirp mass is the best estimated mass param-
eter defined as M = (m1m2)(3/5)(m1 + m2)�1/5. The
prior range for Mdet is the same as that used for LIGO-
Virgo analysis [15]. The impact of wider prior range for
Mdet on parameter estimation is negligible. We assume
a uniform prior on the spin magnitudes and we enforce
�1,2 ⇠ U [�0.05, 0.05]. This prior range of spin is consis-
tent with the observed population of known BNSs that
will merge within the Hubble time [59, 60], and is referred
to as low-spin prior for the LIGO-Virgo analysis [15].
We assume a uniform prior on the binary tidal de-

formability, with ⇤̃ ⇠ U [0, 3000]. This prior approxi-
mately corresponds to implementing the common EOS
constraint [17].

III. RESULTS

A. Source properties other than the tidal
deformability

In this subsection, we show that validity including
a sanity check of our analysis by comparison with the
LIGO-Virgo results. Figure 2 shows the marginalized
posterior probability distributions of parameters other
than the tidal deformability for di↵erent waveform mod-
els for fmax = 1000 Hz. Table II presents the 90% cred-
ible intervals of the luminosity distance dL, the binary
inclination ✓JN, mass parameters (the component masses
m1,2, the detector-frame chirp mass Mdet, the source-
frame chirp mass M, the total mass Mtot, the mass ra-
tio q), and the e↵ective spin parameter �e↵ = (m1�1 +
m2�2)/Mtot estimated using di↵erent waveform models.
The source-frame chirp mass is derived by assuming a
value of the Hubble constant H0 = 69 km s�1 Mpc�1 (a
default value in LAL).
For comparison of our analysis with the results of the

5

26.414, 62.362) and d̃3/2 = 36.089. We do not consider
the tidal-part amplitude for this model according to the
original form [39].

The TF2+ NRTidalv2 model is an upgraded model of
the TF2+ NRTidal model [40]. The upgrades are a new
expression for the tidal phase which is calibrated to more
accurate NR waveforms.
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, ñ0

3/2 = (c̃0
1
c̃
0
3/2�c̃

0
5/2�c̃

0
3/2d̃

0
1
+ñ
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where d = 13477.8.

In Fig. 1, we show di↵erences in the phase evolution of
tidal part among the KyotoTidal, NRTidal, NRTidalv2,
and 5+2.5PNTidal models. A di↵erence in the treat-
ment of the tidal e↵ects makes di↵erent ⇤̃-dependence.
The tidal phase divided by the leading (relative 5PN-
order) tidal phase formula for the KyotoTidal model
depend on the binary tidal deformability ⇤̃ due to the
nonlinear correction. Since the NRTidal, NRTidalv2,
and 5+2.5PNTidalmodels employ the linear-order e↵ects
of the tidal deformability, they are independent from ⇤̃
when divided by the leading tidal e↵ect. Fig. 1 shows
good agreement between the TF2+ KyotoTidal model
and the TF2+ NRTidalv2 model for ⇤̃ ' 1000 below
1000 Hz as suggested in Ref. [40]. The NRTidal model
gives the largest phase shift, the second is the NRTidalv2
model, the third is the KyotoTidal model, and the
5+2.5PNTidal model gives the smallest, for ⇤̃  1000,
up to ⇠1000 Hz. The TF2+ KyotoTidal model is cal-
ibrated only up to 1000 Hz and overestimates tidal ef-
fects at frequencies over 1000 Hz. The KyotoTidalmodel
gives the largest phase shift at frequency over 1200 Hz
for ⇤̃ = 1000, and larger phase shift than the one for the
NRTidalv2 model at frequency over about 1000 Hz (1400
Hz) for ⇤̃ = 1000 (400).

C. Source parameters

The source parameters and their prior probability dis-
tributions are chosen to follow those adopted in our re-
cent work [48], and we mention specific choices made in
this work.
We fix the sky location to the position of AT

2017gfo, which is the electromagnetic counterpart of
GW170817 [58], for our all analyses and estimates of the
remaining source parameters. Specifically, we estimate
the luminosity distance to the source dL, the binary incli-
nation ✓JN, which is the angle between the total angular
momentum and the line of sight, the polarization angle  ,
the coalescence time tc, the phase at the coalescence time
�c, component masses m1,2, where we assume m1 � m2,
the orbit-aligned dimensionless spin components of the
stars �1,2 and the binary tidal deformability ⇤̃.
For our analysis, we assume a uniform distribution

as the detector-frame component mass prior m1,2 ⇠
U [0.83, 7.7]M� with an additional constraint on the
detector-frame chirp mass Mdet ⇠ U [1.184, 2.168]M�,
where the chirp mass is the best estimated mass param-
eter defined as M = (m1m2)(3/5)(m1 + m2)�1/5. The
prior range for Mdet is the same as that used for LIGO-
Virgo analysis [15]. The impact of wider prior range for
Mdet on parameter estimation is negligible. We assume
a uniform prior on the spin magnitudes and we enforce
�1,2 ⇠ U [�0.05, 0.05]. This prior range of spin is consis-
tent with the observed population of known BNSs that
will merge within the Hubble time [59, 60], and is referred
to as low-spin prior for the LIGO-Virgo analysis [15].
We assume a uniform prior on the binary tidal de-

formability, with ⇤̃ ⇠ U [0, 3000]. This prior approxi-
mately corresponds to implementing the common EOS
constraint [17].

III. RESULTS

A. Source properties other than the tidal
deformability

In this subsection, we show that validity including
a sanity check of our analysis by comparison with the
LIGO-Virgo results. Figure 2 shows the marginalized
posterior probability distributions of parameters other
than the tidal deformability for di↵erent waveform mod-
els for fmax = 1000 Hz. Table II presents the 90% cred-
ible intervals of the luminosity distance dL, the binary
inclination ✓JN, mass parameters (the component masses
m1,2, the detector-frame chirp mass Mdet, the source-
frame chirp mass M, the total mass Mtot, the mass ra-
tio q), and the e↵ective spin parameter �e↵ = (m1�1 +
m2�2)/Mtot estimated using di↵erent waveform models.
The source-frame chirp mass is derived by assuming a
value of the Hubble constant H0 = 69 km s�1 Mpc�1 (a
default value in LAL).
For comparison of our analysis with the results of the

Pade approximation

another NR calibration  
approach to describe  
tidal effects

NRTidal's update, 
introduce amplitude
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consistent with the 
PNTidal at the low 
frequency limit.



Tidal phasing
different PN orders in PNTidal and NR calibrated models

NR calibrated models: KyotoTidal, NRTidalv2, and NRTidal give larger phase 
shift (more attractive) than PNTidal.

demonstrated for un-equal mass 
binary, 1.68+1.13 M◉ and Λ̃ = 292

NRTidal

NRTidalv2
KyotoTidal 
[Kawaguchi+]

The terms at 5+1PN and 5+2PN give closer to NR calibrated models than the 
half-PN orders at 5+1.5PN and 5+2.5PN due to being repulsive.

5+2PN
5+1PN

5+2.5PN

5+1.5PN

NR calibrated models}
larger shift

PNTidal}
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- Post-Newtonian (PN) inspiral waveform model: 
BBH (PP+Spin) + Tidal

Our analysis setup - parameter estimation

- Point-particle: 
- Spin (aligned-spin): SO:1.5-3.5 PN, SS:2-3 PN, 
- Tidal effects: 5-5+2.5PN.

Ψ( f ) = ΨBBH + Ψtidal

- Bayesian inference library: Nested sampling in LALSUITE (LALInferenceNest)

Spin terms at other PN orders help to break 
degeneracies, e.g., q − χeff

Adding higher-order PN terms 
prevent  biasingΛ̃

- Priors: low-spin prior: |χ1z,2z|<0.05; uniform in [0, 3000] on Λ̃
- Amplitude up to 3 PN for BBH (PP+spin), up to 5+1PN for Tidal

- Phase

TF2 (up to 3.5PN), TF2g (up to 5.5PN), TF2+ (up to 6PN)

We have implemented the correct PNTidal model.

- fhigh=1000 Hz to restrict to the inspiral regime

21

astrophysically motivated



Bayesian parameter estimation of GWs

Bayes' theorem

{d}: data set, θ={masses, spins, Λ,…}: parameters

Posterior
Prior

Likelihood

Evidence for the model

Why Bayesian statistics and stochastic sampling 
・A lot of parameters 
・Parameter estimation (PE) 
・Model comparison ℒ(d |θ) ∝exp [−⟨d − h (θ) d − h (θ)⟩]
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Assuming stationary and Gaussian noise 

For model comparison between A and B,  
Bayes factor: the ratio of evidences

p(θ |d) = ℒ(d |θ)π(θ)
Z

Z = ∫ dθℒ(d |θ)π(θ)

BFA/B = ZA
ZB



Results
Follow-up analyses of GW170817 and GW190425 
with PNTidal with fhigh=1000 Hz to restrict to the 
inspiral regime. 
Waveform systematics & Waveform model 
comparison:  
❶ Comparison among point-particle part,  
❷ Comparison among different PN orders in 
PNTidal,  
❸ Comparison between PNTidal and NR calibrated 
models, and  
❹ Constraints on NS EOSs
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Comparison between analyses by using the old and 
corrected tidal phase models for GW170817

No large difference between 
the estimates of  by using old 
and corrected PNTidal phase 
models.

Λ̃

As a sanity check

GW170817

24

BBH baseline: TF2+,  
low-spin prior, fhigh=1000 Hz



TF2 (up to 3.5PN), TF2g (up to 5.5PN), TF2+ (up to 6PN)

GW170817

❶ Comparison among estimates of tidal deformability 
by using different point-particle baseline models

No large difference among the 
estimates of  by using three 
point-particle baseline models: 
TF2, TF2g, and TF2+.

Λ̃

Λ̃ = 16
13

(1 + 12q)Λ1 + (12 + q)q4Λ2
(1 + q)5
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tidal part: PNTidal,  
low-spin prior, fhigh=1000 Hz



❷ Comparison among the estimates of tidal deformability  
with different PN orders in PNTidal

Λ̃

BBH baseline: TF2+,  
low-spin prior, fhigh=1000 Hz

The terms up to 5+1PN and 
5+2PN give smaller estimates 
on . This is related to the half-
PN orders at 5+1.5PN and 
5+2.5PN being repulsive.

Λ̃

Estimates of  are consistent 
with the phase shift.

Λ̃

GW170817
An increase of PN order does 
not lead to a monotonic 

change in the estimates of .Λ̃
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❸ Comparison between estimates of  for PNTidal and NR 
calibrated models

Λ̃

GW170817

BBH baseline: TF2+,  
low-spin prior, fhigh=1000 Hz

NR calibrated models give 
smaller estimates of  than 

PNTidal.
Λ̃

The terms up to 5+1PN and 
5+2PN give closer estimates of 
 with NR calibrated models, 
which is related to the half-PN 
orders at 5+1.5PN and 
5+2.5PN being repulsive.

Λ̃
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Estimates of  are consistent 
with the phase shift.

Λ̃

}
}



❸ Waveform model comparison among PNTidal and 
NR calibrated models

No preference among NR calibrated models over PNTidal.  
However, PNTidal is mildly preferred compared to NR 

calibrated models.

log BFPNTidal/NR calibrated models

The log Bayes factor

28

BBH baseline: TF2+,  
low-spin prior, fhigh=1000 Hz

This is consistent with [Gamba+, 2021].

The log Bayes factors are less than 1, but positive values.

10

TABLE III. The log Bayes factor of the TF2+ PNTidal

model relative to the other point-particle baseline
models, the TF2g PNTidal and TF2 PNTidal models,
log BFTF2+ PNTidal/TF2g PNTidal, TF2 PNTidal, for GW170817 and
GW190425.

Waveform GW170817 GW190425
TF2g PNTidal 0.09 0.12
TF2 PNTidal �0.20 �0.18

TABLE IV. The log Bayes factor of the terms at 5+2.5PN
relative to the other PN orders, log BF5+2.5PN/di↵erent PN, for
GW170817 and GW190425.

PN order GW170817 GW190425
5PN �0.17 �0.40
5+1PN 0.20 0.14
5+1.5PN �0.04 �0.03
5+2PN 0.09 0.02

point-particle part. We compare the results obtained
with three PN models for the point-particle part, TF2,
TF2g, and TF2+, employing the same tidal model PNTidal
in common. We find the absence of significant systematic
di↵erence in the estimates of ⇤̃ among three PN point-
particle models. The Bayes factor indicates no preference
among the di↵erent point-particle models for GW170817
and GW190425.

Then, by varying the PN orders from 5PN to 5+2.5PN
for the tidal phase to use our analyses, we investigate the
e↵ect of each PN order term on the estimate of ⇤̃. The es-
timates of ⇤̃ slightly depend on the PN orders in the tidal
phase. We find that the estimates of ⇤̃ does not monoton-
ically change as the PN order increases and these results
are well understood by comparison with the tidal phase
shift for the di↵erent PN orders. We also compare the
results obtained by using the PNTidal and the NR cal-
ibrated tidal models: the KyotoTidal, NRTidalv2, and
NRTidal models. We find that the posterior PDFs of

TABLE V. The log Bayes factor of PNTidal relative to the NR
calibrated models: the KyotoTidal, NRTidalv2, and NRTidal

models, log BFPNTidal/NR calibrated model, for GW170817 and

GW190425. Only here, the ⇤̃-form defined as Eq. (4) is used
for the PNTidal model to take into account of the prior vol-
ume reduction. In the last row, we show the values for the
TF2+ model as a BBH (nontidal) for comparison. The values
indicate no preference model on GW170817.

Waveform GW170817 GW190425
KyotoTidal 0.25 0.22
NRTidalv2 0.23 0.32
NRTidal 0.46 0.37
BBH (nontidal) 0.79 �1.58

⇤̃ estimated by using the terms at 5+1PN and 5+2PN
orders are closer to the NR calibrated models than the
terms at the half-PN orders: 5+1.5PN and 5+2.5PN or-
ders. These results are also consistent with the tidal
phase shift. We also compare the models with the Bayes
factor. The absolute magnitude of the log Bayes factor
between models are always less than 1, which indicate
no preference among the di↵erent PN orders nor the NR
calibrated models over the PNTidal model by relying on
the BNS signals.
Finally, we present constraints on EOS models by

combining information obtained from GW170817 and
GW190425. Our constraints show that GW170817 dis-
favor less compact on EOS models for NSs. The 90%
allowed range of the chirp radius given by TF2+ PNTidal

is 9 km . R . 15 km for GW170817.
For GW170817, with low SNR of ⇠ 30, we find no sig-

nificant systematic di↵erence in the estimates of ⇤̃ among
PN point-particle models or PN and NR calibrated tidal
models. This means that the PN models work as a good
approximation for the current BNS events. However, as
the number of BNS coalescence events increases and sen-
sitivities of detectors are improved, the systematic dif-
ferences among di↵erent point-particle models and tidal
e↵ects will become significant and constraints on EOS
models for NSs will significantly improved as shown in
Refs. [16, 26–32, 54, 90–93]. At that time, extension
waveform models from the PN models will be important.
Since KAGRA has recently joined the international net-
work of GW detectors [94, 95] and the Advanced LIGO
and Advanced Virgo detectors are improving their sensi-
tivities now, they will detect BNS signals with high SNR
and provide more information on the sources in coming
observation runs [96].
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❹ Constraints on EOSs for NSs with TF2+_PNTidal

9 km ≲ℛ = 2ℳΛ̃1/5 ≲15 km

Less compact

Less compact

More compact

More compact

Less compact EOS models: MS1, MS1B, & H4 lie outside 
90% credible regions for GW170817. → disfavored

low-spin prior, fhigh=1000 Hz
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Summary

Results

Follow-up analyses of GW170817 and GW190425 with PNTidal focusing on 
the inspiral regime (fhigh=1000 Hz).

Post-Newtonian (PN) approximation is theoretically rigid and can 
efficiently describe the inspiral regime.

Waveform systematics & Waveform model comparison:  
❶ Point-particle part: No large difference among the estimates of  
❷ Different PN orders in PNTidal: An increase of PN order does not lead to 
a monotonic change in the estimates of . 
❸ PNTidal vs NR calibrated models: NR calibrated models give smaller  
than PNTidal. No preference among NR calibrated models over PNTidal. 
However, PNTidal is mildly preferred compared to NR calibrated models. 
❹ Constraints on NS EOSs: GW170817 disfavor less compact models.

Λ̃

Λ̃
Λ̃

Since KAGRA has recently joined the international GW network [O3GK 2020] and 
the Adv. LIGO and Adv. Virgo detectors are improving their sensitivities now, they 
will detect BNS signals with high SNR and provide more information on the 
sources in coming observation runs.
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Other results
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TF2+ KyotoTidal model [22]. Our constraints on EOS
models for NSs by using the TF2+ PNTidal model show
that less compact models: MS1, MS1B, and H4 lie out-

side the 90% credible region of M-⇤̃ plane for GW170817
and they are disfavored, which is consistent with the pre-
vious results presented in Refs. [17, 18, 22, 50–54].

TABLE II. The 90% credible intervals of source parameters for GW170817 and GW190425 estimated using the TF2+ PNTidal

model for fhigh = 1000 Hz. (In Appendix A, we demonstrate these results are robust to systematic uncertainty among three
PN point-particle models.) Mass values are quoted in the source-frame, accounting for uncertainty in the source redshift by
assuming a value of the Hubble constant H0 = 69 km s�1 Mpc�1. We give the 0%-90% interval for m1, while we give the
10%-100% interval for m2 and q. We give symmetric 90% credible intervals, i.e., 5%–95%, for the other parameters with the
median as a representative value. We also give hyghest-probability-density (HPD) interval for ⇤̃. (Since we find that the
asymmetric contribution �⇤̃ is uninformative relative to a prior for both events, we do not show them.)

Parameters GW170817 GW190425
Primary mass m1 1.36� 1.57 M� 1.62� 1.89 M�
Secondary mass m2 1.19� 1.37 M� 1.44� 1.68 M�
Chirp mass M 1.187+0.004

�0.002 M� 1.436+0.022
�0.020 M�

Detector-frame chirp mass Mdet 1.1976+0.0001
�0.0001 M� 1.4867+0.0003

�0.0003 M�
Mass ratio q := m2/m1 0.76� 1.00 0.76� 1.00
Total mass M := m1 +m2 2.73+0.04

�0.01 M� 3.31+0.06
�0.05 M�

E↵ective inspiral spin �e↵ 0.003+0.014
�0.008 0.009+0.015

�0.012

Luminosity distance DL 40.2+7.0
�14.0 Mpc 160+67

�73 Mpc
Binary tidal deformability ⇤̃ (symmetric/HPD) 574+485

�425 / 574+433
�467 295+578

�265 / 295+423
�295

FIG. 4. Marginalized posterior PDFs of the binary tidal deformability ⇤̃ for GW170817 (left) and GW190425 (right) estimated
by using three point-particle part models, employing the same tidal model PNTidal in common. The curves correspond to the
TF2 PNTidal (green), TF2g PNTidal (cyan), and TF2+ PNTidal (orange) models. The corresponding 90% credible intervals are
presented in Table II. There are no large di↵erence in the estimates of ⇤̃ among three PN point-particle models.

IV. CONCLUSION

Recently, PN tidal phase is completed for 5+2PN or-
der terms and corrected for 5+2.5PN order terms. We

present the reanalyses of the BNS signals GW170817
and GW190425 by using the PN tidal waveform model
PNTidal, estimates on the binary tidal deformability ⇤̃,

The 90% credible intervals of source parameters for GW170817 and GW190425 
estimated using the TF2+ PNTidal model for fhigh = 1000 Hz.



Comparison between analyses by using the old and 
corrected tidal phase models for GW170817

BBH baseline: TF2+, low-spin prior, fhigh=1000 Hz, Tidal phase up to 7.5PN.

No large difference between the estimates of tidal deformability by using old and corrected 
tidal phase models

As a sanity check

GW190425
GW170817
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90% credible intervals of tidal deformability
GW170817 GW190425

old corrected old corrected

symmetric

HPD

logBFcorrected/old 0.25 -0.15

the median as a representative, 
symmetric: median 5% - 95%, 
hyghest-probability-density (HPD) interval

574+ 485
−425

574+ 433
−467

579+ 486
−437

579+ 441
−473

295+ 578
−265

295+ 423
−295

297+ 589
−266

297+ 424
−297
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GW170817

Comparison among estimates of the tidal deformability 
by using different point-particle baseline models

GW190425

TF2 (up to 3.5PN), TF2g (up to 5.5PN), TF2+ (up to 6PN)

No large difference among the estimates of  by using three point-
particle baseline models, TF2, TF2g, and TF2+.

Λ̃
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The terms up to 5+1PN and 5+2PN give tighter constraints on . This is related to the 
half-PN orders at 5+1.5PN and 5+2.5PN being repulsive.

Λ̃

GW170817

GW190425

Comparison among the estimates of tidal deformability  
with different PN-orders in PNTidal

Λ̃

BBH baseline: TF2+, low-spin prior, fhigh=1000 Hz

Results are consistent with the phase shift.

An increase of PN order does not lead to a monotonic change in the phase shift.
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Estimating the tidal deformability with the different PN-
orders in the corrected PNTidal and NR calibrated models

GW170817 GW190425

Results are consistent with the phase shift.

NR calibrated models give smaller estimates of  than PNTidal.Λ̃
The terms up to 5+1PN and 5+2PN give closer estimates of  with NR calibrated 
models, which is related to the half-PN orders at 5+1.5PN and 5+2.5PN being repulsive.

Λ̃

BBH baseline: TF2+, low-spin prior, fhigh=1000 Hz
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Waveform model comparison
No preference among the 
different point-particle models

No preference among the 
PN orders

No preference among NR calibrated models 
over PNTidal. However, PNTidal is mildly 
preferred compared to NR calibrated models.
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TABLE III. The log Bayes factor of the TF2+ PNTidal

model relative to the other point-particle baseline
models, the TF2g PNTidal and TF2 PNTidal models,
log BFTF2+ PNTidal/TF2g PNTidal, TF2 PNTidal, for GW170817 and
GW190425.

Waveform GW170817 GW190425
TF2g PNTidal 0.09 0.12
TF2 PNTidal �0.20 �0.18

TABLE IV. The log Bayes factor of the terms at 5+2.5PN
relative to the other PN orders, log BF5+2.5PN/di↵erent PN, for
GW170817 and GW190425.

PN order GW170817 GW190425
5PN �0.17 �0.40
5+1PN 0.20 0.14
5+1.5PN �0.04 �0.03
5+2PN 0.09 0.02

point-particle part. We compare the results obtained
with three PN models for the point-particle part, TF2,
TF2g, and TF2+, employing the same tidal model PNTidal
in common. We find the absence of significant systematic
di↵erence in the estimates of ⇤̃ among three PN point-
particle models. The Bayes factor indicates no preference
among the di↵erent point-particle models for GW170817
and GW190425.

Then, by varying the PN orders from 5PN to 5+2.5PN
for the tidal phase to use our analyses, we investigate the
e↵ect of each PN order term on the estimate of ⇤̃. The es-
timates of ⇤̃ slightly depend on the PN orders in the tidal
phase. We find that the estimates of ⇤̃ does not monoton-
ically change as the PN order increases and these results
are well understood by comparison with the tidal phase
shift for the di↵erent PN orders. We also compare the
results obtained by using the PNTidal and the NR cal-
ibrated tidal models: the KyotoTidal, NRTidalv2, and
NRTidal models. We find that the posterior PDFs of

TABLE V. The log Bayes factor of PNTidal relative to the NR
calibrated models: the KyotoTidal, NRTidalv2, and NRTidal

models, log BFPNTidal/NR calibrated model, for GW170817 and

GW190425. Only here, the ⇤̃-form defined as Eq. (4) is used
for the PNTidal model to take into account of the prior vol-
ume reduction. In the last row, we show the values for the
TF2+ model as a BBH (nontidal) for comparison. The values
indicate no preference model on GW170817.

Waveform GW170817 GW190425
KyotoTidal 0.25 0.22
NRTidalv2 0.23 0.32
NRTidal 0.46 0.37
BBH (nontidal) 0.79 �1.58

⇤̃ estimated by using the terms at 5+1PN and 5+2PN
orders are closer to the NR calibrated models than the
terms at the half-PN orders: 5+1.5PN and 5+2.5PN or-
ders. These results are also consistent with the tidal
phase shift. We also compare the models with the Bayes
factor. The absolute magnitude of the log Bayes factor
between models are always less than 1, which indicate
no preference among the di↵erent PN orders nor the NR
calibrated models over the PNTidal model by relying on
the BNS signals.
Finally, we present constraints on EOS models by

combining information obtained from GW170817 and
GW190425. Our constraints show that GW170817 dis-
favor less compact on EOS models for NSs. The 90%
allowed range of the chirp radius given by TF2+ PNTidal

is 9 km . R . 15 km for GW170817.
For GW170817, with low SNR of ⇠ 30, we find no sig-

nificant systematic di↵erence in the estimates of ⇤̃ among
PN point-particle models or PN and NR calibrated tidal
models. This means that the PN models work as a good
approximation for the current BNS events. However, as
the number of BNS coalescence events increases and sen-
sitivities of detectors are improved, the systematic dif-
ferences among di↵erent point-particle models and tidal
e↵ects will become significant and constraints on EOS
models for NSs will significantly improved as shown in
Refs. [16, 26–32, 54, 90–93]. At that time, extension
waveform models from the PN models will be important.
Since KAGRA has recently joined the international net-
work of GW detectors [94, 95] and the Advanced LIGO
and Advanced Virgo detectors are improving their sensi-
tivities now, they will detect BNS signals with high SNR
and provide more information on the sources in coming
observation runs [96].
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TABLE III. The log Bayes factor of the TF2+ PNTidal

model relative to the other point-particle baseline
models, the TF2g PNTidal and TF2 PNTidal models,
log BFTF2+ PNTidal/TF2g PNTidal, TF2 PNTidal, for GW170817 and
GW190425.

Waveform GW170817 GW190425
TF2g PNTidal 0.09 0.12
TF2 PNTidal �0.20 �0.18

TABLE IV. The log Bayes factor of the terms at 5+2.5PN
relative to the other PN orders, log BF5+2.5PN/di↵erent PN, for
GW170817 and GW190425.

PN order GW170817 GW190425
5PN �0.17 �0.40
5+1PN 0.20 0.14
5+1.5PN �0.04 �0.03
5+2PN 0.09 0.02

point-particle part. We compare the results obtained
with three PN models for the point-particle part, TF2,
TF2g, and TF2+, employing the same tidal model PNTidal
in common. We find the absence of significant systematic
di↵erence in the estimates of ⇤̃ among three PN point-
particle models. The Bayes factor indicates no preference
among the di↵erent point-particle models for GW170817
and GW190425.

Then, by varying the PN orders from 5PN to 5+2.5PN
for the tidal phase to use our analyses, we investigate the
e↵ect of each PN order term on the estimate of ⇤̃. The es-
timates of ⇤̃ slightly depend on the PN orders in the tidal
phase. We find that the estimates of ⇤̃ does not monoton-
ically change as the PN order increases and these results
are well understood by comparison with the tidal phase
shift for the di↵erent PN orders. We also compare the
results obtained by using the PNTidal and the NR cal-
ibrated tidal models: the KyotoTidal, NRTidalv2, and
NRTidal models. We find that the posterior PDFs of

TABLE V. The log Bayes factor of PNTidal relative to the NR
calibrated models: the KyotoTidal, NRTidalv2, and NRTidal

models, log BFPNTidal/NR calibrated model, for GW170817 and

GW190425. Only here, the ⇤̃-form defined as Eq. (4) is used
for the PNTidal model to take into account of the prior vol-
ume reduction. In the last row, we show the values for the
TF2+ model as a BBH (nontidal) for comparison. The values
indicate no preference model on GW170817.

Waveform GW170817 GW190425
KyotoTidal 0.25 0.22
NRTidalv2 0.23 0.32
NRTidal 0.46 0.37
BBH (nontidal) 0.79 �1.58

⇤̃ estimated by using the terms at 5+1PN and 5+2PN
orders are closer to the NR calibrated models than the
terms at the half-PN orders: 5+1.5PN and 5+2.5PN or-
ders. These results are also consistent with the tidal
phase shift. We also compare the models with the Bayes
factor. The absolute magnitude of the log Bayes factor
between models are always less than 1, which indicate
no preference among the di↵erent PN orders nor the NR
calibrated models over the PNTidal model by relying on
the BNS signals.
Finally, we present constraints on EOS models by

combining information obtained from GW170817 and
GW190425. Our constraints show that GW170817 dis-
favor less compact on EOS models for NSs. The 90%
allowed range of the chirp radius given by TF2+ PNTidal

is 9 km . R . 15 km for GW170817.
For GW170817, with low SNR of ⇠ 30, we find no sig-

nificant systematic di↵erence in the estimates of ⇤̃ among
PN point-particle models or PN and NR calibrated tidal
models. This means that the PN models work as a good
approximation for the current BNS events. However, as
the number of BNS coalescence events increases and sen-
sitivities of detectors are improved, the systematic dif-
ferences among di↵erent point-particle models and tidal
e↵ects will become significant and constraints on EOS
models for NSs will significantly improved as shown in
Refs. [16, 26–32, 54, 90–93]. At that time, extension
waveform models from the PN models will be important.
Since KAGRA has recently joined the international net-
work of GW detectors [94, 95] and the Advanced LIGO
and Advanced Virgo detectors are improving their sensi-
tivities now, they will detect BNS signals with high SNR
and provide more information on the sources in coming
observation runs [96].
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model relative to the other point-particle baseline
models, the TF2g PNTidal and TF2 PNTidal models,
log BFTF2+ PNTidal/TF2g PNTidal, TF2 PNTidal, for GW170817 and
GW190425.

Waveform GW170817 GW190425
TF2g PNTidal 0.09 0.12
TF2 PNTidal �0.20 �0.18

TABLE IV. The log Bayes factor of the terms at 5+2.5PN
relative to the other PN orders, log BF5+2.5PN/di↵erent PN, for
GW170817 and GW190425.

PN order GW170817 GW190425
5PN �0.17 �0.40
5+1PN 0.20 0.14
5+1.5PN �0.04 �0.03
5+2PN 0.09 0.02

point-particle part. We compare the results obtained
with three PN models for the point-particle part, TF2,
TF2g, and TF2+, employing the same tidal model PNTidal
in common. We find the absence of significant systematic
di↵erence in the estimates of ⇤̃ among three PN point-
particle models. The Bayes factor indicates no preference
among the di↵erent point-particle models for GW170817
and GW190425.

Then, by varying the PN orders from 5PN to 5+2.5PN
for the tidal phase to use our analyses, we investigate the
e↵ect of each PN order term on the estimate of ⇤̃. The es-
timates of ⇤̃ slightly depend on the PN orders in the tidal
phase. We find that the estimates of ⇤̃ does not monoton-
ically change as the PN order increases and these results
are well understood by comparison with the tidal phase
shift for the di↵erent PN orders. We also compare the
results obtained by using the PNTidal and the NR cal-
ibrated tidal models: the KyotoTidal, NRTidalv2, and
NRTidal models. We find that the posterior PDFs of

TABLE V. The log Bayes factor of PNTidal relative to the NR
calibrated models: the KyotoTidal, NRTidalv2, and NRTidal

models, log BFPNTidal/NR calibrated model, for GW170817 and

GW190425. Only here, the ⇤̃-form defined as Eq. (4) is used
for the PNTidal model to take into account of the prior vol-
ume reduction. In the last row, we show the values for the
TF2+ model as a BBH (nontidal) for comparison. The values
indicate no preference model on GW170817.

Waveform GW170817 GW190425
KyotoTidal 0.25 0.22
NRTidalv2 0.23 0.32
NRTidal 0.46 0.37
BBH (nontidal) 0.79 �1.58

⇤̃ estimated by using the terms at 5+1PN and 5+2PN
orders are closer to the NR calibrated models than the
terms at the half-PN orders: 5+1.5PN and 5+2.5PN or-
ders. These results are also consistent with the tidal
phase shift. We also compare the models with the Bayes
factor. The absolute magnitude of the log Bayes factor
between models are always less than 1, which indicate
no preference among the di↵erent PN orders nor the NR
calibrated models over the PNTidal model by relying on
the BNS signals.
Finally, we present constraints on EOS models by

combining information obtained from GW170817 and
GW190425. Our constraints show that GW170817 dis-
favor less compact on EOS models for NSs. The 90%
allowed range of the chirp radius given by TF2+ PNTidal

is 9 km . R . 15 km for GW170817.
For GW170817, with low SNR of ⇠ 30, we find no sig-

nificant systematic di↵erence in the estimates of ⇤̃ among
PN point-particle models or PN and NR calibrated tidal
models. This means that the PN models work as a good
approximation for the current BNS events. However, as
the number of BNS coalescence events increases and sen-
sitivities of detectors are improved, the systematic dif-
ferences among di↵erent point-particle models and tidal
e↵ects will become significant and constraints on EOS
models for NSs will significantly improved as shown in
Refs. [16, 26–32, 54, 90–93]. At that time, extension
waveform models from the PN models will be important.
Since KAGRA has recently joined the international net-
work of GW detectors [94, 95] and the Advanced LIGO
and Advanced Virgo detectors are improving their sensi-
tivities now, they will detect BNS signals with high SNR
and provide more information on the sources in coming
observation runs [96].
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No large difference among the estimates of 
several binary parameters even for nontidal 
parameters by using three different point-particle 
baselines, TF2, TF2g, and TF2+, with PNTidal model.

Estimates for several binary parameters for GW170817
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Estimates for several binary parameters for GW190425
No large difference among the estimates of 
several binary parameters even for nontidal 
parameters by using three different point-particle 
baselines, TF2, TF2g, and TF2+, with PNTidal model.
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