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• Cosmological sources: Inflation, phase transition, ...
• Astrophysical sources: superposition of unresolved gravitational 

waves from compact binaries (BNS，BBH）

Gravitational wave having a random phase, originated from
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Stochastic Gravitational-Wave Background
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Brief review on detection method of SGWB

(𝑖 = 1, 2, ℎ!：GW signal, 𝑛!：noise)

𝑠" 𝑠# = ℎ" ℎ# + ℎ" 𝑛# + 𝑛" ℎ# + 𝑛" 𝑛#

𝑠$ = ℎ$ + 𝑛$

Cross correlation 
statistic

Q: is this assumption valid ?

NO! detector noise can have a non-negligible correlation even for a pair of 
two distant detectors due to a coupling with global disturbance (→next)

３

Cross-correlating between two data streams:

SGWB can be detected if there is no cross talks between signal 
and noise (si & nj) and noise themselves (n1 & n2)



Correlated noise from Schumann resonance

üA correlation was detected by magnetometers at LIGO and Virgo (Thrane et al.’13,14)

ü Its impact on the detection of SGWB by LIGO/Virgo and ET was studied (Janssens et al.’21)

f [Hz]

Standing electromagnetic waves in the Earth-ionoshere cavity at ultra-low frequencies

４

Schumann resonance

Coupling it with detector (mirror system) induces a global noise 
correlation between two distant detectors

How does the correlated noise affect the parameter estimation of SGWB ?Present
work

Resonant frequencies :8, 14, 20, … Hz
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Setup of problem

See Meyers et al. (’20) for a similar work based on Bayesian MCMC analysis

５

Ø We have a good (parameterized) model for correlated noise:

We consider two possibilities:

Ø We erroneously miss the presence of correlated noise:

Fisher matrix analysis for a network of LIGO, Virgo and KAGRA

Marginalizing over the parameters of correlated noise, how 
are the constraints on the SGWB degraded ? 

Ignoring correlated noise, how is the estimated parameters 
of SGWB biased ?
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We consider the impact of correlated magnetic noise on the estimation of parameters for stochastic

background of gravitational waves.

I. INTRODUCTION

The direct detection of gravitational wave (GW) events
by laser interferometers, LIGO (Hanford and Livingston)
and Virgo has opened up a new window to probe the
Universe. Since its first discovery, the number of GW
events has been dramatically increased, and a number
of cosmological and astrophysical implications has been
discussed. Among these, one promising point would be
the detection of a stochastic background of GWs. The
event rate of compact binary coalescences suggests that
the expected number of such events over the cosmologi-
cal scales would be too large to be individually resolved,
and hence can contribute to the stochastic GW, which
would be detectable with currently operating detectors,
including upcoming detector, KAGRA.
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II. SCHUMANN RESONANCE MAGNETIC
FIELD

• Figures for magnetic noise spectrum, M12(f) (HL,
HV, LV)

• Figures for overlap reductions functions (HL, HV,
LV)

• Figure for ⌦gw(f), together with the noise spectral
density
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III. FISHER MATRIX ANALYSIS

In this section, based on the Fisher matrix formalism,
we present the prescription to estimate the statistical er-
rors and systematic biases of the parameters in a mix-
ture of a GWB signal and magnetic noise. These errors
and biases are basically scaled with signal-to-noise ratio
(SNR). The square of SNR is given by

SNR2 = 2Tobs
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A. Statistical errors

Given a correlation signal between I-th and J-th detec-
tors, UIJ , and the noise spectral density of I-th detector,
SI(f), the Fisher matrix is given by (see, e.g., [3, 4]) Refs
are to be replaced.

Fab = 2Tobs

X
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where the symbol @a stands for the derivative with re-
spect to a parameter ✓a, the sum is taken over all detector
pairs, (I, J), and Tobs is the observation time. Provided
the Fisher matrix, the statistical error of a parameter
marginalized over others, which we denote by �✓a, is es-
timated to be

�✓a =
p

(F�1)aa, (5)

where the matrix (F�1)ab is the inverse of Fisher matrix.

B. Systematic biases

Given the likelihood function, the Fisher matrix for-
malism also provides a simple way to estimate the biases
in the best-fit parameters caused by an incorrect assump-
tion on a model. In the presence of a global magnetic

Instrumental noise spectrum
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We consider a power-law spectrum:

Fisher matrix (e.g., Seto ‘06, Kuroyanagi et al. ‘18)

𝛾#$ :overlap reduction function (e.g., Allen and Romano ‘99)

Statistical error
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Instrumental noise spectrum
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𝜓% : projection angle of 𝑚%

7𝑛0 𝑓 = 𝑟0 𝑓 𝑚0 𝑓 (projected) magnetic field
coupling function

𝑀01 𝑓 : Magnetic noise spectrum（→ next slide） 𝜽𝐌𝐚𝐠 = 𝜅0, 𝛽0, 𝜓0
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Analytical model of correlated noise

o Detector is linearly coupled with Earth magnetic field :

o Schumann resonance is described by a random superposition of the 
axisymmetric transverse magnetic modes in the Earth-ionosphere cavity

(projected) magnetic field

Himemoto & Taruya ('17, '19)

The model reproduces major trends of measured results in Meyers et al. ('21)

→ Use this model as a template of correlated magnetic noise in our subsequent analysis

APPENDIX: SIMULATED MAGNETIC NOISE
PROPERTIES

We use low-noise magnetometers on site at the
Advanced LIGO and Advanced Virgo detectors and corre-
late them to deduce what γMij , defined in Eq. (13), looks like.
A discussion of the magnetometers and their locations is
given in Ref. [20]. We use the real part of complex
coherence (RPCC), defined as

γMij ðf; tÞ ¼ Re
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where m̃iðf; tÞ is the Fourier transform of the data from
magnetometer i starting at time t evaluated at frequency f.
We calculate the numerator and denominator of γMij ðf; tÞ
separately over 4 s segments and average them separately
over 1800 s of data to create an estimate of γMij ðf; tÞ for that
1800 s chunk of data. We do this for each 1800 s chunk of
data available from July 9, 2019 00∶00 UTC–September 7,
2019 00∶00 UTC. We then take a histogram at each
frequency over all of the 1800 s measurements. A heat
map of this histogram is shown in Fig. 9 for each possible
detector pair. For the simulations discussed in Sec. V, we
use the median over the time chunks at each frequency,
indicated by the white line in each panel in Fig. 9. This is
indicated by the white line in Fig. 9.
The RPCC is not an exact measurement of γMij ðfÞ. It

approximates this value only insofar as the “signal,” MðfÞ,
dominates the noise in the individual magnetometers.
However, in the absence of a reliable analytic calculation
(which is available in the GW case, for example), it is a good
heuristic for capturing the sign and general shape of γMij ðfÞ.
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Meyers et al. ('21) modified
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Solid: model prediction
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Result 1: Impact on SGWB parameters
Adopting the 'realistic' coupling parameters in Meyers et al. ('21),

Despite many nuisance parameters introduced 
(12 parameters (!) for 4 detector case, HLVK),

The impact of the size of coupling on the 
parameter estimation of SGWB is small.

Constraints on the SGWB parameters (ΩGW,0 & nGW), with the correlated 
noise parameters marginalized over

𝜅# 𝛽# 𝜓#(rad)
Hanford 0.38 3.55 6.09

Livingston 0.35 4.61 0.74

Virgo 0.275 2.50 1.37

KAGRA 0.34 3.55 2.74

Fiducial values of 
correlated noise 

parameters

4 detectors (HLVK)

: 𝜅# =
: 𝜅# =

fiducial x5
fiducial 



Result 2: constraining correlated noise parameters

§ There is little degeneracy between 
correlated noise and SGWB parameters

Even with a large statistical error on 
the coupling parameters, the SGWB is 
well-constrained.

§ Constraining noise parameters needs 
more than 3 detectors, and constraining 
power gets increased when adding more 
detectors

A role of KAGRA is important ! (red)

Good news !

3 detector (HLV)

4 detectors (HLVK)

Projection angles ψi
are held fixed



Fiducial setup

κi×2.2

Result 3: systematic bias in SGWB parameters
If we ignore the correlated noise, the estimated SGWB parameters are biased

The result is sensitive to the 
coupling parameter κi, and it 
can become serious when κi
is twice larger than the 
fiducial setup

Result ignoring the correlated 
noise

Result taking the correlated 
noise into account

For our fiducial setup, the bias seems insignificant ...

However,



• Parameter degeneracy between the correlated noise and SGWB is generally (very) weak. If 
the magnetic correlation noise is well modeled, it does not affect the parameter estimation of 
the SGWB.

Summary
Fisher matrix analysis to clarify the impact of correlated noise on the 

parameter estimation of stochastic gravitational-wave background

１２

Adopting the analytical model by Himemoto & Taruya ('17, '19) that
successfully describes measured Schumann resonances as a template of correlated noise,

(SGWB)

• A network observation combining more than 3 detectors is quite essential, and KAGRA will 
play an important role to better constrain the correlated noise.

• Ignoring the correlated noise yields a biased parameter estimation of the

SGWB, and even the realistic noise coupling would give a substantial bias


