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Precision ⇒ new phenomenon/physics

The future of particle physics

Current status

• After 40 years test: SM is still very successful

• No clear signal of  new physics

• Three possible frontiers to test SM or probe new physics: 

precision/energy/cosmology

• Rudolphine Tables (Tycho Brahe’s data, most precise before telescope): 

Kepler’s laws, Newton’s law of  gravity

• Accurate black-body radiation data: Planck’s quantization

• …

• Michelson’s experiments: Einstein’s Special Relativity

• No evidence of  FCNC: GIM mechanism predicting charm quark

• …
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Precision frontier

• Theoretical uncertainty needs 

further reduced

• Perturbative calculation to high 

orders!

• Experiment: precise measurements! HL-LHC, BELLII, EIC, CEPC/ILC/FCC-ee

• Theory: highly accurate calculations! 

 Interplay between experiment and theory

E.g., Higgs at high luminosity LHC projection

• Does coupling 𝐻𝑡  𝑡 agree with SM?

• What is the Higgs potential?

• …

1902.00134
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Perturbative QFT

1. Generate Feynman amplitudes
• Feynman diagrams and Feynman rules

• New developments: unitarity, recurrence relation, CHY, …

2. Calculate Feynman loop integrals (FIs)

3. Calculate phase-space integrals
• Monte Carlo simulation with IR subtractions

• Relating to loop integrals via reverse unitarity (if  no jet)

• Amplitudes: linear combinations of  FIs with rational coefficients 
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1) Fundamental

2) Challenging

’t Hooft, Veltman, NPB (1979); Passarino, Veltman, NPB (1979); Oldenborgh, Vermaseren (1990)

My real reasons to study FIs

Britto, Cachazo, Feng, 0412103; Ossola, Papadopoulos, Pittau, 0609007; Giele, Kunszt, Melnikov, 0801.2237

• One-loop calculation: satisfactory approach existed as early as 1970s

• QFT: theoretical foundation of  physics at current and future

• FIs: encode the main nontrivial information of  QFT 

• 40 years later, satisfactory method for multi-loop calculation still missing

• Plenty of  ideas: large dimension/mass expansion, finite field, algebraic 

geometry, unitarity cut, intersection theory, uniform transcendental, 

symbol, …

3) Fun
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Definition of FIs

A family of  Feynman integrals

• Analytical: known special functions are insufficient to express FIs

• Numerical: UV, IR,  integrable singularities, …

• ℓ1, … , ℓ𝐿: loop momenta; 𝑝1, … , 𝑝𝐸: external momenta; 

• 𝐴, 𝐵: integers; 𝐶:  linear combination of   𝑠 (including masses)

• 𝒟1, … , 𝒟𝐾: inverse propagators; 𝜈1, … , 𝜈𝐾: integers

• 𝒟𝐾+1, … , 𝒟𝑁: irreducible scalar products; 𝜈𝐾+1, … , 𝜈𝑁: non-negative integers

Difficulties of  calculating FIs
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An ancient topic

Well studied

Linear algebra

• Vector, matrix, determinant, rank

• Gaussian elimination

• …

• 《鸡兔同笼》

• 《九章算术⋅方程》

𝑀  𝑥 =  𝑐

FIs are completely determined by 

linear algebra???

The principle of  difficulty conservation! 
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Integration-by-parts: example

• Integrand: fixed power in 𝑅; Measure: 𝑅𝐷−1

• Thus vanishing in dimensional regularization

Vanishing on the big hypersphere with radius 𝑅

Relations between FIs

• All FIs in this family can be expressed by 𝐹(1)

Lagrange, Gauss, Green, Ostrogradski, 1760s-1830s ‘t Hooft, Veltman, NPB (1972)

• A family of  FI:
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IBP equations

Dimensional regularization: vanish at boundary

• Linear equation:

• 𝑄: polynomials in 𝐷,  𝑠

𝑞𝜇 = (ℓ1, ⋯ , ℓ𝐿
𝜇
, 𝑝1
𝜇
, ⋯ , 𝑝𝐸

𝜇
)

• Plenty of  linear equations can be easily obtained by varying:  𝜈, 𝑗, 𝑘

‘t Hooft, Veltman, NPB (1972)

Chetyrkin, Tkachov, NPB (1981)

Warning: IBP is insensitive to Feynman prescription i0+, suppressed
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Master integrals

Proved by: Smirnov, Petukhov, 1004.4199

A family of  FIs form a FINITE-dim. linear space

• Bases of  the linear space called master integrals (MIs) 

• IBPs reduce tens of  thousands of  FIs to much less MIs

• Let positive powers 𝑟 = 𝜈𝑖1 +⋯+ 𝜈𝑖𝑧, nonpositive 𝑠 = −(𝜈𝑖𝑧+1 +⋯+ 𝜈𝑖𝑁), 

𝑁𝑟,𝑠 = 𝐶𝑟−1
𝑧−1𝐶𝑠+𝑁−𝑧−1

𝑁−𝑧−1 is the # of  FIs with fixed 𝑟, 𝑠

• # of  equations (for seeds with fixed 𝑟, 𝑠) = 𝐿 𝐿 + 𝐸 × 𝑁𝑟,𝑠

• # of  new FIs = 𝑁𝑟+1,𝑠 + 𝑁𝑟+1,𝑠+1 (≈ 2 𝑁𝑟,𝑠 for sufficient large 𝑟, 𝑠)

• Expectation: finite # of  linearly independent FIs

 # of  equations grows faster than # of  FIs
Laporta, Remiddi, 9602417, Gehrmann, Remiddi, 9912329
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IBP reduction

Laporta’s algorithm to do reduction

• Generate eqs for all  𝜈 with

• Ordering: simpler FI has smaller 𝑧, then smaller 𝑟, then smaller 𝑠

• Solving linear eqs to eliminate more complicated FIs 

• Eventually, all FIs are linear combinations of  MIs

Laporta, 0102033

Solving IBP eqs.: automatic, any-loop order

• Public codes: AIR, FIRE, LiteRed, Reduze, Kira, FiniteFlow,… 

• Many more private codes

• Warning: time-consuming for complicated problems (to be discussed later)
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Since 90s’

FIs ≜ Linear algebra⊕Master integrals

Input:

The same number of  loops

The same number of  external legs
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Differential equations: example

Due to IBP: DEs of  MIs w.r.t.  s

Boundary Condition
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Traditional DEs method

Step 1: Set up  𝑠-DEs of  MIs

Step 2: Calculate boundary condition

• Differentiate MIs w.r.t. invariants  𝑠, such as 𝑚2, 𝑝 ⋅ 𝑞

• Solving IBP relations: 

• Calculate integrals at special value of𝑚2, 𝑝2

• Case by case, not systematic!

Kotikov, PLB(1991)

Step 3: Solve DEs
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Auxiliary FIs

• 𝜆𝑖 ≥ 0 (typically 0 or 1), an auxiliary mass if  𝜆𝑖 > 0

• Analytical function of  𝜂

• Physical result obtained by (correct Feynman prescription)

Auxiliary mass terms

Why it is new?

• Auxiliary FIs always have massive propagators

• Stereotype in the community: harder to calculate 

(it is right unless using the method to be explained)

Liu, YQM, Wang, 1711.09572

• 1) Setup 𝜂-DEs; 2) Calculate boundary conditions; 3) Solve 𝜂-DEs
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To minimize #MIs: usually the propagator mode

Set up DEs w.r.t. 𝜼

Liu, YQM, 2107.01864 

 𝜂-DEs for MIs in auxiliary family using IBP

Massless two-loop double-

pentagon integrals (108 MIs)

• 𝜂-DEs are easier to set up if  there are less MIs
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Test for various cutting-edge problems

𝜼-DEs V.S. 𝒔-DEs
Liu, YQM, 2107.01864 

• Use propagator mode: easier to set up 

𝜂-DEs for the auxiliary family than to 

set up  𝑠-DEs for the original family!

• Differentiate with 𝜂: only increase 

power of  denominator by one

• Differentiate with  𝑠: increase powers of  

both numerator and denominator by 

one. Harder to do IBP reduction

Time to setup DEs (CPU core hours)
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Solve ODEs of  MIs

Singularity structure

Step1: Asymptotic expansion at 𝜂 = ∞
Step2: Taylor expansion at analytical points

Step3: Asymptotic expansion at 𝜂 = 0

If   𝐼
𝑎𝑢𝑥
(𝐷,  𝑠,∞) is known , solving ODEs 

numerically to obtain  𝐼𝑎𝑢𝑥(𝐷,  𝑠, i0−) is 

a well-studied mathematical problem:

Flow of auxiliary mass

Efficient to get high precision : 

ODEs, known singularity structure
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Simplify propagators at 𝜂 → ∞

Boundary values at 𝜂 → ∞

Nonzero integration regions as 𝜂 → ∞

• Linear combinations of  loop momenta: 𝒪( 𝜂 ) or 𝒪(1)

• ℓ𝐿 is the 𝒪( 𝜂 ) part of  loop momenta

• ℓ𝑆 is the 𝒪(1) part of  loop momenta

• 𝑝 is linear combination of  external momenta

• Unchange if  ℓ𝐿 = 0 and 𝜅 = 0

Beneke, Smirnov, 9711391

Smirnov, 9907471

Boundary FIs after simplification
1. Simpler FIs with less denominators, if  all loop momenta are 𝒪(1)

2. Vacuum integrals
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For boundary FIs with less denominators:
• Calculate them again use AMF method,  even simpler boundary FIs 

as input (besides vacuum integrals)

Typical single-mass vacuum MIs

Iterative strategy

Baikov, Chetyrkin, 1004.1153

Lee, Smirnov, Smirnov, 1108.0732

Georgoudis, et. al., 2104.08272

• Eventually, leaving only (single-mass) vacuum integrals as input

• Much simpler to be calculated

• The same number of  loops. 

Liu, YQM, 2107.01864 
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2017-2021

FIs ≜ Linear algebra ⊕ Vacuum integrals

Input: 

The same number of  loops

No external legs

Is this the end of  the story?

+ + +

Loop integration seems to be unavoidable
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From p-integrals to vacuum integrals

A family of  single-mass vacuum integrals

• As ℓ1
2 is the only scale:

• 𝑚2: the only scale. Can choose 𝑚2 = 1

Propagator (p-)integrals

• 𝐿-loop single-mass vacuum integral expressed by (𝐿 − 1)-loop p-integral
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From vacuum integrals to p-integrals

Apply AMF method on (𝐿 − 1)-loop p-integral

1) IBP to setup 𝜂-DEs

2) Single-mass vacuum integrals no more than (𝐿 − 1) loops as input

Single-mass vacuum integrals with 𝐿 loops are determined by 

that with no more than (𝐿 − 1) loops (besides IBP)

• Boundary: 0-loop p-integrals equal 1

Only IBPs are needed to determine FIs!

• IBPs: linear algebra, exact (in 𝐷,  𝑠) relations between FIs

• Loop integrations are completely avoided!

Liu, YQM, 2201.11637 
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Workflow

The ‘FICalc’ to calculate FIs can be defined as 

(any given nonsingular 𝐷 and  𝑠):

① If  it is a 0-loop p-integral, return 1;

② If  it is a single-mass vacuum integral, express it by a p-integral, and 

call ‘FICalc’ to calculate the p-integral;

③ Otherwise:

a) Introduce 𝜂 to one propagator (if  the mass mode is not possible)

b) Setup 𝜂-DEs using IBP as input

c) Call ‘FICalc’ to calculate boundary FIs at 𝜂 → ∞

d) Numerically solve 𝜂-DEs with given BCs to obtain 𝜂 → i0−

Liu, YQM, 2201.11637 
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A five-loop example

• IBP relations are the only input!

• Terms up to 𝒪(𝜖4) agree with literature; Others are new

Liu, YQM, 2201.11637 

=

Lee, Smirnov, Smirnov, 1108.0732
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Since 2022

FIs ≜ Linear algebra

No other input! No loops, no legs!!
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Other methods to calculate FIs (1)

Usyukina (1975)

Smirnov, 9905323

Laporta, 0102033

Lee, 0911.0252

Difference equations (not recommend)

• Depends on reduction and BCs

• Hard to solve difference equations: BCs, convergence

• Using Monte Carlo: time-consuming

• Hard for non-Euclidean kinematic points

Sector decomposition (not recommend) 

Hepp, (1966)

Binoth, Heinrich, 0004013

• Using Monte Carlo: time-consuming

• Hard for non-planar diagrams

Mellin-Barnes representation (not recommend) 

Better to use AMF
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Other methods to calculate FIs (2)

• Using Monte Carlo: time-consuming

Loop-Tree duality (under development) 

Catani, et. al., 0804.3170

…

Lotty: Bobadilla, 2103.09237

No real phenomenological applications yet
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Other methods to calculate FIs (3)

Kotikov, PLB (1991)

 (Traditional) differential equations

• Depends on reduction and BCs

Henn, 1304.1806

Chen, Yang, Zhang, … • For some cases, 𝜖-form exists ⇒ analytical 

• The frontier: MIs for 2→3 massless processes at two loops

Onshell: Badger, et. al., 1812.11160

Chicherin, Sotnikov, 2009.07803
One offshell: Kardos, et. al., 2201.07509

• All MIs are known 

analytically to 𝒪 1

• AMF (numerical): known 

easily to 𝒪 𝜖4

• Hexa-box MIs are known 

analytically to 𝒪 1

• AMF (numerical): all MIs are 

known easily to 𝒪 𝜖4
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Package: AMFlow

Download Liu, YQM, 2201.11669

• The first (method and) package that can calculate any FI (with any 

number of  loops, any 𝐷 and  𝑠) to any precision, given sufficient resource

Link: https://gitlab.com/multiloop-pku/amflow

Description

https://gitlab.com/multiloop-pku/amflow
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Advantages: all purposes

Can calculate FIs with any number of  loops

Expansion of  𝐷 around any fixed value 𝐷0
• Calculate FIs with 𝐷 = 𝐷0 + 𝜖 for a list of  small 𝜖 (e.g. 

0.01, 0.011, 0.012, … , 0.02)

• Fit  Lauran expansion in 𝜖

• 𝐷0 can be 4, 3 (nonrelativistic theory), or other values

• Can obtain 𝜖 expansion to any order

Liu, YQM, 2201.11669 

• As far as IBP reduction is successful

Can calculate FIs with linear propagators
• Present frequently in effective field theory Liu, YQM, 2201.11636 

Can calculate phase space integrals
• As far as there is not jet Liu, YQM, Tao, Zhang, 2009.07987
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Cutting-edge problems

Examples using AMF
Liu, YQM, 2107.01864 

• Results: 16-digit precision, to 𝒪(𝜖4)

• First step of  iteration: cost most time

• All results in (a)-(f) are new, very 

challenging for all other methods!

• Highly nontrivially checked!

Time to setup DEs (CPU core hours)

• IBP reduction (bottleneck): C++

• Solve 𝜂-DEs: Mathematica. Can be 

significantly improved
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Pheno. applications of AMF

Wide range of  applications 
Zhang, et.al., 1810.07656

Yang, et.al., 2005.11010

Brønnum-Hansen, et. al.,  2108.09222

Baranowski, et. al., 2111.13594

Wu, et. al., 2201.11714 

Sang, et. al., 2202.11615

…

Sang, Feng, Jia, Mo, Zhang, 2202.11615

• Linear propagators; Phase space integrals; 

QCD sum rules; Electroweak corrections; 

Quarkonia production; …

• Two-loop five external legs, 

massive particles

• Challenging for other methods

Example

Two ways to use AMF
• Use AMF to calculate each phase-space point

• Use AMF to calculate BCs of   𝑠-DEs
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Difficulty of IBP reduction

Solve IBP equations

• Very large scale of  linear equations (can be billions of)

• Equations are coupled 

× Explicit solution for multi-scale problem: hard to get, expression 

can be too large

× Numerical solution at each floating phase space point : too slow

Cutting-edge problems

• Hundreds GB RAM

• Months of  runtime using super computer  

Laporta’s algorithm, 0102033

E.g., Laporta 1910.01248
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Solve IBP system over finite field

Usage of  FF is common in computer algebra

Manteuffel, Schabinger, 1406.4513

FireFly: Klappert, Lange, 1904.00009

FiniteFlow: Peraro, 1905.08019

𝑎−1 ≡ 𝑏 mod 𝑝  (𝑎𝑏) ≡ 1mod 𝑝

7 ≡ 2mod 5

2−1 ≡ 3mod 5

• Solving linear system numerically and then reconstruct 

analytical solution (using Chinese remainder theorem)

• Avoid intermediate expression swell

• It is now a standard technique in FIs reduction

A better way to solve IBP systems
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Trim IBP system

Larsen, Zhang, et. al., 1511.01071, 

1805.01873, 2104.06866

Remove irrelevant FIs

• FIs with double propagator usually not show up in amplitude

• Can be removed by combining IBPs, constrained by syzygy equations

Gluza, Kajda, Kosower, 1009.0472

Schabinger, 1111.4220

Solving syzs using module intersection 

• No dimensional shift, module  𝑀1 from syzs:

• No double propagators, module  𝑀2 from syzs:

Very promising. No publicly available code yet

• IBPs in Baikov representation. 𝑃: Baikov polynomial; 𝑧𝑖: denominator 

• Module intersection 𝑀1 ∩𝑀2 calculable using algebraic geometry 

• Polynomials list (𝑎1, … , 𝑎𝑚) forms a module (generalization of  ideal)
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Module reconstruction

Liu, Ma, 1801.10523, Guan, Liu, Ma, 1912.09294

 IBP system as a module

• Taking all FIs as bases, coefficient vectors form a module 

(different module from previous page)

• Need to know its Gröebner basis (or simplest generators) with 

polynomial ordering: position over term, degree ordered

• Result: block-triangular form, smallest polynomial degree

• Linear independent subset of  Gröebner basis, minimal system

• Input linear system, e.g., from IBPs, trimmed IBPs, or other ways

• One method: sampling and fit. A public code will be released soon!

Construct simplest generators
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Application of module reconstruction

• Time =6h=(40*5s+3000*0.05s)*45+…

• Set DEs:90%; solve: 10%.

• New reduction strategy: 100× faster

Example: two-loop double-pentagon Liu, YQM, 2107.01864 

• Construct DEs: 3000 points 

• Block-triangular system: 40 points

Typically faster by 2 orders of  magnitude

Time to setup DEs (CPU core hours)
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Ways to bypass IBPs

 Intersection theory Frellesvig, et. al., 1901.11510, 1907.02000

Yang,..

• FIs

 1/𝐷 expansion and matching

 1/𝜂 expansion and matching
Guan, Liu, Ma, 1801.10523, 1912.09294

Wang, Li, Basat, 1901.09390, 2102.08225

Baikov, Chetyrkin, Kuhn, 0108197

Baikov, NPB (2003)

Baikov, 0507053

• Intersection number

m=0:
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State-of-the-art computation

2→2 process with massive particles at two-

loop order: almost done

Very challenging (without new development) 

𝑔 + 𝑔 → 𝑡 +  𝑡, 𝑔 + 𝑔 → 𝐻 + 𝐻(𝑔)

• Two-loop 𝑔 + 𝑔 → 𝐻 + 𝐻 (𝑔): complete IBP reduction cannot be achieved  

• Four-loop 𝑔 + 𝑔 → 𝐻 (NNLP in HTL):  860 days (wall time!)
Davies, Herren, Steinhauser, 1911.10214

Borowka et. al., 1604.06447

Jones, Kerner, Luisoni, 1802.00349

Frontier in the following decade: 

• 2→3 processes at two loops (3j/𝛾, V/H+2j 𝑡  𝑡+j, 𝑡  𝑡𝐻,…)

• 2→2 processes at three loops (2j/𝛾, V/H+j, 𝑡  𝑡, HH, …)

• 2→1 processes at four loops (j, V/H)
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 Feynman integrals form a linear space

Summary and outlook

 Feynman integrals can be completely determined 

once relations in the linear space is clear

 Perturbative QFT in the new era: stay tune

Thank you!

 Results in a powerful method to calculate FIs: for the 

first time, any FI can calculated to high precision

Impossible 
2022

possible 
future

efficiency




