从线性代数到费曼积分

Mainly based on works done with: Xin Guan (关鑫) Xiao Liu(刘霄) Zhi-Feng Liu(刘志峰) and Chen-Yu Wang(王辰宇) 1711.09572, 1801.10523, 1912.09294, 2107.01864, 2201.11669, 2201.11637, ...

强子物理在线论坛HAPOF, 2022/03/11, 在线

I. Introduction

- **II. Linear space of FIs**
- **III. Auxiliary mass flow**
- **IV. Vacuum integrals**
- V. Application and comparison
- VI. Linear algebra from nonlinear algebra

The future of particle physics

Current status

- After 40 years test: SM is still very successful
- No clear signal of new physics
- Three possible frontiers to test SM or probe new physics: precision/energy/cosmology

Precision ⇒ new phenomenon/physics

- Rudolphine Tables (Tycho Brahe's data, most precise before telescope): Kepler's laws, Newton's law of gravity
- Accurate black-body radiation data: Planck's quantization
- Michelson's experiments: Einstein's Special Relativity
- No evidence of FCNC: GIM mechanism predicting charm quark

. . .

Precision frontier

Interplay between experiment and theory

- Experiment: precise measurements! HL-LHC, BELLII, EIC, CEPC/ILC/FCC-ee
- Theory: highly accurate calculations!

E.g., Higgs at high luminosity LHC projection

- Does coupling $Ht\bar{t}$ agree with SM?
- What is the Higgs potential?
- ...
- Theoretical uncertainty needs
 further reduced
- Perturbative calculation to high orders!

1. Generate Feynman amplitudes

- Feynman diagrams and Feynman rules
- New developments: unitarity, recurrence relation, CHY, ...

2. Calculate Feynman loop integrals (FIs)

Amplitudes: linear combinations of FIs with rational coefficients

3. Calculate phase-space integrals

- Monte Carlo simulation with IR subtractions
- Relating to loop integrals via reverse unitarity (if no jet)

$$\int \frac{\mathrm{d}^D p}{(2\pi)^D} (2\pi) \delta_+(p^2) = \int \frac{\mathrm{d}^D p}{(2\pi)^D} \left(\frac{\mathrm{i}}{p^2 + \mathrm{i}0^+} + \frac{-\mathrm{i}}{p^2 - \mathrm{i}0^+} \right)$$

My real reasons to study FIs

1) Fundamental

- QFT: theoretical foundation of physics at current and future
- Fls: encode the main nontrivial information of QFT

2) Challenging

- One-loop calculation: satisfactory approach existed as early as 1970s
 't Hooft, Veltman, NPB (1979); Passarino, Veltman, NPB (1979); Oldenborgh, Vermaseren (1990)
 Britto, Cachazo, Feng, 0412103; Ossola, Papadopoulos, Pittau, 0609007; Giele, Kunszt, Melnikov, 0801.2237
- 40 years later, satisfactory method for multi-loop calculation still missing
- 3) Fun
 - Plenty of ideas: large dimension/mass expansion, finite field, algebraic geometry, unitarity cut, intersection theory, uniform transcendental, symbol, ...

Definition of FIs

> A family of Feynman integrals

 $I_{\vec{\nu}}(D,\vec{s}) = \int \prod_{i=1}^{L} \frac{\mathrm{d}^{D}\ell_{i}}{\mathrm{i}\pi^{D/2}} \frac{\mathcal{D}_{K+1}^{-\nu_{K+1}} \cdots \mathcal{D}_{N}^{-\nu_{N}}}{(\mathcal{D}_{1} + \mathrm{i}0^{+})^{\nu_{1}} \cdots (\mathcal{D}_{K} + \mathrm{i}0^{+})^{\nu_{K}}}$

 $\mathcal{D}_{\alpha} = A_{\alpha i j} \ell_i \cdot \ell_j + B_{\alpha i j} \ell_i \cdot p_j + C_{\alpha}$

- ℓ_1, \dots, ℓ_L : loop momenta; p_1, \dots, p_E : external momenta;
- *A*, *B*: integers; *C*: linear combination of \vec{s} (including masses)
- $\mathcal{D}_1, \dots, \mathcal{D}_K$: inverse propagators; ν_1, \dots, ν_K : integers
- $\mathcal{D}_{K+1}, \dots, \mathcal{D}_N$: irreducible scalar products; v_{K+1}, \dots, v_N : non-negative integers

Difficulties of calculating FIs

- Analytical: known special functions are insufficient to express FIs
- Numerical: UV, IR, integrable singularities, ...

۲

. . .

An ancient topic

- 《鸡兔同笼》
- 《九章算术·方程》

Well studied

$$M \vec{x} = \vec{c}$$

- Vector, matrix, determinant, rank
- Gaussian elimination

FIs are completely determined by linear algebra???

The principle of difficulty conservation!

I. Introduction

II. Linear space of FIs

III. Auxiliary mass flow

IV. Vacuum integrals

V. Application and comparison

VI. Linear algebra from nonlinear algebra

Integration-by-parts: example

• A family of FI:
$$F(n) = \int \frac{\mathrm{d}^D \ell}{(2\pi)^D} \frac{1}{(\ell^2 - \Delta)^n}$$

> Vanishing on the big hypersphere with radius R

Lagrange, Gauss, Green, Ostrogradski, 1760s-1830s

't Hooft, Veltman, NPB (1972)

 $\int \frac{\mathrm{d}^D \ell}{(2\pi)^D} \frac{\partial}{\partial \ell^\mu} \Big[\frac{\ell^\mu}{(\ell^2 - \Delta)^n} \Big] \stackrel{\text{l}}{=} \int_{\partial} \frac{\mathrm{d}^{D-1} S_\mu}{(2\pi)^D} \Big[\frac{\ell^\mu}{(\ell^2 - \Delta)^n} \Big] \stackrel{\text{l}}{=} 0.$

- Integrand: fixed power in R; Measure: R^{D-1}
- Thus vanishing in dimensional regularization

Relations between FIs

$$0 = \int_{\ell} \left[\frac{D}{(\ell^2 - \Delta)^n} - n \int_{\ell} \frac{2(\ell^2 - \Delta) + 2\Delta}{(\ell^2 - \Delta)^{n+1}} \right] = (D - 2n)F(n) - 2n\Delta F(n+1)$$
$$F(n+1) = \frac{1}{-\Delta} \frac{n - \frac{D}{2}}{n}F(n)$$

• All FIs in this family can be expressed by F(1)

IBP equations

Dimensional regularization: vanish at boundary

't Hooft, Veltman, NPB (1972) Chetyrkin, Tkachov, NPB (1981)

• Linear equation:
$$\sum_{\vec{\nu'}} Q^{\vec{\nu}jk}_{\vec{\nu'}}(D,\vec{s}) I_{\vec{\nu'}}(D,\vec{s}) = 0$$

- Q: polynomials in D, \vec{s}
- Plenty of linear equations can be easily obtained by varying: \vec{v}, j, k

Warning: IBP is insensitive to Feynman prescription i0⁺, **suppressed**

Master integrals

> # of equations grows faster than # of FIs

Laporta, Remiddi, 9602417, Gehrmann, Remiddi, 9912329

- Let positive powers $r = v_{i_1} + \dots + v_{i_z}$, nonpositive $s = -(v_{i_{z+1}} + \dots + v_{i_N})$, $N_{r,s} = C_{r-1}^{z-1}C_{s+N-z-1}^{N-z-1}$ is the **#** of FIs with fixed r, s
- **#** of equations (for seeds with fixed r, s) = $L(L + E) \times N_{r,s}$
- # of new FIs = $N_{r+1,s} + N_{r+1,s+1}$ ($\approx 2 N_{r,s}$ for sufficient large r, s)
- Expectation: finite # of linearly independent FIs

> A family of FIs form a FINITE-dim. linear space

Proved by: Smirnov, Petukhov, 1004.4199

- Bases of the linear space called master integrals (MIs)
- IBPs reduce tens of thousands of FIs to much less MIs

> Laporta's algorithm to do reduction

 $\sum_{\vec{\nu}'} Q^{\vec{\nu}jk}_{\vec{\nu}'}(D,\vec{s}) I_{\vec{\nu}'}(D,\vec{s}) = 0$ Laporta, 0102033

- Generate eqs for all \vec{v} with $r \in [r_{\min}, r_{\max}], s \in [s_{\min}, s_{\max}]$
- Ordering: simpler FI has smaller *z*, then smaller *r*, then smaller *s*
- Solving linear eqs to eliminate more complicated FIs
- Eventually, all FIs are linear combinations of MIs

Solving IBP eqs.: automatic, any-loop order

- Public codes: AIR, FIRE, LiteRed, Reduze, Kira, FiniteFlow,...
- Many more private codes
- Warning: time-consuming for complicated problems (to be discussed later)

FIs \triangleq **Linear algebra** \oplus **Master integrals**

Input:

The same number of loops

The same number of external legs

- I. Introduction
- II. Linear space of FIs

III. Auxiliary mass flow

- **IV. Vacuum integrals**
- V. Application and comparison
- VI. Linear algebra from nonlinear algebra

Differential equations: example

> Due to IBP: DEs of MIs w.r.t. \vec{s}

$$\underbrace{s = p^2}_{m} \begin{pmatrix} m \\ m \end{pmatrix}_{\nu_1 \nu_2} = \int \frac{\mathrm{d}^D \ell}{\mathrm{i} \pi^{D/2}} \frac{1}{(\ell^2 - m^2)^{\nu_1} [(\ell + p)^2 - m^2]^{\nu_2}}$$

$$\begin{bmatrix} \frac{\partial}{\partial m^2} I_{11} = I_{21} + I_{12} \stackrel{\text{IBP}}{=} \frac{2(D-3)}{4m^2 - s} I_{11} - \frac{D-2}{m^2(4m^2 - s)} I_{10} \\ \frac{\partial}{\partial m^2} I_{10} = I_{20} \stackrel{\text{IBP}}{=} \frac{D-2}{2m^2} I_{10} \end{bmatrix}$$

$$\begin{cases} \frac{\partial}{\partial s} I_{11} = \frac{p^{\mu}}{2s} \frac{\partial}{\partial p^{\mu}} I_{11} = -\frac{1}{2s} \int \frac{\mathrm{d}^{D}\ell}{\mathrm{i}\pi^{D/2}} \frac{2(\ell+p) \cdot p}{(\ell^{2}-m^{2})[(\ell+p)^{2}-m^{2}]^{2}} \\ = -\frac{sI_{12} + I_{11} - I_{02}}{2s} \stackrel{\mathrm{IBP}}{=} a_{11}I_{11} + a_{10}I_{10} \\ \frac{\partial}{\partial s}I_{10} = 0 \end{cases}$$

Boundary Condition

$$\begin{bmatrix} I_{11}|_{m^2 \to 0} = (-s)^{D/2-2} \Gamma(2-D/2) \frac{\Gamma(D/2-1)^2}{\Gamma(D-2)} \\ I_{10} \end{bmatrix}$$

> Step 1: Set up \vec{s} -DEs of MIs

- Differentiate MIs w.r.t. invariants \vec{s} , such as m^2 , $p \cdot q$
- Solving IBP relations: $\frac{\partial}{\partial s_i} \vec{I}(D, \vec{s}) = A_i(D, \vec{s}) \vec{I}(D, \vec{s})$

Kotikov, PLB(1991)

Step 2: Calculate boundary condition

- Calculate integrals at special value of m^2 , p^2
- Case by case, not systematic!
- Step 3: Solve DEs

Auxiliary mass terms

Liu, YQM, Wang, 1711.09572

$$I_{\vec{\nu}}^{\mathrm{aux}}(D,\vec{s},\eta) = \int \prod_{i=1}^{L} \frac{\mathrm{d}^{D}\ell_{i}}{\mathrm{i}\pi^{D/2}} \frac{\mathcal{D}_{K+1}^{-\nu_{K+1}}\cdots\mathcal{D}_{N}^{-\nu_{N}}}{(\mathcal{D}_{1}-\lambda_{1}\eta+\mathrm{i}0^{+})^{\nu_{1}}\cdots(\mathcal{D}_{K}-\lambda_{K}\eta+\mathrm{i}0^{+})^{\nu_{K}}}$$

- $\lambda_i \ge 0$ (typically 0 or 1), an auxiliary mass if $\lambda_i > 0$
- Analytical function of η

> Auxiliary Fls

• Physical result obtained by (correct Feynman prescription)

$$I_{\vec{\nu}}(D,\vec{s}) \equiv \lim_{\eta \to i0^{-}} I_{\vec{\nu}}^{\mathrm{aux}}(D,\vec{s},\eta)$$

• 1) Setup η -DEs; 2) Calculate boundary conditions; 3) Solve η -DEs

> Why it is new?

- Auxiliary FIs always have massive propagators
- Stereotype in the community: harder to calculate (it is right unless using the method to be explained)

> η -DEs for MIs in auxiliary family using IBP $\frac{\partial}{\partial \eta} \vec{I}^{aux}(D, \vec{s}, \eta) = A(D, \vec{s}, \eta) \vec{I}^{aux}(D, \vec{s}, \eta)$

> To minimize #MIs: usually the propagator mode

Massless two-loop doublepentagon integrals (108 MIs)

Mode	Propagators	Number of MIs		
All	{1,2,3,4,5,6,7,8}	476		
Loop	{4,5,6,7,8}	305		
-	{1,2,3,4,5,6}	319		
Branch	{4,5,6}	233		
	{7,8}	234		
Propagator	{4}	178		
	{5}	176		
	{7}	220		
Mass				

• η -DEs are easier to set up if there are less MIs

Liu, YQM, 2107.01864

η -DEs V.S. \vec{s} -DEs

Liu, YQM, 2107.01864

> Test for various cutting-edge problems

Family	dp	(a)	(b)	(c)	(d)	(e)	(f)
$T_{\eta-\mathrm{DEs}}$	6	20	18	8	1	25	30
$T_{\vec{s}-\text{DEs}}$	2	916	64	1305	30	1801	63

Time to setup DEs (CPU core hours)

- Use propagator mode: easier to set up η -DEs for the auxiliary family than to set up \vec{s} -DEs for the original family!
- Differentiate with η: only increase power of denominator by one
- Differentiate with s
 increase powers of both numerator and denominator by one. Harder to do IBP reduction

Flow of auxiliary mass

Solve ODEs of MIs

$$\frac{\partial}{\partial \eta} \vec{I}^{\text{aux}}(D, \vec{s}, \eta) = A(D, \vec{s}, \eta) \vec{I}^{\text{aux}}(D, \vec{s}, \eta)$$

If $\vec{I}^{aux}(D, \vec{s}, \infty)$ is known, solving ODEs numerically to obtain $\vec{I}^{aux}(D, \vec{s}, i0^-)$ is a well-studied mathematical problem:

Step1: Asymptotic expansion at $\eta = \infty$ Step2: Taylor expansion at analytical points Step3: Asymptotic expansion at $\eta = 0$

> Efficient to get high precision : ODEs, known singularity structure

Boundary values at $\eta \rightarrow \infty$

> Nonzero integration regions as $\eta \to \infty$

• Linear combinations of loop momenta: $\mathcal{O}(\sqrt{|\eta|})$ or $\mathcal{O}(1)$

Beneke, Smirnov, 9711391 Smirnov, 9907471

> Simplify propagators at $\eta \to \infty$

- ℓ_L is the $\mathcal{O}(\sqrt{|\eta|})$ part of loop momenta
- ℓ_S is the $\mathcal{O}(1)$ part of loop momenta
- p is linear combination of external momenta

$$\frac{1}{(\ell_{\rm L}+\ell_{\rm S}+p)^2-m^2-\kappa\,\eta}\sim\frac{1}{\ell_{\rm L}^2-\kappa\,\eta}$$

• Unchange if $\ell_L = 0$ and $\kappa = 0$

Boundary FIs after simplification

- **1**. Simpler FIs with less denominators, if all loop momenta are O(1)
- 2. Vacuum integrals

For boundary FIs with less denominators:

• Calculate them again use AMF method, even simpler boundary FIs

as input (besides vacuum integrals)

Liu, YQM, 2107.01864

- Eventually, leaving only (single-mass) vacuum integrals as input
- > Typical single-mass vacuum MIs

- Much simpler to be calculated
- The same number of loops.

FIs \triangleq **Linear algebra** \oplus **Vacuum integrals**

Input:

The same number of loops

No external legs

Loop integration seems to be unavoidable

Is this the end of the story?

- I. Introduction
- II. Linear space of FIs
- **III. Auxiliary mass flow**
- **IV. Vacuum integrals**
- V. Application and comparison
- VI. Linear algebra from nonlinear algebra

> A family of single-mass vacuum integrals

From p-integrals to vacuum integrals

$$I_{\vec{\nu}}(D, m^2) = \int \prod_{i=1}^{L} \frac{\mathrm{d}^D \ell_i}{\mathrm{i}\pi^{D/2}} \frac{\mathcal{D}_{K+1}^{-\nu_{K+1}} \cdots \mathcal{D}_N^{-\nu_N}}{(\mathcal{D}_1 + \mathrm{i}0^+)^{\nu_1} \cdots (\mathcal{D}_K + \mathrm{i}0^+)^{\nu_K}}$$
$$\mathcal{D}_1 = \ell_1^2 - m^2 + \mathrm{i}0^+$$

- m^2 : the only scale. Can choose $m^2 = 1$
- Propagator (p-)integrals

$$\widehat{I}_{\vec{\nu}'}(\ell_1^2) = \int \left(\prod_{i=2}^L \frac{\mathrm{d}^D \ell_i}{\mathrm{i}\pi^{D/2}}\right) \frac{\mathcal{D}_{K+1}^{-\nu_{K+1}} \cdots \mathcal{D}_N^{-\nu_N}}{\mathcal{D}_2^{\nu_2} \cdots \mathcal{D}_K^{\nu_K}}$$

$$\vec{\nu}' = (\nu_2, \cdots, \nu_N)$$
$$\nu = \sum_{i=1}^N \nu_i$$

- As ℓ_1^2 is the only scale: $\widehat{I}_{\vec{\nu}'}(\ell_1^2) = (-\ell_1^2)^{\frac{(L-1)D}{2} \nu + \nu_1} \widehat{I}_{\vec{\nu}'}(-1)$
- L-loop single-mass vacuum integral expressed by (L 1)-loop p-integral

$$I_{\vec{\nu}} = \int \frac{\mathrm{d}^{D}\ell_{1}}{\mathrm{i}\pi^{D/2}} \frac{(-\ell_{1}^{2})^{\frac{(L-1)D}{2}-\nu+\nu_{1}}}{(\ell_{1}^{2}-1+\mathrm{i}0^{+})^{\nu_{1}}} \widehat{I}_{\vec{\nu}'}(-1) = \frac{\Gamma(\nu-LD/2)\Gamma(LD/2-\nu+\nu_{1})}{(-1)^{\nu_{1}}\Gamma(\nu_{1})\Gamma(D/2)} \widehat{I}_{\vec{\nu}'}(-1)$$

> Apply AMF method on (L - 1)-loop p-integral

- **1) IBP to setup** η **-DEs**
- **2)** Single-mass vacuum integrals no more than (L 1) loops as input

Single-mass vacuum integrals with *L* loops are determined by that with no more than (L - 1) loops (besides IBP)

• Boundary: 0-loop p-integrals equal 1

> Only IBPs are needed to determine FIs!

- IBPs: linear algebra, exact (in D, \vec{s}) relations between FIs
- Loop integrations are completely avoided!

The 'FICalc' to calculate FIs can be defined as (any given nonsingular D and s):

Liu, YQM, 2201.11637

- ① If it is a 0-loop p-integral, return 1;
- If it is a single-mass vacuum integral, express it by a p-integral, and call 'FICalc' to calculate the p-integral;
- **③ Otherwise:**
 - a) Introduce η to one propagator (if the mass mode is not possible)
 - b) Setup η -DEs using IBP as input
 - c) Call 'FICalc' to calculate boundary FIs at $\eta \rightarrow \infty$
 - d) Numerically solve η -DEs with given BCs to obtain $\eta \rightarrow i0^-$

A five-loop example

Liu, YQM, 2201.11637

 $\begin{aligned} &-2.073855510286740\epsilon^{-2} - 7.812755312590133\epsilon^{-1} \\ &-17.25882864945875 + 717.6808845492140\epsilon \\ &+8190.876448160049\epsilon^2 + 78840.29598046500\epsilon^3 \\ &+566649.1116484678\epsilon^4 + 3901713.802716081\epsilon^5 \\ &+23702384.71086095\epsilon^6 + 142142936.8205112\epsilon^7, \end{aligned}$

- IBP relations are the only input!
- Terms up to $\mathcal{O}(\epsilon^4)$ agree with literature; Others are new

Lee, Smirnov, Smirnov, 1108.0732

$FIs \triangleq Linear algebra$

No other input! No loops, no legs!!

- I. Introduction
- II. Linear space of FIs
- **III. Auxiliary mass flow**
- **IV. Vacuum integrals**
- **V. Application and comparison**
- VI. Linear algebra from nonlinear algebra

Other methods to calculate FIs (1)

Sector decomposition (not recommend)

- Using Monte Carlo: time-consuming
- Hard for non-Euclidean kinematic points

Hepp, (1966) Binoth, Heinrich, 0004013

Mellin-Barnes representation (not recommend)

- Using Monte Carlo: time-consuming
- Hard for non-planar diagrams

> Difference equations (not recommend)

- Depends on reduction and BCs
- Hard to solve difference equations: BCs, convergence

Better to use AMF

Usyukina (1975) Smirnov, 9905323

> Laporta, 0102033 Lee, 0911.0252

Loop-Tree duality (under development)

• Using Monte Carlo: time-consuming

Catani, et. al., 0804.3170

Lotty: Bobadilla, 2103.09237

	Plar	nar triangle	Non-planar triangle		
$\frac{s}{m^2}$	LTD (10^{-6})	SECDEC 3.0 (10^{-6})	LTD (10^{-6})	SecDec 3.0 (10^{-6})	
$-\frac{1}{4}$	9.48(5)	9.4647(9)	4.461(3)	4.4606(4)	
-1	8.10(5)	8.0885(8)	4.101(3)	4.1012(4)	
$-\frac{9}{4}$	6.49(3)	6.4760(6)	3.627(5)	3.6276(3)	
-4	5.02(2)	5.0188(5)	3.15(5)	3.1334(3)	
$+\frac{1}{4}$	10.68(6)	10.651(1)	4.743(3)	4.7436(4)	
1	13.11(8)	13.070(1)	5.259(3)	5.2590(5)	
$+\frac{9}{4}$	20.81(1)	20.748(2)	6.533(3)	6.5331(6)	
$+\frac{25}{16}$	15.74(9)	15.700(1)	5.748(3)	5.7474(6)	

No real phenomenological applications yet

Other methods to calculate FIs (3)

> (Traditional) differential equations

- Depends on reduction and BCs Kotikov, PLB (1991)
- For some cases, ϵ -form exists \Rightarrow analytical

Henn, 1304.1806 Chen, Yang, Zhang, ...

• The frontier: MIs for $2 \rightarrow 3$ massless processes at two loops

Onshell: Badger, et. al., 1812.11160 Chicherin, Sotnikov, 2009.07803

- All MIs are known analytically to O(1)
- AMF (numerical): known easily to $\mathcal{O}(\epsilon^4)$

One offshell: Kardos, et. al., 2201.07509

- Hexa-box MIs are known analytically to O(1)
- AMF (numerical): all MIs are known easily to $\mathcal{O}(\epsilon^4)$

Package: AMFlow

Download

Liu, YQM, 2201.11669

Link: <u>https://gitlab.com/multiloop-pku/amflow</u>

Name	Last commit	Last update
🗅 diffeq_solver	submit	1 month ago
🗅 examples	submit	1 month ago
🗅 ibp_interface	submit	1 month ago
C AMFlow.m	submit	1 month ago
₩ŧ FAQ.md	submit	1 month ago
😨 LICENSE.md	submit	1 month ago
₩ŧ README.md	submit	1 month ago
C options_summary	submit	1 month ago

Description

 The first (method and) package that can calculate any FI (with any number of loops, any *D* and *s*) to any precision, *given sufficient resource*

Advantages: all purposes

> Expansion of *D* around any fixed value D_0

• Calculate FIs with $D = D_0 + \epsilon$ for a list of small ϵ (e.g.

0.01, 0.011, 0.012, ..., 0.02)

Liu, YQM, 2201.11669

- Fit Lauran expansion in ϵ
- D_0 can be 4, 3 (nonrelativistic theory), or other values
- Can obtain ϵ expansion to any order

> Can calculate FIs with any number of loops

As far as IBP reduction is successful

> Can calculate FIs with linear propagators

Present frequently in effective field theory

Liu, YQM, 2201.11636

- > Can calculate phase space integrals
 - As far as there is not jet

Liu, YQM, Tao, Zhang, 2009.07987

Examples using AMF

Liu, YQM, 2107.01864

Cutting-edge problems

Family	dp	а	b	С	d	e	f
$T_{\rm setup}$	6	20	18	8	1	25	30
$T_{\rm solve}$	7	11	15	6	3	15	42
P_1	95%	99%	96%	99%	98%	94%	93%
$T_{\vec{s}}$	2	916	64	1305	30	1801	63

Time to setup DEs (CPU core hours)

- Results: 16-digit precision, to $\mathcal{O}(\epsilon^4)$
- First step of iteration: cost most time
- All results in (a)-(f) are new, very

challenging for all other methods!

- Highly nontrivially checked!
 - IBP reduction (bottleneck): C++
 - Solve η-DEs: Mathematica. Can be significantly improved

Pheno. applications of AMF

> Two ways to use AMF

- Use AMF to calculate each phase-space point
- Use AMF to calculate BCs of \vec{s} -DEs

> Wide range of applications

Linear propagators; Phase space integrals;
 QCD sum rules; Electroweak corrections;
 Quarkonia production; ...

Example

Zhang, et.al., 1810.07656 Yang, et.al., 2005.11010 Brønnum-Hansen, et. al., 2108.09222 Baranowski, et. al., 2111.13594 Wu, et. al., 2201.11714 Sang, et. al., 2202.11615

Sang, Feng, Jia, Mo, Zhang, 2202.11615

- Two-loop five external legs, massive particles
- Challenging for other methods

- I. Introduction
- II. Linear space of FIs
- **III. Auxiliary mass flow**
- **IV. Vacuum integrals**
- V. Application and comparison

VI. Linear algebra from nonlinear algebra

Difficulty of IBP reduction

Solve IBP equations

Laporta's algorithm, 0102033

$$\sum_{\vec{\nu}'} Q^{\vec{\nu}jk}_{\vec{\nu}'}(D,\vec{s}) I_{\vec{\nu}'}(D,\vec{s}) = 0$$

- Very large scale of linear equations (can be billions of) E.g., Laporta 1910.01248
- Equations are coupled
- Explicit solution for multi-scale problem: hard to get, expression can be too large
- **×** Numerical solution at each floating phase space point : too slow

Cutting-edge problems

- Hundreds GB RAM
- Months of runtime using super computer

Usage of FF is common in computer algebra

 $a^{-1} \equiv b \mod p \Leftrightarrow (ab) \equiv 1 \mod p$

 $7 \equiv 2 \mod 5$

 $2^{-1} \equiv 3 \mod 5$

> A better way to solve IBP systems

Manteuffel, Schabinger, 1406.4513 *FireFly:* Klappert, Lange, 1904.00009 *FiniteFlow:* Peraro, 1905.08019

- Solving linear system numerically and then reconstruct analytical solution (using Chinese remainder theorem)
- Avoid intermediate expression swell
- It is now a standard technique in FIs reduction

Trim IBP system

Remove irrelevant FIs Gluza, Ka Sababias

Gluza, Kajda, Kosower, 1009.0472 Schabinger, 1111.4220

- Fls with double propagator usually not show up in amplitude
- Can be removed by combining IBPs, constrained by syzygy equations

Solving syzs using module intersection

• IBPs in Baikov representation. *P*: Baikov polynomial; *z_i*: denominator

$$0 = \int dz_1 \cdots dz_m \sum_{i=1}^m \frac{\partial}{\partial z_i} \left(a_i P^{\frac{D-L-E-1}{2}} \frac{1}{z_1^{\nu_1} \cdots z_m^{\nu_m}} \right)$$
Larsen, Zhang, et. al., 1511.01071,
1805.01873, 2104.06866
$$= \int dz_1 \cdots dz_m \sum_{i=1}^m \left(\frac{\partial a_i}{\partial z_i} + \frac{D-L-E-1}{2P} a_i \frac{\partial P}{\partial z_i} - \frac{\nu_i a_i}{z_i} \right) P^{\frac{D-L-E-1}{2}} \frac{1}{z_1^{\nu_1} \cdots z_m^{\nu_m}}$$

- Polynomials list $(a_1, ..., a_m)$ forms a module (generalization of ideal)
- No dimensional shift, module M_1 from syzs: $\left(\sum_{i=1}^m a_i \frac{\partial P}{\partial z_i}\right) + bP = 0$
- No double propagators, module M_2 from syzs: $a_i = b_i z_i$, i = 1, ..., k
- Module intersection $M_1 \cap M_2$ calculable using algebraic geometry

Very promising. No publicly available code yet

Module reconstruction

> IBP system as a module

Liu, Ma, 1801.10523, Guan, Liu, Ma, 1912.09294

 $\sum_{\vec{\tau}'} Q_{\vec{\nu}'}^{\vec{\nu}jk}(D,\vec{s}) I_{\vec{\nu}'}(D,\vec{s}) = 0$

- Taking all FIs as bases, coefficient vectors form a module (different module from previous page)
- Need to know its Gröebner basis (or simplest generators) with polynomial ordering: position over term, degree ordered
- Result: block-triangular form, smallest polynomial degree

Construct simplest generators

- Linear independent subset of Gröebner basis, minimal system
- Input linear system, e.g., from IBPs, trimmed IBPs, or other ways
- One method: sampling and fit. A public code will be released soon!

Application of module reconstruction

Example: two-loop double-pentagon

Liu, YQM, 2107.01864

- Construct DEs: 3000 points
- Block-triangular system: 40 points
- Time =6h=(40*5s+3000*0.05s)*45+...
- Set DEs:90%; solve: 10%.
- New reduction strategy: 100× faster

> Typically faster by 2 orders of magnitude

Family	dp	(a)	(b)	(c)	(d)	(e)	(f)
$T_{\eta-\mathrm{DEs}}$	6	20	18	8	1	25	30
$T_{\vec{s}-\text{DEs}}$	2	916	64	1305	30	1801	63

Time to setup DEs (CPU core hours)

Ways to bypass IBPs

> 1/D expansion and matching

Baikov, Chetyrkin, Kuhn, 0108197 Baikov, NPB (2003) Baikov, 0507053

m=0:
$$I_{111} = -\left(\frac{4}{p^4}\right)^{-d/2} \left(1 + \frac{13}{4d} + \frac{281}{32d^2} + \frac{2823}{128d^3} + \cdots\right)$$

$> 1/\eta$ expansion and matching

Guan, Liu, Ma, 1801.10523, 1912.09294 Wang, Li, Basat, 1901.09390, 2102.08225

$$I_{111}^{\text{aux}} = \eta^{D-3} \left\{ \left[\frac{(D-2)^2}{3D} \frac{p^2}{\eta} \right] I_{2,1}^{\text{bub}} + \left[1 + \frac{D-3}{3} \frac{m^2}{\eta} - \frac{(D+4)(D-3)}{9D} \frac{p^2}{\eta} \right] I_{2,2}^{\text{bub}} + \mathcal{O}(\eta^{-2}) \right\}$$

Intersection theory

Frellesvig, et. al., 1901.11510, 1907.02000 Yang,..

Fis
$$I_{a_1,a_2,...,a_N} \equiv K \int_{\mathcal{C}} u \varphi \equiv K \langle \varphi | \mathcal{C}]_{\omega}$$

$$\varphi \equiv \hat{\varphi} d^N \mathbf{z}, \qquad \hat{\varphi} \equiv \frac{1}{z_1^{a_1} z_2^{a_2} \cdots z_N^{a_N}}, \qquad d^N \mathbf{z} \equiv dz_1 \wedge dz_2 \wedge \cdots \wedge dz_N$$

• Intersection number $\langle \varphi_L | \varphi_R \rangle_{\omega} = \sum_{x \in \mathcal{D}} \operatorname{Res}_{z=p} \left(\psi_p \, \varphi_R \right)$

45/47

- > 2→2 process with massive particles at twoloop order: almost done $g + g \rightarrow t + \bar{t}$, $g + g \rightarrow H + H(g)$
- Very challenging (without new development)
- Two-loop $g + g \rightarrow H + H(g)$: complete IBP reduction cannot be achieved

Borowka et. al., 1604.06447 Jones, Kerner, Luisoni, 1802.00349

• Four-loop $g + g \rightarrow H$ (NNLP in HTL): 860 days (wall time!)

Davies, Herren, Steinhauser, 1911.10214

> Frontier in the following decade:

- 2 \rightarrow 3 processes at two loops (3j/ γ , V/H+2j $t\bar{t}$ +j, $t\bar{t}H$,...)
- 2 \rightarrow 2 processes at three loops (2j/ γ , V/H+j, $t\bar{t}$, HH, ...)
- $2 \rightarrow 1$ processes at four loops (j, V/H)

- > Feynman integrals form a linear space
- Feynman integrals can be completely determined once relations in the linear space is clear
- Results in a powerful method to calculate FIs: for the first time, any FI can calculated to high precision

 $\textbf{Impossible} \overset{2022}{\Longrightarrow} \textbf{possible} \overset{future}{\Longrightarrow} \textbf{efficiency}$

Perturbative QFT in the new era: stay tune

