

# **Possible molecular states in the πKK**\* and KKK system

#### Xu Zhang (张旭) Institute of Modern physics

#### 24 Feb. 2022

Based on the following papers:

Xu Zhang, Ju-Jun Xie, Xurong Chen, Phys. Rev. D 95, 056014(2017).

Xu Zhang, Ju-Jun Xie, Chin. Phys. C 44, 054104(2020).

Xu Zhang, Christoph Hanhart, Ulf-G. Meißner, Ju-Jun Xie, Eur. Phys. J. A 58, 20(2022).



- 1. Introduction
- 2. Theoretical Framework
- 3. Summary

## **Three-body problem using Faddeev** equations

Triton is a bound state of one proton and two neutrons.

Whether there exist hadronic molecules from the three-hadron interactions.





#### **Faddeev equations**

Faddeev, Sov. Phys. JETP 12, 1014(1961)

$$\psi_{\alpha,1}(p,k) = \varphi_{\alpha,1}(p,k) + \int d^3k' d^3p' [A^{12} \psi_{\alpha,2}(p',k') + A^{13} \psi_{\alpha,3}(p',k')]$$
  
$$\psi_{\alpha,2}(p,k) = \int d^3k' d^3p' [A^{21} \psi_{\alpha,1}(p',k') + A^{23} \psi_{\alpha,3}(p',k')]$$

$$_{\alpha,2}(p,k) = \int d^3k' d^3p' \left[ A^{21} \psi_{\alpha,1}(p',k') + A^{23} \psi_{\alpha,3}(p',k') \right]$$

$$\psi_{\alpha,3}(p,k) = \int d^3k' d^3p' \left[ A^{31} \,\psi_{\alpha,1}(p',k') + A^{32} \,\psi_{\alpha,2}(p',k') \right]$$

- Three coupled integral equations
- It is not easy to solve exactly

## **Approximations to Faddeev equations**

#### **Given Center Approximation**(FCA)

Limitations: A heavy cluster formed by the first two particles and a light third particle



R. Chand et al., Ann. Phys. 20, 1 (1962). R. C. Barrett et al., Phys. Rev. C 60, 025201 (1999).

#### **The isobar approach**

- two-particle subsystems is assumed to be dominated by a finite number of bound C. Lovelace, states and resonances.
- It is a set of coupled Lippmann-Schwinger equations

Phys.Rev. 135, B1225 (1964)

#### **Gamma** Faddeev equations with chiral unitary approach

The two-body scattering amplitudes are on shell.

K. P. Khemchandani et al., Eur. Phys. J. A 37, 233 (2008).

## The exotic state $\pi_1(1600)$

A state with quantum numbers  $J^{PC} = 1^{-+}$  can not be described as simple quark antiquark pairs.



The COMPASS Collaboration showed evidence for  $\pi_1(1600)$ . Phys. Rev. Lett. 104, 241803(2010) A lot of investigations interpret  $\pi_1(1600)$  as a hybrid meson. And there are also other interpretations that  $\pi_1(1600)$  as a four quark state.

Hua-Xing Chen et al., Phys. Rev. D 83, 014006 (2011).
C. A. Meyer et al., Phys. Rev. C 82, 025208(2010).
Bin Zhou et al., Chin. Phys. C 41, 043101(2017).

## The $\pi \overline{K}K^*$ interaction under FCA

 $\overline{K}K^* \Longrightarrow J^{PC} = 1^{++} f_1(1285)$  $\pi f_1(1285) \Longrightarrow J^{PC} = 1^{-+} ?$ 

We study the  $\pi \overline{K}K^*$  system by solving the Faddeev equation under fixed center approximation.

- The deep bound state KK\* forming a stable cluster f<sub>1</sub>(1285).
  Pei-Liang Lü and Jun He, Eur. Phys. J. A 52, 359 (2016).
  L. Roca, E. Oset, and J. Singh, Phys. Rev. D 72, 014002 (2005).
- The light particle  $\pi$  scatters off the cluster.

## **Fixed Center Approximation**

#### **Gamma** Faddeev equations

The T matrix of particles 1, 2, 3 scattering can be decomposed into three parts

$$T = \sum_{i=1,2,3} T_{i.} \quad T_{i} = t_{i} + t_{i}G_{0} T_{j} + t_{i}G_{0} T_{k}.$$

$$T_{i} = t_{i} + t_{i}G_{0} T_{j} + t_{i}G_{0} T_{k}.$$

$$T_{i} = t_{1} + t_{2}.$$

$$T_{i} = t_{1} + t_{1}G_{0}T_{2},$$

$$T_{2} = t_{2} + t_{2}G_{0}T_{1},$$

$$T_{i} = t_{1} + t_{2}G_{0}T_{1},$$

$$T_{i} = t_{1} + t_{2}G_{0}T_{1},$$

$$T_{i} = t_{1} + t_{2}G_{0}T_{1},$$

$$T_{i} = t_{2} + t_{2} + t_{2}G_{0}T_{1},$$

$$T_{i} = t_{2} + t_{2} + t_{2} + t_{2} + t_{2} + t_{2} +$$

## The $\pi \overline{K}K^*$ interaction under FCA

#### □ Single scattering: t<sub>i</sub>

 $\langle \pi f_1(1285) | \hat{t}_1 | \pi f_1(1285) \rangle = t_1 = \frac{2}{3} t_{\pi K}^{I=3/2} + \frac{1}{3} t_{\pi K}^{I=1/2}, \\ \langle \pi f_1(1285) | \hat{t}_2 | \pi f_1(1285) \rangle = t_2 = \frac{2}{3} t_{\pi K^*}^{I=3/2} + \frac{1}{3} t_{\pi K^*}^{I=1/2}.$ 

The two-body scattering amplitudes are obtained from UChPT.

F.-K. Guo et al., Nucl. Phys. A773, 78(2006)L. S. Geng et al., Phys. Rev. D 75, 014017(2007).

## **Double scattering:** $t_iG_0t_j$

$$\begin{split} \textbf{G}_{0} &: \text{The } \pi \text{ propagator inside the cluster } f_{1}(1285) \\ \textbf{G}_{0} &= \frac{1}{m_{cls}} \int \frac{d^{3}q}{(2\pi)^{3}} \textbf{F}_{cls}(q) \frac{1}{q^{0^{2}} - |\vec{q}|^{2}} - \textbf{m}_{3}^{2} + i\epsilon \\ \text{The form factor } \textbf{F}_{cls}(q) \text{ of } f_{1}(1285) \end{split}$$

$$F_{cls}(q) = \frac{1}{N} \int_{|p|,|p-q| < \Lambda} d^3q f(p)f(p-q)$$
  
N=  $F_{cls}(0)$ ,  $f(p) = \frac{1}{\omega_K(p)\omega_{K^*}} \frac{1}{m_{cls} - \omega_K(p) - \omega_{K^*}(p)}$ 





The cut-off is fixed with the demand that  $f_1(1285)$  is produced from the  $\overline{K}K^*$  interaction.

## The $\pi \overline{K} K^*$ scattering amplitude



Input-A:  $m_{f_1(1285)} = 1231 \text{ MeV}$ Input-B:  $m_{f_1(1285)} = 1281 \text{ MeV}$ Input-C:  $m_{f_1(1285)} = 1331 \text{ MeV}$ 

The resonant structure around 1650 MeV shows up in the modulus squared. We suggest that this is the origin of the present  $\pi_1(1600)$ .

## The $\eta \overline{K}K^*$ scattering amplitude

We also investigated the  $\eta \overline{K}K^*$  system to look for possible isospin scalar  $J^{PC} = 1^{-+}$  exotic state.

For the  $\eta \overline{K}K^*$  system,  $\overline{K}K^*$  can form a cluster  $f_1(1285)$  and  $\eta K^*$  can form a cluster  $K_1(1270)$ .

#### $\eta f_1(1285)$ scattering amplitude

 $\overline{K}K_1(1270)$  scattering amplitude



We find that there is a resonance with  $I(J^{PC}) = 0(1^{-+})$  from  $\eta \overline{K}K^*$  interaction, and  $\overline{K}K_1(1270)$  component is dominant.

### Experimental and theoretical status of K(1460)





(a) With 
$$\begin{vmatrix} Q_{\text{low}} \\ Q_{\text{high}} \end{vmatrix} \simeq \begin{vmatrix} \cos \theta_n L & \sin \theta_n L \\ -\sin \theta_n L & \cos \theta_n L \end{vmatrix} \begin{vmatrix} n^1 L_L \\ n^3 L_L \end{vmatrix}$$
 we find  $\theta_{1P} \simeq 34^\circ$ ,  $\theta_{1D} \simeq 33^\circ$ ,  $\theta_{2P} \simeq 15^\circ$ ,  $\theta_{1F} \simeq 32^\circ$ ,  $\theta_{2D} \simeq 25^\circ$ ,  $\theta_{1G} \simeq 33^\circ$ ;  
(b)  $1^{--}(1,58) \simeq 1.00(2^3S_1) + 0.04(1^3D_1)$ .

11

# K(1460) can be interpreted as a molecule state from the KK $\overline{K}$ interaction

1. On shell Faddeev equation (all particles are on shell)

 $T^{ij} = t^i g^{ij} t^j + t^j [G^{iji} T^{ji} + G^{ijk} T^{jk}]$ 

Phys. Rev. D 82, 094019 (2010) Phys. Rev. C 83, 065205 (2011) Phys. Rev. D 102, 094027 (2020)

2. The triangle loop method



3. Solving the Faddeev equation in coordinate space

## Isobar model

Under isobar model, the three-body interaction is reduced to the interaction of one particle and the isobar  $\pi\pi \rightarrow \rho$ 



 $3 \rightarrow 3$  interaction

 $2 \rightarrow 2$  interaction

This method has been used to study

The  $a_1(1260)$  in  $\pi^+\pi^-\pi^-$  scattering

Phys. Rev. D 101, 094018 (2020) Phys. Rev. D 49, 2763 (1994)

Three-body  $D\overline{D}\pi$  dynamics for the X(3872)

Phys. Rev. D 84, 074029 (2011)

Under isobar model, the  $KK\overline{K}$  interaction is reduced to  $Kf_0(980) - Ka_0(980)$  interaction



The Lippmann-Schwinger Equation

$$T(E, p', p) = V(E, p', p) + \int_0^{\Lambda} \frac{4\pi k^2 dk}{(2\pi)^3} V(E, p', k) G(E, k) T(E, k, p)$$

The scattering potential  $V = \begin{bmatrix} V^{11} & V^{12} \\ V^{21} & V^{22} \end{bmatrix}$ ,  $V^{\lambda'\lambda}$  can be obtained from time ordered perturbation theory (TOPT).

The bound state : det [1 - VG] = 0.



The  $Kf_0/Ka_0$  propagator is

$$G(E, k) = [Z(E - \omega^{(\lambda)}(k) - \omega_K(k)) - \Sigma_R(E, k)]^{-1}$$

has a strong effect on the propagator

'he self-energ

To have  $Kf_0/Ka_0$  cut, we use the subtraction  $\Sigma_R(E, k) = \Sigma (E, k) - \Sigma (E, k_{on})$ 

By definition the residue to be one at the pole position

$$Z = 1 + \frac{d}{dE} \Sigma_R(\mathbf{E}, \mathbf{k})$$





The t-channel one kaon exchange is

$$V^{\lambda'\lambda}(E,p',p) = f_S^2 \cdot IF \cdot N \frac{1}{2\omega_K} \left[ \frac{1}{E - \omega_{1'} - \omega_K - \omega_1} + \frac{1}{E - \omega_{2'} - \omega_K - \omega_2} \right]$$

We have also considered s-channel contribution

In TOPT, the two terms corresponding to t-channel can be combined to

$$V^{\lambda'\lambda}(E,p',p) = f_{S}^{2} \cdot IF \cdot N \frac{1}{\omega_{K}} \left[ \frac{\omega_{K} - E^{\text{off}}}{(\Delta E)^{2} - (\omega_{K} - E^{\text{off}})^{2}} \right]$$
 It is different from a covariant form  
$$\frac{1}{t^{2} - m_{K}^{2}}$$

To recover the covariance, we have also considered the stretched boxes



And at one loop order, there are also crossed boxes contribution. Here I have not shown all the diagrams explicitly.

## Numerical results

Schemes A represents the self-energy of  $f_0/a_0$  has been considered Schemes B represents the self-energy of  $f_0/a_0$  has not been considered



K(1460) can be interpreted as a molecule state from the KK $\overline{K}$  interaction. The self-energy of  $f_0/a_0$  plays an important role. The boxes contribution is not large.

## Summary

1. The  $\pi_1(1600)$  can be interpreted as a molecular state from  $\pi \overline{K}K^*$  interaction within FCA approach. And also we predict an isospin scalar  $J^{PC} = 1^{-+}$  exotic state in the  $\eta \overline{K}K^*$  system.

2. Using isobar approach, we find that K(1460) can be interpreted as a molecular state from  $KK\overline{K}$  interaction.

## Thank you very much!