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Analyticity and unitarity

Analyticity and unitarity are fundamentally important in quantum
physics.

Loosely speaking, analyticity says that physical quantities (e.g., wave
functions and scattering amplitudes) are generally smooth functions
even when some variables go from the real axis to the complex plane.
Occasionally, there are singularities and branch cuts. But their
properties should be understandable.

Beta function:

B(x, y) =
∫ 1

0
dt tx−1(1− t)y−1

→ Veneziano amplitude"
Dirichlet function: nowhere
continuous$ B(−7/2, z)
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Loosely speaking, unitarity says that quantum mechanical systems
should evolve in such a way that the probability is conserved and the
evolution is reversible.

S­matrix:
S |in⟩ = |out⟩ measure−−−−→ |out1⟩

measure−−−−→ |out2⟩
measure−−−−→ |out3⟩
· · ·

with SS† = S†S = 1.

Black hole information paradox:

|Ψ⟩ (pure state)→ BH→ Hawking radiation (mixed state)

Unitarity seems to be violated→ puzzle for decades
4



Analytic properties of eigensolutions
Consider the Schrödinger equation with a short­range potential U(r)[

d2

dr2
− l(l+ 1)

r2
− cU(r) + p2

]
ϕp,l,c(r) = 0.

Regular eigensolution:
ϕp,l,c(r)→ ĵl(pr), r→ 0,

⇒ ϕp,l,c(r)→
i
2

[
Sl,c(p)H

(−)
l (pr)−Sl,c(p)∗H

(+)
l (pr)

]
, r→∞,

where Sl,c(p) is the Jost function, ĵl(z) ≡ zjl(z) is the
Riccati­Bessel function, and H(∓)

l (pr) are the incoming and
outgoing Hankel functions.

Normalized eigensolution:
ψp,l,c(r) ≡ ϕp,l,c(r)/Sl,c(p),

⇒ ψp,l,c(r)→
i
2

[
H(−)
l (pr)− Sl,c(p)H

(+)
l (pr)

]
, r→∞,

where Sl,c(p) ≡ Sl,c(p)∗/Sl,c(p) is the S­matrix element. 5



Regular eigensolution:
1 ϕp,l,c(r) is an entire function of the
coupling constant c ∈ C.

2 ϕp,l,c(r) is an entire function of the
momentum p ∈ C.

3 ϕp,l,c(r) is analytic in the angular
momentum l for Re(l) > −1/2.

Normalized eigensolution:

ψp,l,c(r) ≡ ϕp,l,c(r)/Sl,c(p).

convolute the analytic properties of the
regular eigensolution ϕp,l,c(r) with the Jost
function Sl,c(p).
• Sl,c(p) is an entire function of the
coupling constant c ∈ C. 6



Positivity constraint

Positivity constraint: non­negativity of norm

⟨Ψ|Ψ⟩ ≥ 0⇒ Probability should never be negative.

Question: For quantum harmonic oscillators, the annihilation and
creation operators satisfy [a, a†] = 1. Is there a state |Ψ⟩ ̸= 0
satisfying a† |Ψ⟩ = 0?
Answer: No!

0 = ⟨Ψ|aa†|Ψ⟩ = ⟨Ψ|Ψ⟩+ ⟨Ψ|a†a|Ψ⟩
⇒ ⟨Ψ|a†a|Ψ⟩ = −⟨Ψ|Ψ⟩
⇒ violate positivity constraint □

Also, for electromagnetic fields, a naive Lorentz covariant
quantization gives

[a0p, a0q
†
] = −(2π)3δ(3)(p− q)

⇒⟨p, 0|q, 0⟩ = ⟨0|a0pa0q
†|0⟩ = −(2π)3δ(3)(p− q) < 0

⇒“violation” of unitarity⇒ gauge fixing⇒ Gupta­Bleuler formalism7



Eigenvector continuation: motivations

Eigenvector continuation (EC) is proposed by D. Frame et al., Phys.
Rev. Lett. 121, 032501 (2018).

Similar ideas:
H. Rabitz and R. Conn, Phys. Rev. A 7, 577 (1973).
E. R. Davidson, Comput. Phys. Commun. 53, 49 (1989).
A. Quarteroni, A. Manzoni, and F. Negri, Reduced Basis
Methods for Partial Differential Equations (2016).
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What can EC do?
1 resum the perturbation series when it diverges;
2 speed up variational calculations that have to be repeated for a

large number of times.

Killer apps:
1 resummation of perturbative expansions
2 sensitivity analysis
3 uncertainty quantification (especially based on Bayesian analysis)
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Resummation of perturbative expansions
Perturbation expansions in quantum mechanics often diverge.

Quantum anharmonic oscillator H = p2/2 + x2/2 + gx4

O Re(g)

Im(g)

g>0g<0

branch cut

Perturbative expansion around g = 0 does not converge for any g.
C. M. Bender and T. T. Wu, Phys. Rev. D 7, 1620 (1973).

EC can do the resummation.
M. C. Franzke et al., arXiv:2108.02824.
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Many­body perturbation theory (3H from EM500 with/without
SRG evolution)
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P. Demol et al., Phys. Rev. C 101, 041302(R) (2020).
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Sensitivity analysis
Wikipedia: “Sensitivity analysis is the study of how the uncertainty
in the output of a mathematical model or system (numerical or
otherwise) can be divided and allocated to different sources of
uncertainty in its inputs. A related practice is uncertainty analysis,
which has a greater focus on uncertainty quantification and
propagation of uncertainty.”

chiral potentials:
#LEC: 2+@LO, 9+@NLO/N2LO, 26+@N3LO, · · ·
nuclear reaction models: ∼ 10 parameters in the optical potential

Difficulties:
A huge number of samples are needed,

but running time ∝ the number of samples.
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With standard methods, 106 CCSD calculations for 16O take 20 years.
With EC, they can be done in 1h on a standard laptop!

A. Ekström and G. Hagen, Phys. Rev. Lett. 123, 252501 (2019).
12



Uncertainty quantification
quantifying the reliability of outcomes from a model

⇐ experimental, model, method, numerical, · · ·

Bayes’ theorem

P(H|D) = P(D|H)P(H)
P(D)

⇒ Bayesian statistics

P(H|D) posterior, P(H) prior, P(D|H) likelihood

Likelihood

P(D|H) ∝ exp(−χ2/2)⇒ labouring

S. König et al., Phys. Lett. B 810, 135814 (2020)
S. Yoshida and N. Shimizu, arXiv:2105.08256
S. Wesolowski et al., Phys. Rev. C 104, 064001 (2021)
T. Djärv et al., arXiv:2108.13313
B. Hu et al., arXiv:2112.01125 13



From analytic continuation to eigenvector continuation

Consider the eigensolution Ψ(z) well­defined at z ≥ 0, where z can be
the momentum p, the angular momentum l, or the coupling constant c.

O Re(z)

Im(z)

convergence
radius of

target

z⊙branch cut

singularity

The target point z⊙ is outside the radius of convergence at z = 0.
14



Analytic continuation

O Re(z)

Im(z)

z1 z2 z3

z⊙

With the reference points z1, z2, and z3, the target point z⊙ is related to
perturbative expansions around z = 0.
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Perturbation theory
Ψ(z1) =

∞∑
i1=0

Ψ(i1)(0) zi11 /i1!,

Ψ(z2) =
∞∑

i2=0

Ψ(i2)(z1)(z2 − z1)i2/i2!,

Ψ(z3) =
∞∑

i3=0

Ψ(i3)(z2)(z3 − z2)i3/i3!,

Ψ(z⊙) =
∞∑

i4=0

Ψ(i4)(z3)(z⊙ − z3)i4/i4!.

⇒ Ψ(z⊙) =
∞∑

i1=0

∞∑
i2=0

∞∑
i3=0

∞∑
i4=0

Ψ(i1+i2+i3+i4)(0)(z⊙ − z3)i4(z3 − z2)i3

× (z2 − z1)i2zi11 /(i4!i3!i2!i1!).

Ψ(z⊙) = #0Ψ(0)(0) + #1Ψ(1)(0) + #2Ψ(2)(0) + · · ·.
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Finite difference representation
Ψ(1)(0) ∼ [Ψ(z)−Ψ(0)] /z,

Ψ(2)(0) ∼ [Ψ(2z)− 2Ψ(z) + Ψ(0)] /z2, · · ·

Ψ(z⊙) = #0Ψ(ω0) + #1Ψ(ω1) + #2Ψ(ω2) + · · ·.

Question:
How to determine the values of #0, #1, #2, · · · ?

Answer: In EC, via the variational principle for structural problems.

With {Ψ(i)(0)} or {Ψ(ωi)} as the variational basis functions {vi},
solve

H(z⊙)⃗v = EN v⃗, 广义本征值问题

with [H(z⊙)]ij = ⟨vi|H(z⊙)|vj⟩ and [N ]ij = ⟨vi|vj⟩.
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Example: sensitivity analysis
Still remember Ekström and Hagen (2019)?

The technical details of CCSD
are a bit complicated. Let’s
focus on the EC part.

Training points: NEC = 64 and
128 points in a domain
surrounds the nominal LEC
values of NNLOsat within 20%
relative variation, · · · .
Emulator: trading the
accuracy of an exact
calculation for a significant
speed­up.

Ekström and Hagen (2019)
18



Eigenenergy errors

Mathematical properties of EC:
Convergence properties of EC

A. Sarkar and D. Lee, Phys. Rev. Lett. 126, 032501 (2021).

Eigenenergy errors of EC
D. Bai and Z. Ren (2021)
See also A. Sarkar and D. Lee, 2107.13449.

Definition: for the pth eigenstate

∆E(p)
EC(c⊙) ≡ E(p)

EC(c⊙)− E(p)
exact(c⊙).

Direct method: exact calculations are needed for test sets besides
training sets→ additional computational time

Indirect method: emulator for eigenenergy errors of EC←
mathematical properties of eigenenergy errors of EC
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Rigorous upper bounds for variational eigenenergy errors:
Weinstein’s upper bound (1932)

∆E(p)
EC(c⊙) ≤ σ

(p)
EC (c⊙),

with E(p)
EC(c⊙) ≤

1
2 [E

(p)(c⊙) +E(p+1)(c⊙)] and

Hamiltonian variance

σ
(p)
EC (c⊙)

2 = ⟨ϕ(p)EC(c⊙)|H(c⊙)
2 |ϕ(p)EC(c⊙)⟩ − E(p)

EC(c⊙)
2.

Temple’s upper bound (1928)

∆E(p)
EC(c⊙) ≤

σ
(p)
EC (c⊙)

2

β − E(p)
EC(c⊙)

,

with E(p)
EC(c⊙) < β ≤ E(p+1)(c⊙).

M. A. Abdel­Raouf, Phys. Rept. 84, 163 (1982) (citations: 42)
20



Rediscovered for several times in history and generally less­known!?
E.g., C. Gros, Criterion for a good variational wave function, Phys.
Rev. B 42, 6835(R) (1990).

S. Goedecker and K. Maschke, Comment on “· · ·”, PRB (1991):
“Exact relations of this kind which give bounds on the error in energy
as a function of the variance have been known for a long time. Such a
criterion was proposed by Weinstein in 1934. Even though those
criteria are very useful, they cannot be found in most textbooks on
quantum mechanics, one exception being the textbook by Pauling and
Wilson (1935).”

Applications in nuclear physics in the 1960s:
E. W. Schmid, Y. C. Tang, and R. C. Herndon, Nucl. Phys. 42, 95 (1963).
Y. C. Tang, R. C. Herndon, and E. W. Schmid, Phys. Rev. 134, B743 (1964).
Y. C. Tang, E. W. Schmid, R. C. Herndon, Nucl. Phys. 65, 203 (1965).
Y. C. Tang and R. C. Herndon, Nucl. Phys. A 93, 692 (1967).

In general, Temple’s bound is more stringent.
21



Approximate factorization of eigenenergy error in EC

∆E(p)
EC(c⊙) ≈ A(c⊙)× σ(p)EC (c⊙)

2.

The prefactor A(c⊙) is mainly determined by the target values of the
control parameters c⊙ and less sensitive to either training points or
target low­lying eigenstates.

Three testing problems:
(1) one­parameter Hamiltonian

H(c⊙) = H0 + c⊙H1.

Here, H0 and H1 are two 100× 100 Hermitian matrices, with
random matrix elements [H0]ij and [H1]ij from [−1, 1].

22



(2) two­parameter Hamiltonian

H(c⊙, d⊙) = H0 + c⊙H1 + d⊙H2.

Here, H0, H1, H2 are three 100× 100 random Hermitian
matrices with random matrix elements [H0]ij, [H1]ij, and [H2]ij
from [−1, 1].

(3) deuteron

H(c⊙, d⊙, e⊙) = H0 + c⊙H1 + d⊙H2 + e⊙H3,

with (c⊙, d⊙, e⊙) = (C̃3S1 ,C3S1 ,C3S1­3D1
) for the deuteron

Hamiltonian at N2LO.
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One­parameter Hamiltonian

24



Two­parameter Hamiltonian
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Deuteron

26



R­matrix EC and its applications in nuclear reactions

Generalize EC from nuclear structures to nuclear reactions
Kohn variational principle

1 R. J. Furnstahl et al., Phys. Lett. B 809, 135719 (2020).
2 J. A. Melendez et al., Phys. Lett. B 821, 136608 (2021).
3 C. Drischler et al., Phys. Lett. B 823, 136777 (2021).
4 X. Zhang and R. J. Furnstahl, arXiv:2110.04269.

R­matrix theory
1 D. Bai and Z. Ren, Phys. Rev. C 103, 014612 (2021).
2 D. Bai, to appear (2022).

Reaction observables from bound­state calculations (to be
explored)

Advantages of R­matrix EC: based on the rich ecosystem of the
R­matrix theory, including bound states, resonant states,
elastic/inelastic scatterings, transfer reactions, breakup reactions, and
fusion reactions.
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The R­matrix theory

0 aε r

ϕL
int(r)ϕl

cent(r) ϕL
ext(r)

internal region external regioncentrifugal region

For regular boundary condition[
d2

dr2
− l(l+ 1)

r2
− cU(r) + p2 − L(a) + L(ε)

]
ϕint
p,l,c(r)

= −L(a)ϕext
p,l,c(r) + L(ε)ϕcent

p,l,c(r),

ϕint
p,l(a) = ϕext

p,l(a) =
i
2

[
Sl(p)H(−)

l (pa)− Sl(p)∗H(+)
l (pa)

]
,

ϕint
p,l(ε) = ϕcent

p,l (ε) = (2l+ 1)!! ĵl(pε),

where L(R) = δ(r− R)d/dr is the Bloch operator.
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Taking the variational trial wave function

ϕint
p,l,c(r) =

NEC∑
i=1

ζiϕ
int
zi (r),

where zi could be the momentum pi, the angular momentum li, or the
coupling constant ci

NEC∑
j=1

(
ϕint
zi

∣∣∣∣ d2dr2 − l(l+ 1)

r2
− U(r) + p2 − L(a) + L(ε)

∣∣∣∣ϕint
zj

)
ζj

= −
(
ϕint
zi |L(a)|ϕ

ext
p,l,c

)
+

(
ϕint
zi |L(ε)|ϕ

cent
p,l,c

)
,

NEC∑
i=1

ϕint
zi (a)ζi =

i
2

[
Sl(p)H(−)

l (pa)− Sl(p)∗H(+)
l (pa)

]
,

NEC∑
i=1

ϕint
zi (ε)ζi = (2l+ 1)!! ĵl(pε),

Remember the analytic properties of the regular eigensolution?
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EC in momentum
Minnesota­like potential

VNN(r) = Vr exp(−κrr2) + Va exp(−κar2),
with Vr = 200MeV, Va = −178MeV, κr = 1.487 fm−2, and κa =
0.639 fm−2.
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R­matrix EC for fusion reactions
Modifying the R­matrix theory for the incoming wave boundary
condition,

0 rcrabs r

VN(r)+VC(r)VN(r)+VC(r) VC(r)

ϕL
int(r)ϕL

abs(r) ∼ TL(E)e
-i ∫rabs

r
ⅆr ' kL (r ') ϕL

ext(r) = HL
(-)
(η,kr)-SL(E)HL

(+)
(η,kr)

internal region external regionabsorption region

the 14N+ 12C fusion, Woods­Saxon potential
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Quantum mechanical bootstrap: the bootstrap philosophy

History
Geoffrey Chew (1924­2019)
“Nature is as it is because
this is the only possible
nature consistent with itself.”
Initially as an approach to the
strong interaction in the
1960s, known as the S­matrix
approach at that time.
“Compete”with quantum field
theory and “lose”in the era of
QCD.

33



Revival
Conformal bootstrap
conformal bootstrap +
primary operators + crossing
symmetry + unitarity + a
small number of auxiliary
assumptions (tagging the
theory)
Traditionally, quantum
fields, Lagrangian, Feynman
rules, Feynman diagrams,
dimensional regularization, ϵ
expansion, Wilson­Fisher
fixed point, · · ·
Where is analyticity? Where
is unitarity? Where is
crossing symmetry?

critical point of 3D Ising model (1603.04436)
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Wishes
Historical Hints: From Newtonian to Lagrangian and Hamiltonian

What are the “Lagragian” and “Hamiltonian” in the quantum era?
Springboard to new revolutions?
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Quantum anharmonic oscillators

Generalize bootstrap from relativistic QFT to nonrelativistic QM
• X. Han, S. A. Hartnoll, and J. Kruthoff, Phys. Rev. Lett. 125, 041601 (2020),

inspired by H. W. Lin, J. High Energ. Phys. 2020, 90 (2020).

Define the model
Hamiltonian

H = p2 + x2 + gx4

Commutation relation
[x, p] = i

Self­consistency: defining eigenstate
Condition I

⟨E|[H,O]|E⟩ ≡ ⟨[H,O]⟩E = 0

Condition II
⟨OH⟩E = E ⟨O⟩E

36



Self­consistency: concretization
For Condition I, take

O = xs and O = xtp

For Condition II, take
O = xt−1

Self­consistency: simplification
Condition I

4t ⟨xt−1p2⟩E = 8g ⟨xt+3⟩E + 4 ⟨xt+1⟩E − t(t− 1)(t− 2) ⟨xt−3⟩E

Condition II
⟨xt−1p2⟩E = E ⟨xt−1⟩E − ⟨x

t+1⟩E − g ⟨xt+3⟩E
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Self­consistency: finalization
Recursive relation

4tE ⟨xt−1⟩E + t(t− 1)(t− 2) ⟨xt−3⟩E − 4(t+ 1) ⟨xt+1⟩E
−4g(t+ 2) ⟨xt+3⟩E = 0

Physical principle
Positivity constraint

⟨O†O⟩E ≥ 0, O =

K∑
i=0

cixi

⇒ the bootstrap matrixM of size (K+ 1)× (K+ 1) with
Mij = ⟨xi+j⟩E should be positive semidefinite.

38
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Bootstrapping the deuteron

More applications of quantum mechanical bootstrap: harmonic
oscillator, hydrogen atom, double­well potential, Bloch Band, etc.
Recursive relations play a crucial role, restricting the forms of
potentials to polynomial and trigonometric.

Consider the deuteron Hamiltonian from pionless EFT in harmonic
oscillator space

HNmax =

Nmax∑
i,j=0

Hij |i⟩ ⟨j| ≡
Nmax∑
i,j=0

(Tij + Vij) |i⟩ ⟨j| ,

Tij = ⟨i|T|j⟩ =
ω

2

[
(2j+ 3/2)δij −

√
j(j+ 1/2)δi+1,j

−
√

(j+ 1)(j+ 3/2)δi−1,j
]
,

Vij = ⟨i|V|j⟩ = V0δj0δij.

E. F. Dumitrescu et al., Phys. Rev. Lett. 120, 210501 (2018).
S. Binder et al., Phys. Rev. C 93, 044332 (2016).
A. Bansal et al., Phys. Rev. C 98, 054301 (2018).
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The bootstrap matrix
Positivity constraint

⟨Ψ|O†O|Ψ⟩ ≥ 0

Let O =
∑K

i=0 αiOi

M⪰ 0, Mij = ⟨O†
iOj⟩E.

For deuteron, consider

O =
∑
i≤j

αij |i⟩ ⟨j| ≡
∑
i≤j

αijOij = α00O00 + · · ·+ α0NO0,Nmax + α11O11 + · · ·

+ α1,NmaxO1,Nmax + · · ·+ αNmax−1,Nmax−1ONmax−1,Nmax−1

+ αNmax−1,NmaxONmax−1,Nmax + αNmax,NmaxONmax,Nmax .

The bootstrap matrix is of NM × NM, with
NM ≡ (Nmax + 1)(Nmax + 2)/2.

See also J. G. Li et al., Phys. Rev. C 103, 064324 (2021). 41



The bootstrap matrix: examples
Nmax = 2

M2 =



⟨O00⟩E2 ⟨O01⟩E2 ⟨O02⟩E2 0 0 0

⟨O01⟩E2 ⟨O11⟩E2 ⟨O12⟩E2 0 0 0

⟨O02⟩E2 ⟨O12⟩E2 ⟨O22⟩E2 0 0 0

0 0 0 ⟨O11⟩E2 ⟨O12⟩E2 0

0 0 0 ⟨O12⟩E2 ⟨O22⟩E2 0

0 0 0 0 0 ⟨O22⟩E2



Nmax = 3
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Self­consistency conditions
Completeness relation

Nmax∑
i=0

⟨Oii⟩ENmax = 1

Definition of eigenstate

⟨HNmaxOij⟩ENmax = ENmax ⟨Oij⟩ENmax

⇒[ij]Nmax ≡

(Nmax∑
k=0

H(ki) ⟨O(kj)⟩ENmax − ENmax ⟨Oij⟩ENmax = 0

)
for i ≤ j.

One constraint has to be removed to avoid overcompleteness. Which
one?
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Numerical results: Nmax = 2
Hamiltonian

H2 =

 −0.436581 −4.28661 0
−4.28661 12.25 −7.82624

0 −7.82624 19.25


with the exact lowest eigenvalue found to be
Eexact2 = −2.045671MeV.
Self­consistency conditions
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For λ = 10−8,M2 is positive semidefinite at −2.045671MeV ≤ E2

≤ −2.0456701MeV. Eexact2 = −2.045671MeV
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Numerical results: Nmax = 3
Hamiltonian

H3 =


−0.436581 −4.28661 0 0
−4.28661 12.25 −7.82624 0

0 −7.82624 19.25 −11.3413
0 0 −11.3413 26.25

 ,

with the exact lowest eigenvalue found to be
Eexact3 = −2.143981MeV.
Self­consistency conditions
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For λ = 10−8,M3 is positive semidefinite at
−2.143981MeV ≤ E3 ≤ −2.143980MeV. Eexact3 = −2.143981MeV
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Numerical results: Nmax = 9 and Nmax = 19
Hamiltonian
The exact lowest eigenvalues are found to be
Eexact9 = −2.219002MeV and Eexact19 = −2.221187MeV.
Self­consistency conditions
To bootstrap the lowest eigenvalues, the bootstrap constraints
[09]9 and [0, 19]19 are used for Nmax = 9 and Nmax = 19.

At λ = 10−9, the bootstrap matricesM9 andM19 are positive
semidefinite for −2.21900225MeV ≤ E9 ≤ −2.21900217MeV and
−2.22118726MeV ≤ E19 ≤ −2.22118714MeV. 48



Summary and outlook

Eigenvector continuation
rooted in analyticity, combined with the variational method⇒
resumming perturbative expansions + efficient emulators
R­matrix EC = EC + the R­matrix theory, proof of concept in
simple reactions
Future directions of R­matrix EC
• from EC to sensitivity analysis and uncertainty quantification of
nuclear reactions

• Mathematical properties: convergence, errors, · · ·

Quantum mechanical bootstrap
Bootstrap→ quantum mechanical bootstrap (⇐ positivity
constraint⇐ unitarity)→ quantum anharmonic oscillator→
deuteron
Future directions
• maybe few­body systems
• maybe resonant states, keep thinking.
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