

Muon g-2实验进展和展望

Muon g-2 Collaboration

US Universities

- Boston
- Illinois
- James Madison

Cornell

- Kentucky
- Massachusetts
- Michigan
- Michigan State
- Mississippi
- North Central College
- Northern Illinois
- Regis
- Virginia
- Washington

US National Labs

- Argonne
- Brookhaven
- Fermilab

上海交大为第三大合作单位

- 7个国家,35个合作单位
- 190合作者

China

Shanghai Jiao Tong

Germany

- Dresden

Italy

- Frascati
- Molise
- Naples
- Pisa
- Roma Tor Vergata
- Trieste
- Udine

Korea

 \searrow

- CAPP/ISB
- KAIST

Russia

- Budker/Novosibirsk
- JINR Dubna

United Kingdom

- Lancaster/Cockcroft
- Liverpool
- Manchester
- University College London

Muon g-2 Collaboration

7 countries, 35 institutions, 190 collaborators

May 27-31, 2019 Elba Collaboration Meeting

History of Muon g-2 Experiment

Over 50 years of non-stopping improvement on δa_{μ}

- Pushing both theoretical and experimental frontend
- Last measurement from BNL E821 (2004) came with 0.54ppm
- New muon g-2 experiment at Fermilab aiming at 0.14ppm
- Very exciting and highly expected measurement!

Muon g-2 Theory Initiative

Muon g-2 Experiment vs. Theory

Large difference between theory prediction and experimental value

- Strong hint of BSM physics
- With improvements in theory calculation and experiment measurements, muon g-2 as a fundamental property can serve as a benchmark test for any new physics, such as dark matter, SUSY...
- Or even "Unknown Monsters"!

Experimental Principle

The name of game: a $\rightarrow \omega$

- Put (polarized) muons in a magnetic field and measure precession f.q.
- Get muon spin direction from decayed electrons
- $a_{\mu} \sim$ difference between precession frequency and cyclotron frequency

 $\omega_a = \omega_s - \omega_c$

Frequency Measurements

Frequency measurements can be done in very high precision

Measure frequency ratio and extract from several measurements

 $a_{\mu} \sim \frac{\omega_a}{\langle B \rangle} = \frac{g_e}{2} \frac{\omega_a}{\varpi_p} \frac{m_{\mu}}{m_e} \frac{\mu_p}{\mu_e}$

- ω_p is the proton precession frequency ($\omega_p \sim |B|$)
- ϖ_p is the weighted magnetic field folded with muon distribution
- All other values from Committee on Data for Science and Technology (CODATA), uncertainty < 25 ppb
 - E.g. muon-to-electron mass ratio by muonium hyperfine structure experiment
- Final measurements done in three steps
 - Inject muons into a ring with uniform magnetic field
 - Measure muon frequency difference ω_a
 - Measure proton precession frequency ω_{p} and muon distribution
 - Blind analyses: measurements and correction factors done
 before simultaneously and independently *before* final answer

Muon Campus

Muon Campus

Muon Injection and Storage System

Truncated double cosine theta superconducting septum magnet

Superconducting inflector

- Provides nearly field free region for muons to enter the ring
- Beam injected through magnet windings
- Does NOT perturb main precision field

Muon Injection and Storage System

Pulsed fast magnetic kickers

- Direct muons onto storage orbit (~10 mrad)
- 1-turn pulsed magnet (~200 G)

Electric Quadrupoles

Muon Injection and Storage System

Pulsed electric quadrupoles

- Vertical beam confinement
- Pulsed HV power source
- Operates at \pm 18-20 *KV*

2022年4月16日

Experimental Setup

Measuring ω_a

The integrated number of electrons (above E_{th}) modulated at ω_a

- Angular distribution of decayed electrons correlated to muon spin
- (Simplified) five parameter fit to extract ω_a

$$N_{\text{ideal}}(t) = N_0 \exp(-t/\gamma \tau_{\mu}) [1 - A \cos(\omega_a t + \phi)]$$

Wiggle, Wiggle, Wiggle...

2D Wiggle

Wiggle, Wiggle, Wiggle...

Wiggle, Wiggle, Wiggle...

Magnetic Shimming

Magnetic field need to be uniform to ± 1 ppm level averaged over azimuth

- 1 B field ~ 1.45T
- 12 C shape flux return yokes
- 72 poles
 - Minimizing higher-order multipoles
 - Dipole moment ~ 1.45T
- Field Shimming
 - Passive shim method (geometry)
 - 24 iron top hats
 - 864 wedges: angle quadrupole
 - >1000 edge shims: sextapole
 - >8000 surface iron foils
 - Active shim method (current)
 - Surface correction coil
 - Power supply feedback

g-2 Magnet in Cross Section

Measuring ω_p, the B field

- 378 Fixed Probes above and below the vacuum chamber measure the field continuously throughout the experiment
- A 17-element NMR Trolley maps the field where muons live every 2-3 days: beam off

- Digitizing Free Induction Decay (FID) signals for more precise frequency determination
- Monitoring the field and provide feedback to the storage ring power supply during data taking
- Absolute and cross calibration of all probes

(FID) Waveforms with ~10 ppb resolution

B Field Measurements

Shim 1.45 T field to high uniformity and measure it vs time

2022年4月16日

Final Measurement

ω_a^m Measurement

$$\mathcal{R}'_{\mu} = \frac{\omega_a}{\tilde{\omega}'_p(T_r)} = \frac{f_{\text{clock}}(\omega_a^m)(1 + C_e + C_p + C_{ml} + C_{pa})}{f_{\text{calib}} \langle \omega_p(x, y, \phi) \times M(x, y, \phi) \rangle (1 + B_k + B_q)}$$

The ideal and naïve case, 5parameter function:

$$N(t) = N_0 e^{-t/\tau} \left[1 + A_\mu \cos(\omega_a t + \phi) \right]$$

- **Pileup**
- Gain (energy scale) changes •
- **Coherent Betatron Oscillations**
- **Muon Losses**
- E-field and pitch corrections •

 $F(t) = N_0 \cdot N_x(t) \cdot N_y(t) \cdot \Lambda(t) \cdot e^{-t/\gamma \tau_{\mu}} \cdot$ $[1 + A_0 \cdot A_x(t) \cdot \cos\left(\omega_a^m t + \phi_0 \cdot \phi_x(t)\right)]$

Phys. Rev. D 103, 072002 (2021)

 χ^2 /n.d.f. = 4167/41

10⁷

ω_a^m Measurement: Wiggle Fitting

ω_a^m Measurement: FFT Spectrum

Before correction

Name	Symbol	Typical value
Cyclotron frequency	f_c	6.71 MHz
Anomalous precession frequency	f_a	$0.23 \mathrm{~MHz}$
Coherent betatron frequency	f <mark>сво</mark>	$0.37 \mathrm{~MHz}$
Vertical betatron frequency	f_y	2.19 MHz
Vertical waist frequency	f_{VW}	2.32 MHz

Coherent Beam Oscillation

CBO sampled by each detector at one point around the ring

Beating effects and additional radial and vertical frequencies

Coherent Beam Oscillation

CBO sampled by each detector at one point around the ring

Classical Electrodynamics

The glory details

- Muons make horizontal circular movement under influence of magnetic field B, what about vertical movement?
 - Need to use electrostatic quadruples to confine muons vertically, this brings additional complication

$$\vec{\omega}_{a} \equiv \vec{\omega}_{s} - \vec{\omega}_{c} = -\frac{q}{m_{\mu}} \begin{bmatrix} a_{\mu}\vec{B} - a_{\mu}\left(\frac{\gamma}{\gamma+1}\right)(\vec{\beta}\cdot\vec{B})\vec{\beta} & -\left(a_{\mu}-\frac{1}{\gamma^{2}-1}\right)\frac{\vec{\beta}\times\vec{E}}{c} \end{bmatrix}$$

High order correction minimized if $\gamma = 29.3$

How to measure this?

Electric field & pitch correction

- Choose γ = 29.3, p_µ= 3.09 GeV (magic momentum)
- Residual electric field correction
- Muon beam swims and breathes vertically and horizontally
 - Coherent betatron oscillations (CBO)
 - Presence of electric/magnetic field and betatron motion also leads to pitch and high order corrections

E-field Correction, *C*_e

$$\mathcal{R}'_{\mu} = \frac{\omega_a}{\tilde{\omega}'_p(T_r)} = \frac{f_{\text{clock}} \; \omega_a^m \left(1 + \underline{C_e} + C_p + C_{ml} + C_{pa}\right)}{f_{\text{calib}} \; \langle \omega_p(x, y, \phi) \times M(x, y, \phi) \rangle (1 + B_k + B_q)}$$

$$\vec{\omega}_a = -\frac{e}{mc} \left[a_\mu \vec{B} - \left(a_\mu - \frac{1}{\gamma^2 - 4} \right) \vec{\beta} \times \vec{E} \right]$$

Not all muons are at magic momentum!

$$C_e = 2n(1-n)\beta_0^2 \frac{\langle x_e^2 \rangle}{R_0^2}$$

$$\langle x_e^2 \rangle = \sigma_{x_e}^2 + \langle x_e \rangle^2$$

Correction depends on width and mean

 $C_e \sim 450 \ ppb$, $\delta_{C_e} \sim 50 \ ppb$

Phys. Rev. Accel. Beams 24, 044002 (2021)

Muon Loss Correction, C_{ml}

$$\mathcal{R}'_{\mu} = \frac{\omega_a}{\tilde{\omega}'_p(T_r)} = \frac{f_{\text{clock}} \; \omega_a^m \left(1 + C_e + C_p + C_{ml} + C_{pa}\right)}{f_{\text{calib}} \; \langle \omega_p(x, y, \phi) \times M(x, y, \phi) \rangle (1 + B_k + B_q)}$$

Phase-momentum correlation due to dipole bending magnets in upstream beamline

Momentum-dependent muon losses mean different average phase early to late

$$\Delta \omega_a = \frac{d\phi}{dt} = \frac{d\langle \phi \rangle}{d\langle p \rangle} \cdot \frac{d\langle p \rangle}{dt} \neq 0$$
$$C_{ml} < 20 \ ppb, \ \delta_{C_{ml}} \sim 5 \ ppb$$

Phys. Rev. Accel. Beams 24, 044002 (2021)

Phase-acceptance Correction, C_{pa}

$$\mathcal{R}'_{\mu} = \frac{\omega_a}{\tilde{\omega}'_p(T_r)} = \frac{f_{\text{clock}} \; \omega_a^m \left(1 + C_e + C_p + C_{ml} + C_{pa}\right)}{f_{\text{calib}} \; \langle \omega_p(x, y, \phi) \times M(x, y, \phi) \rangle (1 + B_k + B_q)}$$

Beam shifting from early-to-late time due to storage ring conditions

Decay-position-dependent phase means different average phase early to late

$$\Delta \omega_{a} = \frac{d\phi}{dt} = \frac{d\langle Y_{RMS} \rangle}{dt} \cdot \frac{d\langle \phi \rangle}{d\langle Y_{RMS} \rangle} \neq 0$$

$$C_{pa} \sim 150 \ ppb, \ \delta_{C_{pa}} \sim 75 \ ppb$$

Phys. Rev. Accel. Beams 24, 044002 (2021) Phys. Rev. D 103, 072002 (2021)

Magnetic Field Measurement, ω_p

$$\mathcal{R}'_{\mu} = \frac{\omega_a}{\tilde{\omega}'_p(T_r)} = \frac{f_{\text{clock}} \ \omega_a^m \left(1 + C_e + C_p + C_{ml} + C_{pa}\right)}{f_{\text{calib}} \left\langle \omega_p(x, y, \phi) \right\rangle \times M(x, y, \phi) \rangle (1 + B_k + B_q)}$$

NMR trolley maps magnetic fields at about 9000 locations in azimuth in the storage region every 2-3 days

Fixed NMR probes interpolate the field between the trolley runs

Dedicated Plunging Probe to calibrate the NMR trolley probes to the water sample

$$\delta_{\omega_p} \sim 48 ppb$$

Muon-weighted Average Field, ω_p

$$\mathcal{R}'_{\mu} = \frac{\omega_a}{\tilde{\omega}'_p(T_r)} = \frac{f_{\text{clock}} \ \omega_a^m \left(1 + C_e + C_p + C_{ml} + C_{pa}\right)}{f_{\text{calib}} \left\langle \omega_p(x, y, \phi) \times M(x, y, \phi) \right\rangle \left(1 + B_k + B_q\right)}$$

The actual field experienced by the muon in the storage region

Measure muon beam distribution with straw trackers by extrapolating positron tracks back to the storage region

Use beam dynamics simulations, tuned to the tracker data, to get the muon beam distribution around the ring

$$\delta_{\tilde{\omega}_p} \sim 56 ppb$$

Phys. Rev. A 103, 042208 (2021)

李亮, "缪子束加速和对撞技术及应用"科学与技术前沿论坛

Muon's view

36

2022年4月16日

Kicker Transient Field, *B_k*

$$\mathcal{R}'_{\mu} = \frac{\omega_a}{\tilde{\omega}'_p(T_r)} = \frac{f_{\text{clock}} \ \omega_a^m \left(1 + C_e + C_p + C_{ml} + C_{pa}\right)}{f_{\text{calib}} \ \langle \omega_p(x, y, \phi) \times M(x, y, \phi) \rangle (1 + B_k + B_q)}$$

When kicker produces pulsed magnetic field (~ 200G) for 150 ns, eddy currents generated in kicker plates

Faraday magnetometer installed between the plates to measure the rotation of polarized light in a crystal due to the transient field

Signal is fitted with an exponentially decaying function: $\Delta B(t) = \Delta B(0) \exp(-t/\tau_k)$

 $B_k \sim 30~ppb$, $\delta_{C_{pa}} \sim 40~ppb$

Phys. Rev. A 103, 042208 (2021)

Magnetometer between kicker plates

Electrostatic Quadrupole Transient Field, B_q

$$\mathcal{R}'_{\mu} = \frac{\omega_a}{\tilde{\omega}'_p(T_r)} = \frac{f_{\text{clock}} \; \omega_a^m \left(1 + C_e + C_p + C_{ml} + C_{pa}\right)}{f_{\text{calib}} \; \langle \omega_p(x, y, \phi) \times M(x, y, \phi) \rangle (1 + B_k + B_q)}$$

ESQs are (dis-)charged every muon fill ($700\mu s$)

Electric pulse induces mechanical vibrations in ESQ plates and then generates magnetic perturbations

Customized NMR probes measured B_q at several positions in the storage region

Uncertainty determined by the full width of the measured effect due to limited measurements in Run1 \rightarrow expect improvement in Run2

$$B_q \sim 20 \ ppb$$
, $\delta_{B_q} \sim 90 \ ppb$

Phys. Rev. A 103, 042208 (2021)

Quad plates inside vacuum chamber

Systematics: Numerator

Source	Uncertainty
Frequency Standard	1 ppt
Frequency Synthesizers	0.1 ppb
Digitization Frequency	2 ppb
Total Systematic	2 ppb

Data Set	Run-1a	Run-1b	Run-1c	Run-1d
$C_{\rm pa}$	-184	-165	-117	-164
Stat. uncertainty	23	20	15	14
Tracker & CBO	73	43	41	44
Phase maps	52	49	35	46
Beam dynamics	27	30	22	45
Total uncertainty	96	74	60	80

$R(\omega_a)$ with detailed	s	ystematics	cat	egories	[ppb]
Total systematic uncertainty		65.2	70.5	54.0	48.8
Time randomization		14.8	11.7	9.2	6.9
Time correction		3.9	1.2	1.1	1.0
Gain		12.4	9.4	8.9	4.8
Pileup		39.1	41.7	35.2	30.9
Pileup artificial dead time		3.0	3.0	3.0	3.0
Muon loss		2.2	1.9	5.2	2.4
СВО		42.0	49.5	31.5	35.2
Ad-hoc correction		21.1	21.1	22.1	10.3

*Run 1 ω_a data analyzed in four subsets

	1a	1b	1c	1d
C _P (ppb)	176	199	191	166
Statistical uncertainty	<0.1	<0.1	<0.1	<0.1
Tracker alignment/reco.	11.0	12.3	12.0	10.7
Tracker res. & acc. removal	3.3	3.9	3.7	3.0
Azimuthal avg. & calo. acc.	1.0	1.3	2.2	1.1
Amplitude fit	1.2	0.4	1.0	2.9
Quad alignment/voltage	4.4	4.4	4.4	4.4
Systematic uncertainty	12.4	13.7	13.6	12.3

Data Set	Run-1a	Run-1b	Run-1c	Run-1d
C_{ml}	-14	-3	-7	-17
Phase-momentum	2	0	1	3
Form of $l(t)$	2	0	1	1
f_{loss} function	2	1	2	2
Linear sum $(\sigma_{C_{ml}})$	6	2	4	6

	1a	1b	1c	1d
C _e (ppb)	471	464	534	475
Statistical uncertainty	0.4	0.5	0.4	0.2
Fourier method	8.4	13.4	14.4	3.9
Momentum-time correlation	52	52	52	52
Quad alignment/voltage	6.4	6.4	6.4	6.4
Field index	1.7	1.5	1.7	4.0
Systematic uncertainty	53	54	54	53

Systematics: Denominator

				BBOBE	Cali	bration Coeffic	ients
				PROBE	Value (Hz)	Stat (Hz)	Syst (Hz)
				1	90.81	0.38	2.02
num 1 (substructure)	77.4 pph			2	84.21	0.65	1.18
run-r (substructure)		Source	Uncertainty (ppb)	3	95.02	0.53	2.19
azimuthal shape*	7.6 ppb	Temperature	15 - 28	4	86.03	0.25	1.28
skin depth	12.6 ppb $ $			5	92.96	0.51	1.10
frequency extraction $(0.4/1 \text{ms})$	4.6 ppb	Configuration	22	6	106.24	0.46	1.35
Q3L: fit, position	$1.5\mathrm{ppb}$	Trolley	25	7	116.64	0.96	1.61
repeatability	13.3 ppb	Fixed Probe Production	<1	8	76.39	0.60	1.21
drift	10.2 ppb			9	83.52	0.23	1.64
radial dependency	4.4 ppb	Fixed Probe Baseline	8	10	24.06	1.39	1.26
2 nd 8-pulses	140 ppb	Tracking Drift	22 - 43	11	177.55	0.22	1.99
z o-puises	91.7 ppb			12	110.85	0.44	1.73
10.0 ppb	01.7 ppb	lotal	43 - 62	13	122.89	2.08	1.93
				14	77.11	0.53	1.88
				15	74.82	1.06	1.59

Run-1 Estimate:	
$B_{k} = -27.4 \pm 37 \text{ pp}$	b

Quantity	Symbol	Value	Unit			correctio	on [ppb]			uncertai	nty [ppb]	
Diamagnetic Shielding T dep	(1/σ)dσ/dT	-10.36(30)	ppb/°C	Dataset	1a	1b	1c	1d	1a	1b	1c	1d
Bulk Susceptibility	δ _b	-1504.6 ± 4.9	ppb	1. Tracker and	-	-	-	-	9.2	13.3	15.6	19.7
Material Perturbation	δs	15.2 ± 13.3	ppb	calo effects 2. COD								
Paramagnetic Impurities	δ _p	0 ± 2	ppb	effects	1.6	1.5	1.7	1.4	5.2	4.7	5.2	4.9
Radiation Damping	δ _{RD}	0 ± 3	ppb	3. In-fill time effects	-1.9	-2.3	-1.2	-4.1	-	-	-	-
Proton Dipolar Fields	δ_{d}	0 ± 2.3	ppb	Total	-0.3	-0.8	0.5	-2.7	10.6	14.1	16.5	20.3

16

17

AVG

20.35

172.12

0.44

1.23

0.70

2022年4月16日

2.94

1.96

1.70

Blinded Analysis

Avoid possible bias during analysis

- Credibility is the key
- **Hardware Blinding**
 - Perturb the clocks from the nominal frequency of 40 MHz \rightarrow 39.XX MHz

Software Blinding

- Software package to apply individual offsets to fit results to ensure independence of analyses
- $\omega_a \rightarrow \omega_a \pm \Delta ppm$
- Unblinding can be done in different stages and cross check

Relative Unblinding

- 6 independent ω_a analysis groups with multiple methods blinded from each other
- Relative unblinding performed for analysis consistency check
- A-weighted method extract more information from high energy positrons
- Statistics uncertainty: $\delta_{stat} = 0.43 \text{ ppm} < 0.46 \text{ ppm}$ (BNL)

Final Results and Uncertainties

Phys. Rev. Lett. 126, 141801 (2021)

 $a_{\mu}(\text{FNAL}) = 116\,592\,040(54) \times 10^{-11} \quad (0.46\,\text{ppm})$

Quantity	Correction terms (ppb)	Uncertainty (ppb)
ω_a^m (statistical)		434
ω_a^m (systematic)		56
C_{e}	489	53
C_p	180	13
C_{ml}	-11	5
C_{pa}	-158	75
$f_{\text{calib}} \langle \omega_p(x, y, \phi) \times M(x, y, \phi) \rangle$		56
B_k	-27	37
B_q	-17	92
$\mu'_{p}(34.7^{\circ})/\mu_{e}$		10
m_{μ}/m_e		22
$g_e/2$		0
Total systematic		157
Total fundamental factors		25
Totals	544	462

- Strengthen evidence for BSM physics
- Run-1 Results are largely statistically dominated
 - 15% smaller error than BNL
 - Good agreement between two experiments
 - Statistically "normal" to see increased significance after combination

Beyond Run1

• Analysis of Run2/3 ongoing, expect a factor of two improvement in precision

- Run 4 data is expected to bring the statistics to 13x BNL
- Run 5 currently running, should bring us to the TDR goal of ~ 20x BNL

Run 1 results ~6% of full stats: 434 ppb stat ⊕ 157 ppb syst errors

- Run 6 e⁻ run under discussion
 - CPT and Lorentz Violation Effects
 - Sidereal Oscillation

Improve precision even further

Increase statistics: σ ~ 1/sqrt(N)

- High precision frequency measurement with huge statistics
 - ~10²⁰ POT -> ~10¹² 3GeV muon -> ~10¹¹ selected e⁺ -> ~0.1ppm
- **Systematics improvement**
 - Precise beam monitoring
 - CBO reduction and monitoring
 - Muon distribution measurement
 - Background mostly under control
 - Pileup effect modelling improved
 - Lost muon largely reduced
 - Highly uniform and stable magnetic field
 - Sub-ppm level uniformity
 - Instrumental improvement
 - Kicker
 - Electrostatic Quadrupole Transient Field

Improve precision even further

Increase statistics: σ ~ 1/sqrt(N)

- High precision frequency measurement with huge statistics
 - ~10²⁰ POT -> ~10¹² 3GeV muon -> ~10¹¹ selected e⁺ -> ~0.1ppm
- **Systematics improvement**
 - Precise beam monitoring
 - CBO reduction and monitoring
 - Muon distribution measurement
 - Background mostly under control
 - Pileup effect modelling improved
 - Lost muon largely reduced
 - Highly uniform and stable magnetic field
 - Sub-ppm level uniformity
 - Instrumental improvement
 - Kicker
 - Electrostatic Quadrupole Transient Field

Improve precision even further

W.-L. Zhan

HIAF	-μ-Beam i	n Huizh	μ Campus at Fermilab		
Parameter	1-0 (³⁶ Ar)	1-0(¹ H)	1-1 (²⁰⁹ Bi)	Parameter	Value (¹ H)
Nucleon on target per pulse	36 ^{2/3} *4e ¹²	1e ¹⁴	209e ¹³	Protons on target (POT) per pulse	10 ¹²
Pulse width (ns)	200~300	200-300	200~300	Pulse width	120 ns
Number of pulses	≥1	≥1	≥1	Number of pulses	16
Frequency (Hz)	>5 Hz	>5Hz	~3 Hz	Cycle length	1.4 s
				Frequency	12 Hz
Beam momentum (GeV/c)	5.097	10.19	10.23	Incoming beam momentum	8.89 GeV/c
μ momentum (GeV/c)	>1.5	~3.5	>3.5	Selection momentum	3.1 GeV/c

- 统计量可获得数量级的提升
- 期望更小的测量误差
 - 提高π/μ产额
 - 设计和优化π和µ束流的输运和分离
 - 更精确束流模拟
 - 进一步改进测量系统误差

J-PARC g-2/EDM

J-PARC g-2/EDM

Comparison of various parameters for the Fermilab and J-PARC (g-2) Experiments

Parameter	Fermilab E989	J-PARC E24
Statistical goal	100 ppb	$400\mathrm{ppb}$
Magnetic field	$1.45\mathrm{T}$	$3.0\mathrm{T}$
Radius	$711\mathrm{cm}$	$33.3\mathrm{cm}$
Cyclotron period	$149.1\mathrm{ns}$	$7.4\mathrm{ns}$
Precession frequency, ω_a	$1.43\mathrm{MHz}$	$2.96\mathrm{MHz}$
Lifetime, $\gamma \tau_{\mu}$	$64.4\mu{ m s}$	$6.6\mu{ m s}$
Typical asymmetry, A	0.4	0.4
Beam polarization	0.97	0.50
Events in final fit	$1.8 imes 10^{11}$	$8.1 imes 10^{11}$

No magic momentum!

- No strong focusing
- Super-low emittance muon beam
- Compact storage ringFull tracking detector

Anomalous spin precession (ω_a)		Magnetic field (ω_p)	
Source	Estimation (ppb)	Source	Estimation (ppb)
Timing shift	< 36	Absolute calibration	25
Pitch effect	13	Calibration of mapping probe	20
Electric field	10	Position of mapping probe	45
Delayed positrons	0.8	Field decay	< 10
Differential decay	1.5	Eddy current from kicker	0.1
Quadratic sum	< 40	Quadratic sum	56

Statistical uncertainty dominated

- $\delta \omega_a = 0.45 \text{ ppm including } \delta \omega_{a_{sys}} < 0.1 \text{ ppm}$
- $\delta EDM = 1.5 \cdot 10^{-21} e \cdot cm$

TDR: 2017 KEK approval: 2021 Data taking: 2025

李亮, "缪子束加速和对撞技术及应用"科学与技术前沿论坛

Outlook

 \checkmark The first results of Fermilab Muon g-2 measurement at 0.46 ppm with μ^+

- ✓ Strengthens significance of discrepancy to 4.2 sigma
- Expect a factor of two improvement in precision from Muon g-2 Run2-3 data and more from Run4-5
- ✓ Looking forward to J-PARC result and possible Muon g-2 Run6 e⁻ run!

Backup

E821(BNL) vs. E989(Fermilab)

E821 (BNL) : a_{μ}^{exp} = 116 592 089 (63) X 10 ⁻¹¹ Uncertainty: 0.46 ppm stat., 0.28 ppm syst.

- Goal: reduce experimental uncertainty by a factor of 4
- New team: >95% new people
- New equipment: new beam + new detector + new monitor probes
 - 21 times more statistics: powerful Fermilab particle source
 - $\delta_{stat} = 0.46 \text{ ppm} \rightarrow 0.1 \text{ ppm}$
 - New segmented calorimeters, straw wire tracker, fast muon kicker...
 - $\delta \omega_a = 0.21 \text{ ppm} \rightarrow 0.07 \text{ ppm}$
 - Long shimming period, magnet temperature stability, more/better in-situ calibrations, more probes, modern instrumentation...
 - δ_{(}ω_{p)} = 0.17 ppm → 0.07 ppm

E989 (Fermilab) expected experimental uncertainty: 0.14ppm ~ 16 X 10 ⁻¹¹ > 5σ deviation with the same central value

ω_a Systematics

Category	E821 [ppb]	E989 Improvement Plans	E989 [ppb]	
Gain changes	120	 Better laser calibration Low-energy threshold 	20	Detector Team
Pileup	80	 Recording low-energy samples Segmented Calorimeters 	40	
Lost muons	90	 Better collimation in ring 	20	Ring
СВО	70	 Higher n value Better match of beamline to ring 	< 30	
E and pitch corrections	50	 Improved tracker High precision storage ring simulation 		Detector Team
Total	180	Quadrature Sum for $\delta \omega_a$ (syst.)	70	1

Systematics error < 70 ppb: x 3 improvement !

ω_p Systematics

Category	E821 (ppb)	E989 (ppb)	Methods
Absolute probe calibration	50	35	More uniform field for calibration
Trolley probe calibration	90	30	Better alignment between trolley and the plunging probe
Trolley measurement	50	30	More uniform field, less position uncertainty
Fixed probe interpolation	70	30	More stable temperature
Muon distribution	30	10	More uniform field, better understanding of muon distribution
Time dependent external magnetic field	-	5	Direct measurement of external field, active feedback
Others*	100	30	More uniform field, trolley temperature monitor, etc
total	170	70	

Systematics error < 70 ppb: x 2 improvement !

Detector Performance: Calorimeter

Segmented, fast response, PbF₂ crystal calorimeter (9X6 array)

- Lead-floride Cherenkov crystal reduces pileup: SICCAS-SJTU-Washington
 - Fast separation for pileup backgrounds (>2.5 ns, 100%)
 - Resolution (2.3% at 3 GeV) better than requirement (5%)
- Silicon photomultiplier (SiPM) directly on back of PbF₂
 - No disturbing magnetic field, avoid long light guides

Detector Performance: Tracker

Doublet of UV straw chambers

- New straw tracking detector
 - Two stations installed, 1024 straws
- Measure muon decay vertex and momentum

Muon g-2 Theory Status

 $a_{\mu}^{\rm SM} = a_{\mu}^{\rm QED} + a_{\mu}^{\rm Weak} + a_{\mu}^{\rm HVP} + a_{\mu}^{\rm HLbL} = 116591810\,(43)\times10^{-11}$

WP20: world average value of SM calc.

- Strong theory community consensus
- "Recent lattice result by BMW with 0.8% error needs further study"
- Looking forward to updated conventional and lattice results