国际缪子束流和缪子加速器 的发展

唐靖宇

中国科学院高能物理研究所

缪子束加速和对撞机技术及其应用 理论物理所,2024.04.16-17

- * 缪子产生和缪子源
- * 多学科应用研究缪子源的发展
- * 粒子物理缪子源的发展
 * 缪子对撞机的设计和关键技术
 * 总结

μ子(muon)的发现

- μ子是粒子物理标准模型中
 基本粒子之一,属于轻子的
 一种,有时也称为重电子
 - * 质量: 105.7 MeV/c²
 - * 自旋: 1/2
 - * 电荷态: -1
 - * 寿命: 2.2 µS
 - * 反粒子: µ+

Caltech的C.D. Anderson 和
 S. Neddermeyer在 1936年
 发现了宇宙射线中的µ子
 (当时认为是介子, mu
 meson)

Anderson, Neddermeyer

缪子实验研究简单回顾

- * CERN (1959-77)
 - * μg-2测量
 - * 接替: BNL(1997-2001)
- * 介子工厂(Meson factories)时代(1970年代)
 - * PSI (SIN) 、LAMPF、TRIUMF
 - * π束线和μ束线
- * μSR应用的缪子束流(1980年代)
 - * PSI、TRIUMF、LBNL、LAMPF、KEK/MSL
- * 高强度缪子源时代(1990年代以后)
 - * 多学科应用: PSI、ISIS、TRIUMF、J-PARC/MUSE、MuSIC
 - * 粒子物理: PSI、J-PARC/COMET、Fermilab/Muon Campus

当今的缪子源/缪子实验装置

μ子比较容易通过核反应产生,比较有效的方法是利用高强度的、能量在几 百MeV以上的质子束打靶产生,所以,国际上的μ子源都建在高束流功率 (束流功率=束流能量*束流流强)的加速器装置上。

不同类型的缪子源

- 连续型和脉冲型:跟加速器类型有关,对应
 的μSR技术也不一样。
- 薄靶和厚靶:穿透型薄靶利于其余束流的应用(驱动中子源);厚靶则有提供更强μ束的优势,但剩余束不能再用。
- 收集系统: 传统上是通过µ束线的自然收集;
 更先进的设计采用将µ靶放在超导螺线管的
 强磁场中,收集效率提高至少几百倍。
- 慢μ束:使之在0.5-30 keV范围能量可调,
 对纳米和薄膜材料的研究非常有用。

μ子源的科学意义

- * 高强度μ子源在粒子物理和多学科应用方面发挥重要作用
- * 粒子物理: μ子作为一个基本粒子,高性能的μ子源是粒子物
 理研究中非常重要的实验装置
 - μ稀有衰变和精确测量实验: 轻子味道破坏实验(Mu2e, COMET, MEG), 和μg-2/EDM 实验
 - * 中微子工厂: 中微子振荡实验研究
 - * 缪子对撞机:未来粒子物理能量前沿研究

Fermilab: Mu2e experiment

* 多学科应用: μ子的特殊性质(表面μ极化率100%)通过诸如μ自旋旋转、 驰豫和共振技术(μ Spin Rotation, Relaxation and Resonance,简称μSR技 术)可以广泛地用来开展广泛的物质材料(气体、液体和固体)特性(结 构和动力学)特别是其微观磁性质的研究,包括物理、材料、化学和生物 方面的研究。

μSR技术原理

- * μ衰变特性
 - * 弱作用衰变, **宇称破坏**(1957年, 李政道 和杨振宁)
 - * Columbia U.的Garwin等采用了π/μ衰变的方法验证了宇称不守恒,并建议μSR应用
- * μSR技术
 - * 表面µ束:~100%极化
 - * 动能: 4.1 MeV (29.8 MeV/c)
 - * 样品中射程: 180 mg/cm²
 - * 三体衰变发射e+: 0~52.8 MeV
 - * 正电子出射角分布: $W(\theta) = 1 + a \cos(\theta)$
 - * 能量较高的衰变μ束和能量很低的慢μ束也有 很好的应用
 - * 有不同类型的µSR谱仪,研究不同的物质特性

更倾向于用μ+而不是μ-,前者产额更高,而后者还易被原子核俘获

natic of a transverse field (TF) uSR setup

10

Muon Science

There are a wide variety of potential applications for muons provided by J-PARC MUSE, ranging from fundamental physics to applied science. The MUSE Facility is expected to be the world center of excellence for those research fields.

Basic Science

Condensed Matter Physics

High Tc cuprate superconductors Quantum criticality Vortex state of superconductors Hydrogen centers in semiconductors

Chemistry

Radical chemistry Reaction dynamics of hydrogen Chemistry of supercritical phase

Particle Physics Supersymmetry and rare decay Quantum electrodynamics

Interdisciplinary

µCatalyzed Fusion Alpha sticking and medium effect Effect of hyperfine interaction Muonic Atoms/Molecules

Biophysics

Biological materials Function of molecules in view of electronic state

Application

Noninvasive Analysis Bulk-sensitive elemetal analysis Tomography Radiography

Beam Technology Ultraslow muon beam

Muon beam cooling/re-acceleration

Industrial Application Hydrogen energy Testing of magnetic materials

Science and technology based on muon sources (Courtesy: J-PARC/MUSE)

多学科应用缪子源的发展

瑞士PSI缪子源装置-SµS

- 基于1.3MW-590MeV的质子加
 速器(回旋,CW束流)
- * 2个插入式"薄"靶(M和E), 7条缪束线
- ¥ 以μSR应用为主,但同时开展 多个缪子物理实验研究,包括 MEG和Mu3e(πE5)

590MeV/1.3MW质子

PSI-HIMB

(High-Intensity Muon Beam)

- * 将Target M(薄靶: 5mm)改为Target H(厚靶: 20mm)
- 2条束线重建-基于超导螺线管,达到10¹⁰ μ/s,分别服务μSR和粒 子物理实验

加拿大TRIUMF/CMMS

- ∗ 最早的缪子源之一
 (质子束: 500 MeV, 70kW)
- * DC型束流
- * 是北美µSR应用的 主要缪子源
- 正在启动束线更新
 计划

英国ISIS缪子源

- * 基于200kW-800MeV的质 子加速器(50Hz)
- * 位于第1靶站: 1个插入式 薄靶, 2个实验区:
 - * EC区(表面缪束)做μSR;
 - RIKEN-RAL区(衰变缪束和 表面缪束)兼顾μSR和缪子 物理(质子半径测量)、 Muonic X-ray、μ催化聚变
- RCS摇摆针靶引出极弱π束,
 开展MICE实验

日本J-PARC/MUSE缪子源

- MUSE是Material and Life Facility (MLF)区的一部分,另一个散裂中 子源JSNS
- 利用1MW-3GeV (RCS)的质子束
 插入式薄靶(20 mm),4条主缪
 子束线,多终端,分阶段建设
 - * S线:表面缪子束
 - * D线: 衰变缪子束
 - * U线: 低能缪子束
 - * H线: 高动量缪子束
- 应用范围宽: μSR、Muonic X-ray
 和粒子物理(包括μg-2、EDM、
 DeeMe)等。

日本大阪大学RCNP/MuSIC

- * 最早是为了验证超导俘获螺
 线管的技术而建设的,作为
 COMET的关键技术预研。
 * 质子束流较弱: 400 MeV,1
 - μA(回旋加速器, CW束流)
- 后来增加了常温缪子束线,
 可以开展μSR和Muonic X-ray
 的应用

CSNS实验缪子源(EMuS)

- 利用CSNS-II 500kW质子束 的一部分(1.6 GeV, 25 kW, 1.25/2.5 Hz),分阶段建 设中国第1台缪子源。
- 自2007年,开展设计研究
 和R&D,并得到基金委重
 大仪器项目支持。
- 科学目标: µSR应用、缪
 束技术应用(Muonic X-ray、
 缪束成像、缪子辐射损伤
 效应)、粒子物理

基准方案和初期方案

- * 初期方案(CSNS-II工程建设):规划4个实验终端,利用有限 CSNS-II经费,先建设1台基于表面缪束的µSR谱仪,再寻找经费建 设其他实验终端。
- 基准方案(或升级方案): 瞄准国际顶尖水平,缪束强度高,谱仪
 类型多,开展应用范围广,可以分步增加谱仪。

- * 作为RAON多研究平台之一
- * 质子束流: 600 MeV, 400 μA→10⁵ μ/s (CW)
- * 计划延后了(项目经费缩减)

- * SEEMS facility:利用SNS H-直线加速器部分剥离的质子束流,1.33 GeV 几kW 60 Hz
- * 建4个μSR终端和2个高能中子辐照终端(芯片单粒子效应)

粒子物理研究缪子源的发展

美国FNAL缪束装置

- FNAL建设了Muon campus, 开展两个缪子实验,分别是 Mu2e和µg-2,后者是从BNL 转移过来的。
- 利用Booster束流(8GeV), 1
 个π产生靶和衰变环提供μ束, 供μg-2实验(测量环)。
 - * 基本完成实验,数据处理需 要若干年

同样利用是Booster质子束流 (慢引出,8kW),打放在 超导螺线管内的缪子靶,进 行μ-e转换的测量(不遵守 SM)(建设中)。

日本J-PARC/COMET

- * 科学目标: μ-e转换实验,
 验证超出SM的实验证据
 (与Mu2e直接竞争)
- * COMET位于强子实验区,
 利用8GeV (MR)的质子束
 - * COMET-I: 3.2 kW
 - * COMET-II: 56 kW
- 厚靶(钨靶)放在超导螺
 线管内,输运线基于超导
 螺线管

瑞典ESS中微子束和缪子束设想

- Adding an H- beam (2.5GeV/5MW) to the ESS linac (proton, 2.0 GeV, 5 MW, 14 Hz)
 - Accumulator ring and beam lines
 - ESSnuSB for neutrino oscillation experiments
 - Muon beam for muon collider R&D

nuSTORM

(Neutrino from stored muons)

Science goals:

- Neutrino-nucleus scattering study (serving T2HK, DUNE, etc)
- Search for physics beyond SM using the neutrino beam and state-of-the-art magnetized detector
- Serve for R&D of muon accelerators

Using the SPS beam @CERN, 24 GeV proton

Future far tarr

- * 更高流强: 增加打靶功率和靶厚、超导螺线管俘获和传输
- 紙能缪子束:慢化技术(低温固体慢化、Muonium激光电 离、摩擦冷却)
- * 更高动量: 前向收集
- ・ 质子束: 更短脉冲、高功率质子束从同步加速器的慢引出

 µSR谱仪技术的发展

缪子对撞机的设计和关键技术

Fermilab缪子对撞机方案

Study since 1990s

- Muon Acceleration Program (MAP) supported design and R&D
- Stopped in 2013 by the then P5 decision

Currently as one of the site filler options

		Courtesy:
Issues St	atus	Diktys Strataki
 2-4-MW Targets High Field (~20 T), Large Bore Capture Solenoid Dedicated test factories Detailed engineer solenoid needed 	cility is neede ring for captu	d re
Front End • Energy Deposition in FE Components • Current designs h	nandle energy	deposition
 NC RF inside multi-Tesla field High field needs (~14 T), 4D (~30 T) 6D cooling by 6 orders magnitude 50 MV/m @ 3T; m Detailed engineeri Lattice designs pro 	nore tests are ing is needed omising; not c	needed omplete
 Ramping System (~1000 T/s) Self-Consistent Design Beam loading Magnet development for Self-consistent designs Numerical and experiment 	for TeV-scale s only up to 12 nental studies	needed 25 GeV needed
 Self-consistent design High Energy Neutrino Radiation 15 cm bore, 16 T arc dipoles Self-consistent la Self-consistent la Neutrino flux mi Large bore, high 	attices only u itigation syste i field magnet	p to 3 TeV m needed s needed
MDI/Detector Backgrounds from m Decays IR Shielding Further design wo Initial physics stud	ork required fo dies at 1.5 Te\	or multi-TeV / promising

缪束电离冷却国际实验-MICE

(Muon Ionization Cooling Experiment)

□ 国际合作,以美国和英国为主,在英国RAL/ISIS进行

- _ 2001年提出, 2003年提交给RAL
- 10个成员国,包括中国(较晚加入)
- 实验已于2018年1月结束,实验数据仍在处理中

 - 技术难度大。项目较原计划降低了目标,没有验证降能后再加速的 完整冷却,但验证了归一化发射度在通过轻介质降能器后的降低

Nature 578, (2020) 53–59

总结

- 高性能缪子源或实验装置是多学科研究和粒子物理研究的
 一个非常重要的平台,随着科学需求近些年来在不断地发展中。
- * 缪子对撞机是未来高能物理能量前沿研究的重要选项,有
 其独特的优势,中国应该参与国际合作研究。
- * 随着我国高功率质子加速器(CSNS和CiADS)的建设和运行,发展我国的缪子源实验装置条件已成熟,可以根据科学目标选择相应的技术路线。

感谢关注! 欢迎指导和合作!

MC Plan: A Technically Limited Timeline

