MUON COLLIDER AT THE ENERGY FRONTIER

缪子東加速和对撞技术及其应用 科学与技术前沿论坛 2022年4月16日 ANT SICS ASTROPHY SICS ASTROPHY SICS

Tao Han (韩涛)
Pitt PACC, University of Pittsburgh

MOTIVATION FOR ENERGY FRONTIER

1. Electroweak Symmetry Breaking,

EW Superconductivity & Phas

$$V(|\Phi|) = -\mu^2 \Phi^{\dagger} \Phi + \lambda (\Phi^{\dagger} \Phi)^2$$

It's like Landau-Ginzburg theory,

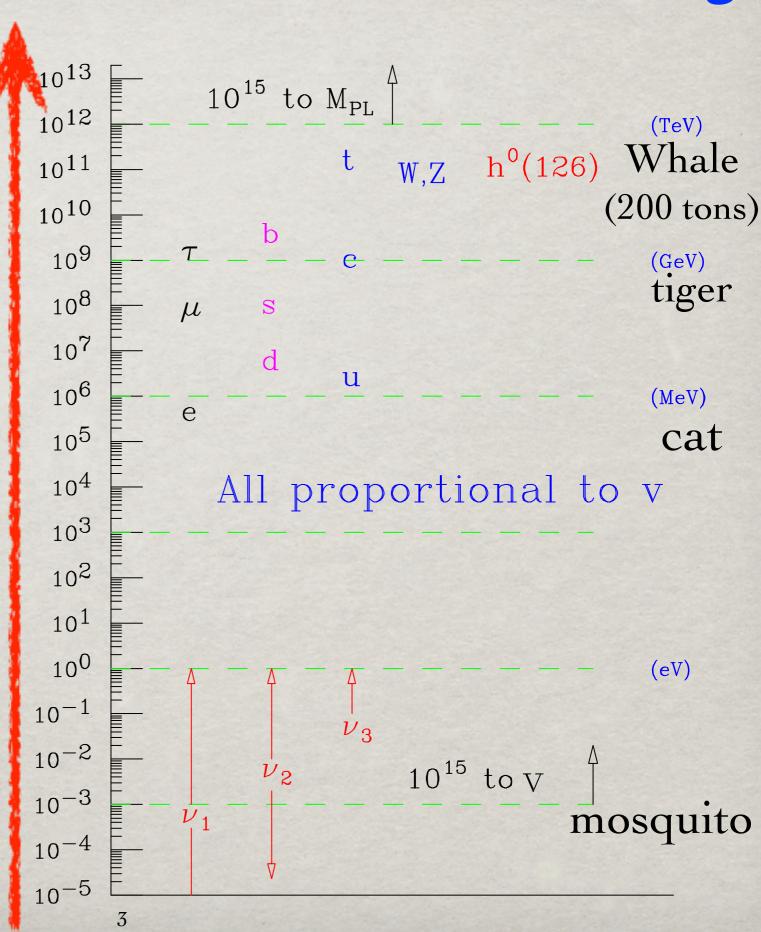
but not!
$$F = \alpha(T)|\psi|^2 + \frac{\beta(T)}{2}|\psi|^4$$

$$|\psi|^2 = (\sqrt{2}(T)^{-1/2} \approx 246 \text{ GeV})$$

$$m_H^2 = 2\mu^2 = 2\lambda v^2 \quad \Rightarrow \quad \mu \approx 89 \text{ GeV}, \quad \lambda \approx \frac{1}{8}.$$

No EW analogue for BCS as the underlying theory to understand the dynamical mechanisms, to calculate: $\mu^2(\Lambda^2)$ & λ and potential shape \rightarrow cosmology!

$$\rightarrow \frac{1}{2}\lambda(h^{\dagger}h)^2\log\left[\frac{(h^{\dagger}h)}{m^2}\right]$$


2. The "Flavor Puzzle": fermion mass/mixing

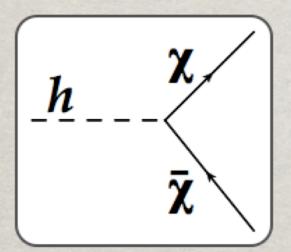
(eV)

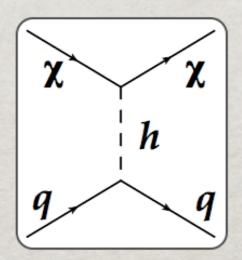
Masses

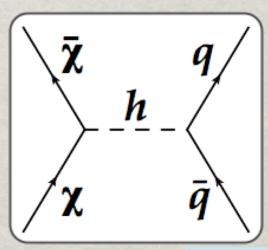
- Particle mass hierarchy
- Patterns of quark, neutrino mixings
- Neutrino mass generation (seesaw)
- New CP-violation sources

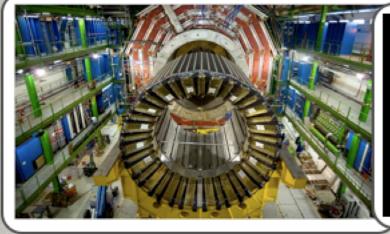
Higgs is in a pivotal position.

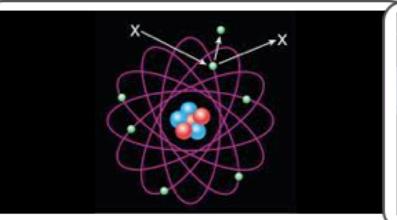
3. The Dark Sector: Higgs portal?

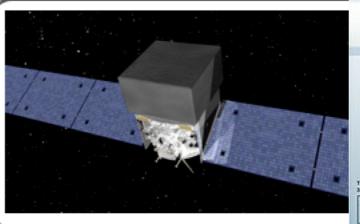

The nature of DM is among the most pressing issue. $H^{\dagger}H$ is a bi-linear SM gauge singlet to couple to anything.

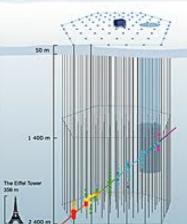

Bad: May lead to hierarchy problem w.r.t. high-scale physics;


Good: May readily serve as a portal to the dark sector:


$$k_s H^{\dagger} H S^* S, \quad \frac{k_{\chi}}{\Lambda} H^{\dagger} H \bar{\chi} \chi.$$

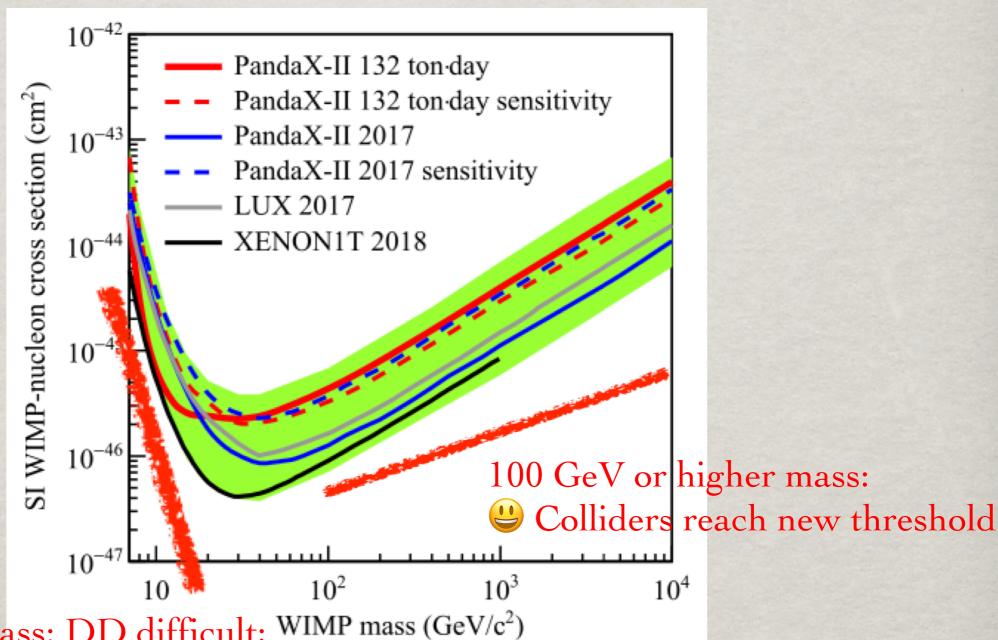

Dark matter at colliders Direct detection Indirect detection





Example 1:

Precision Higgs measurements, on
$$g_i$$
 at the scale M :
$$\Delta_i \equiv \frac{g_i}{g_{SM}} - 1 \sim \mathcal{O}(v^2/M^2) \approx \text{a few \% for } M \approx 1 \text{ TeV}$$


Higgs coupling deviations in theories:

Δ:	VVH	bbH,TTH	ggH, _Y YH	HHH	Inv.
Composite ((3-9)%	$(1 \text{ TeV/f})^2$	(tree-level)	100%	
H^0 , A^0 (SUSY)	6%	% (500 GeV/I	$(M_A)^2$		
T'			-10% (1 TeV/N	$(I_T)^2$ (loop)	

Observationally:

HL-LHC:	2%	4%	3%	50% 3%
27 TeV, 15 ab ⁻¹	: <2%	<4%	1%	~ 20% ~ ~ 3%
Higgs factory:	<0.2%	0.6%	2%	40%(indir)(1%)
100 TeV, 30 ab	⁻¹ : 1%	a few%	<1%	7% 10-4

Example 2: WIMP Dark Mater

GeV low mass: DD difficult; WIMP mass (GeV/c²)

Colliders favor large p_T missing

A MUON COLLIDER

Why muons?

Although sharing the same EW interactions, it isn't another electron:

$$m_{\mu} \approx 207 \ m_{e}$$
 $\tau(\mu \to e \bar{\nu}_{e} \nu_{\mu}) \approx 2.2 \ \mu s$
 $c\tau \approx 660 \ m.$

It is these features: heavy mass, short lifetime that dictate the physics.

Some early work:

- S-channel Higgs boson production at a muon collider, Barger et al., PRL75 (1995).
- μ⁺ μ^t Collider: Feasibility study, Muon collider collaboration (July, 1996).
- Higgs boson physics in the s-channel muon collider, Barger et al., Phys Rep. 186 (1997).
- Status of muon collider research, Muon collider collaboration (Aug., 1999).
- Recent progress on neutrino factory and muon collider research, Muon collider collaboration (July, 2003).

Advantages of a muon collider

• Much less synchrotron radiation energy loss than e's:

$$\Delta E \sim \frac{1}{R} \ (\frac{E}{m_{\mu}})^4$$

which would allow a smaller and a circular machine:

LHC
$$PP$$
 (1.5 TeV)

ILC e^+e^- (.5 TeV)

CLIC e^+e^- (3TeV)

FNAL site Mu-Mu (4 TeV)

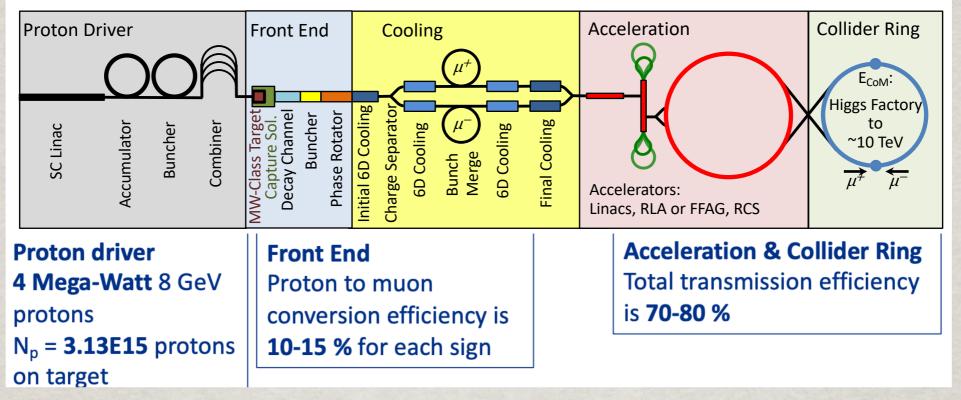
- Unlike the proton as a composite particle, E_{CM} efficient in $\mu^+\mu^-$ annihilation
- Much smaller beam-energy spread:

$$\Delta E/E \sim 0.01\% - 0.001\%$$

- Disadvantages of a muon collider
- Production: Protons on target \rightarrow pions \rightarrow muons: Require sophisticated scheme for μ capture & transport

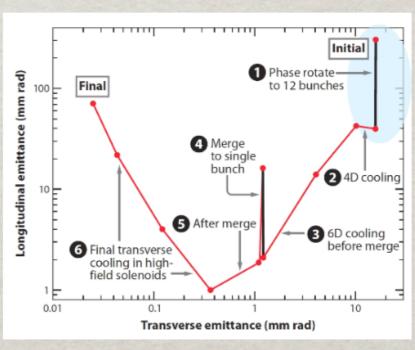
"Never play with an unstable thing!"

- Very short lifetime: in micro-second,
 Muons cooling in (x,p) 6-dimensions
- → Difficult to make quality beams and a high luminosity

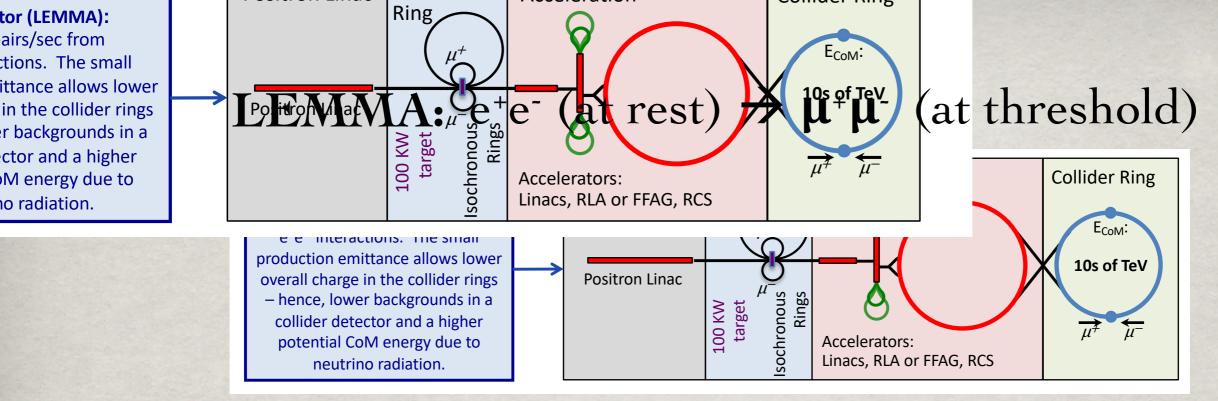

[Note: $E_{\mu} \sim 1 \text{ TeV} \rightarrow \gamma \sim 10^4 \rightarrow \gamma \tau = 0.02 \text{ s} \rightarrow d=6,000 \text{ km}$]

• Beam Induced Backgrounds (BIB) from the decays in the ring at the interacting point,

[Note: $\sigma_{pp}(total)\sim 100 \text{ mb}; \ \sigma_{\mu\mu}(total)\sim 100 \text{ nb}$]


• Neutrino beam dump (environmental hazard) $\sigma_{\mathbf{v}} \sim G_{\mathbf{F}}^2 E^2 \rightarrow \text{Shielding}?$

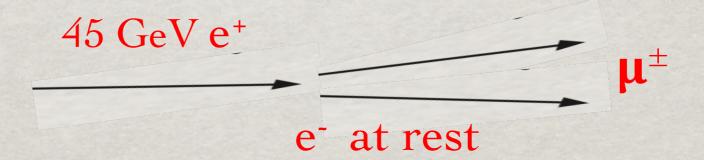
Proton Driver Option: Muon Accelerator Project (MAP)



During 2011-2016, MAP collaboration formed: to address key feasibility issues for μ C

- Protons → pions → muons
- Transverse ionization cooling achieved by MICE
- Muon emittance exchange demonstrated at FNAL/RAL
- 6D cooling of 5-6 orders needed

https://arxiv.org/abs/1907.08562, J.P. Delahauge et al., arXiv:1901.06150/


tor (LEMMA): airs/sec from

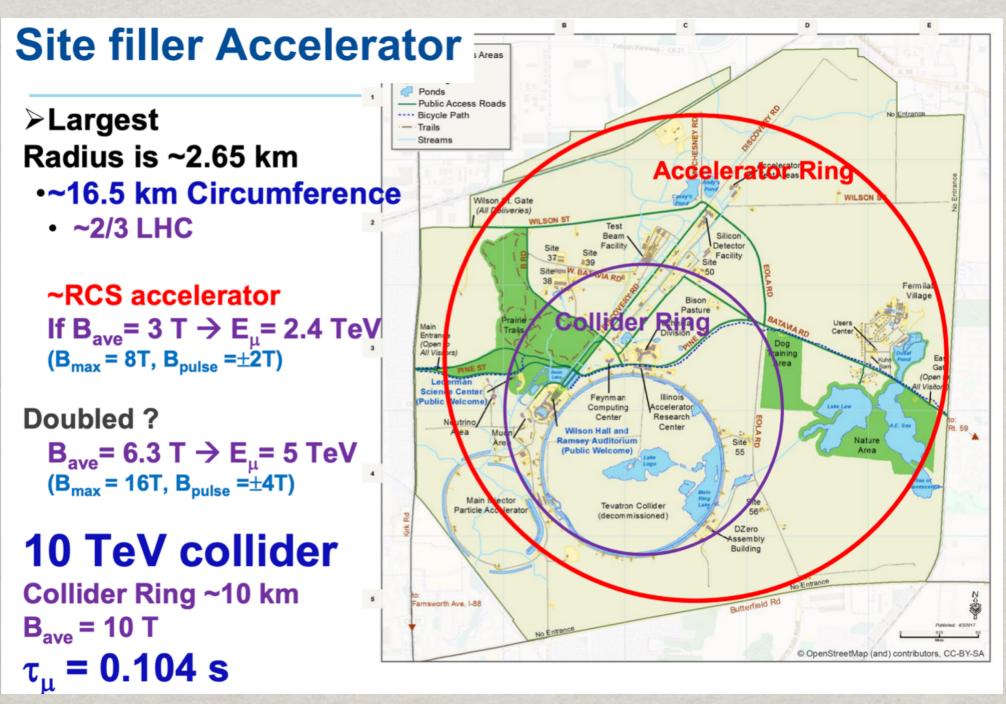
ctions. The small

M energy due to

no radiation.

Low EMittance Muon Accelerator web.infn.it/LEMMA

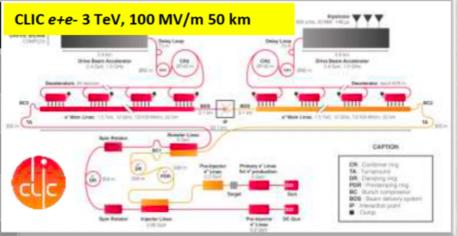
Cooling is not a problem; but high luminosity is challenging!


J.P. Delahauge et al., arXiv:1901.06150

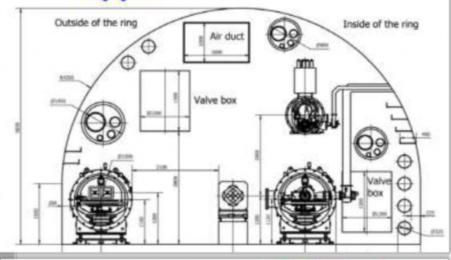
International Muon Collider Collaboration

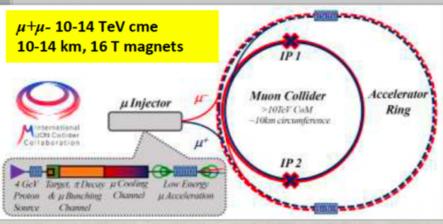
https://muoncollider.web.cern.ch

Fermilab on site:


Daniel Schulte; Mark Palmer; Katsuya Yonehara talk, March 2022

Much activities associated with Snowmass 2021


https://snowmass21.org


17 (!) High Energy Collider Concepts/Proposals

Name	Details
Cryo-Cooled Copper linac	e+e-, \sqrt{s} = 2 TeV, L= 4.5 ×10 ³⁴
High Energy CLIC	e+e-, \sqrt{s} = 1.5 -3 TeV, L= 5.9 ×10 ³⁴
High Energy ILC	e+e-, $\sqrt{s} = 1 - 3 \text{ TeV}$
FCC-hh	pp, $\sqrt{s} = 100 \text{ TeV}$, L= 30×10^{34}
SPPC	pp, $\sqrt{s} = 75/150$ TeV, L= 10×10^{34}
Collider-in-Sea	pp, $\sqrt{s} = 500 \text{ TeV}$, L= 50×10^{34}
LHeC	$ep, \sqrt{s} = 1.3 \text{ TeV}, L= 1 \times 10^{34}$
FCC-eh	$ep, \sqrt{s} = 3.5 \text{ TeV}, L= 1 \times 10^{34}$
CEPC-SPPpC-eh	ep , $\sqrt{s}=6$ TeV, L= 4.5×10^{33}
VHE-ep	$ep, \sqrt{s} = 9 \text{ TeV}$
MC – Proton Driver 1	$\mu\mu$, $\sqrt{s}=1.5$ TeV, L= $1 imes10^{34}$
MC – Proton Driver 2	$\mu\mu$, $\sqrt{s}=3$ TeV, L= $2 imes 10^{34}$
MC – Proton Driver 3	$\mu\mu$, $\sqrt{s}=10-14$ TeV, L= $20 imes10^{34}$
MC – Positron Driver	$\mu\mu$, $\sqrt{s}=10-14$ TeV, L= 20 $ imes10^{34}$
LWFA-LC (e+e- and $\gamma\gamma$)	Laser driven; e+e-, $\sqrt{s} = 1 - 30 \text{TeV}$
PWFA-LC (e+e- and $\gamma\gamma$)	Beam driven; e+e-, $\sqrt{s} = 1 - 30 \text{ TeV}$
SWFA-LC	Structure wakefields; e+e-, $\sqrt{s} = 1 - 30$ TeV

pp 100 km : SPPC 75 TeV, 12 T magnets, FCChh 100/16 T

Collider benchmark points:

The Higgs factory:

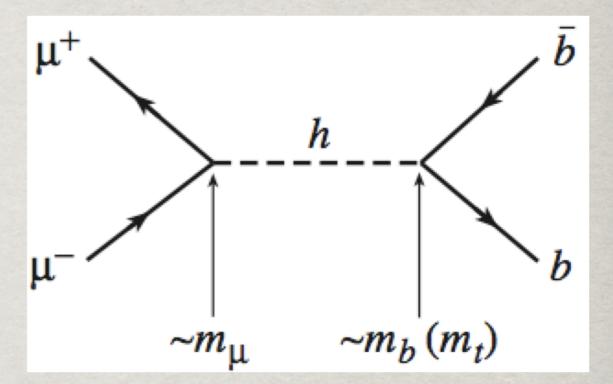
$$E_{cm} = m_H$$
 $L \sim 1 \text{ fb}^{-1}/\text{yr}$
 $\Delta E_{cm} \sim 5 \text{ MeV}$

Parameter	Units	Higgs
CoM Energy	TeV	0.126
Avg. Luminosity	$10^{34} \text{cm}^{-2} \text{s}^{-1}$	0.008
Beam Energy Spread	%	0.004
Higgs Production/10 ⁷ sec		13'500
Circumference	km	0.3

Current Snowmass 2021 point: 4 fb⁻¹/yr

Multi-TeV colliders:

Lumi-scaling scheme: $\sigma L \sim \text{const.}$


$$L \gtrsim \frac{5 \text{ years}}{\text{time}} \left(\frac{\sqrt{s_{\mu}}}{10 \text{ TeV}} \right)^2 2 \cdot 10^{35} \text{cm}^{-2} \text{s}^{-1}$$

The aggressive choices:
$$(3 \text{ TeV}/10 \text{ TeV})^2 \mathbf{6} \cdot 10^{35}$$
 $\sqrt{s} = 3, 6, 10, 14, 30 \text{ and } 100 \text{ TeV}, \quad \mathcal{L} = 1, 4, 10, 20, 90, \text{ and } 1000 \text{ ab}^{-1}$

European Strategy, arXiv:1910.11775; arXiv:1901.06150; arXiv:2007.15684.

A HIGGS FACTORY

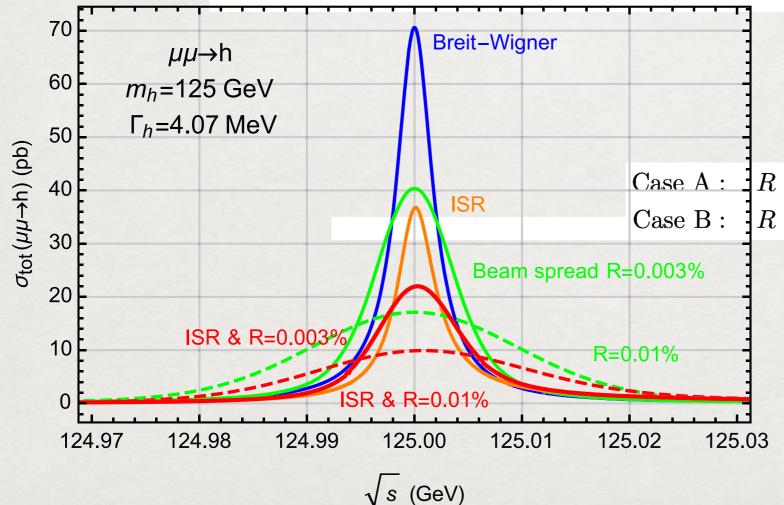
Resonant Production:

$$\sigma(\mu^{+}\mu^{-} \to h \to X) = \frac{4\pi\Gamma_{h}^{2}\text{Br}(h \to \mu^{+}\mu^{-})\text{Br}(h \to X)}{(\hat{s} - m_{h}^{2})^{2} + \Gamma_{h}^{2}m_{h}^{2}}.$$

$$\sigma_{peak}(\mu^+\mu^- \to h) = \frac{4\pi}{m_h^2} BR(h \to \mu^+\mu^-)$$

 $\approx 71 \text{ pb at } m_h = 125 \text{ GeV}.$

About O(70k) events produced per fb-1


At $m_h=125$ GeV, $\Gamma_h=4.2$ MeV

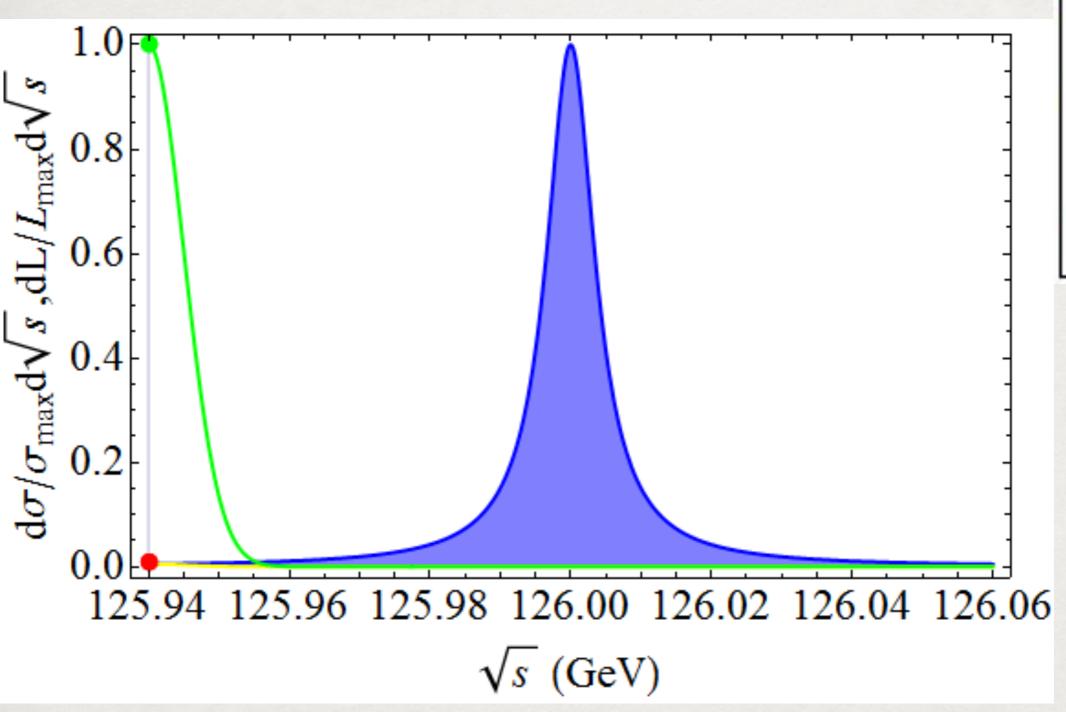
$$\frac{\exp[-(\sqrt{\hat{s}} - \sqrt{s})^2/(2\sigma_{\sqrt{s}}^2)]}{\sqrt{2\pi}\sigma_{\sqrt{s}}} \frac{4\pi\Gamma(h \to \mu\mu)\Gamma(h \to X)}{(\hat{s} - m_h^2)^2 + m_h^2[\Gamma_h^{\text{tot}}]^2}$$

$$\frac{4\pi\Gamma(h\to\mu\mu)\,\Gamma(h\to X)}{(\hat{s}-m_h^2)^2+m_h^2[\Gamma_h^{\text{tot}}]^2}$$

$$\sigma_{\text{eff}}(s) = \int d\sqrt{\hat{s}} \, \frac{dL(\sqrt{s})}{d\sqrt{\hat{s}}} \sigma(\mu^{+}\mu^{-} \to h \to X)$$

$$\propto \begin{cases} \Gamma_{h}^{2} B / [(s - m_{h}^{2})^{2} + \Gamma_{h}^{2} m_{h}^{2}] & (\Delta \ll \Gamma_{h}), \\ B \exp\left[\frac{-(m_{h} - \sqrt{s})^{2}}{2\Delta^{2}}\right] (\frac{\Gamma_{h}}{\Delta}) / m_{h}^{2} & (\Delta \gg \Gamma_{h}). \end{cases}$$

"Muon Collider Quartet":


Barger-Berger-Gunion-Han PRL & Phys. Report (1995)

Case A:
$$R = 0.01\%$$
 ($\Delta = 8.9 \,\text{MeV}$), $L = 0.5 \,\text{fb}^{-1}$, Case B: $R = 0.003\%$ ($\Delta = 2.7 \,\text{MeV}$), $L = 1 \,\text{fb}^{-1}$.

TH, Liu: 1210.7803; s, TH, Liu: 1607.03210

Ideal, conceivable case:

 $(\Delta = 5 \text{ MeV}, \quad \Gamma_{\rm h} \approx 4.2 \text{ MeV})$

An optimal fitting would reveal Γ_h

Achievable accuracy at the Higgs factory:

TABLE I. Effective cross sections (in pb) at the resonance $\sqrt{s} = m_h$ for two choices of beam energy resolutions R and two leading decay channels, with the SM branching fractions $Br_{b\bar{b}} = 56\%$ and $Br_{WW^*} = 23\%$ [9]. a cone angle cut: $10^{\circ} < \theta < 170^{\circ}$

	$\mu^+\mu^- \rightarrow h$	$h \rightarrow b\bar{b}$		$h \rightarrow$	WW^*
R (%)	$\sigma_{ m eff}$ (pb)	$\sigma_{ ext{Sig}}$	$\sigma_{ m Bkg}$	$\sigma_{ ext{Sig}}$	$\sigma_{ m Bkg}$
0.01	16	76		3.7	
0.003	38	18	15	5.5	0.051

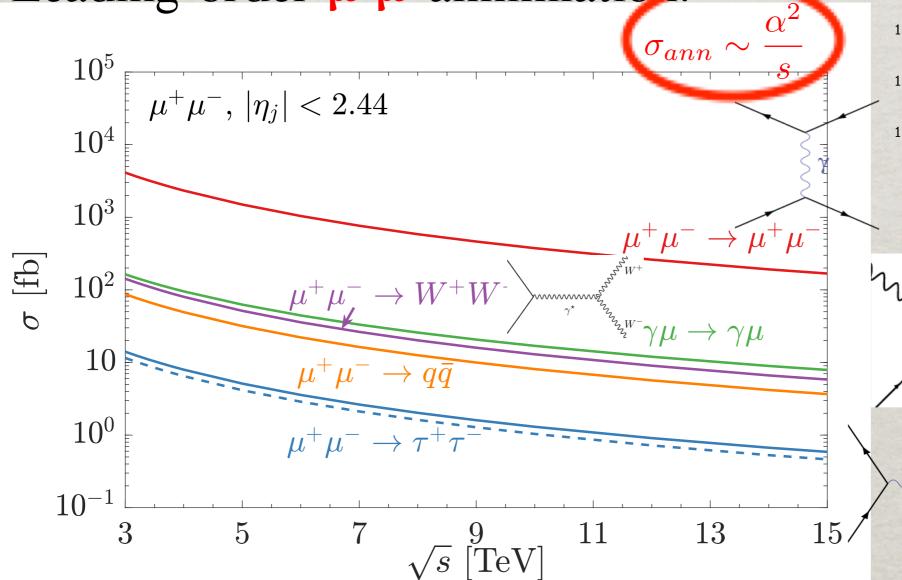
Good S/B>1, S/ $\sqrt{B} \rightarrow \%$ accuracies

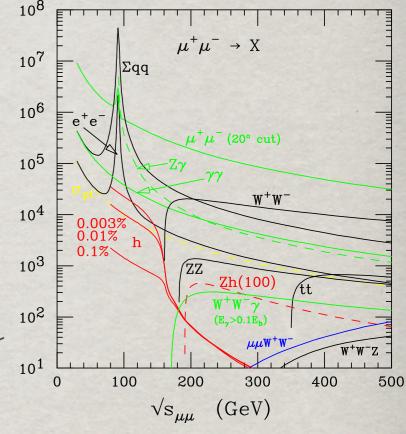
Table 3

Fitting accuracies for one standard deviation of Γ_h , B and m_h of the SM Higgs with the scanning scheme for two representative luminosities per step and two benchmark beam energy spread parameters.

$\Gamma_h = 4.07 \text{ MeV}$	L_{step} (fb ⁻¹)	$\delta\Gamma_h$ (MeV)	δB	δm_h (MeV)
R = 0.01%	0.05	0.79	3.0%	0.36
	0.2	0.39	1.1%	0.18
R = 0.003%	0.05	0.30	2.5%	0.14
	0.2	0.14	0.8%	0.07

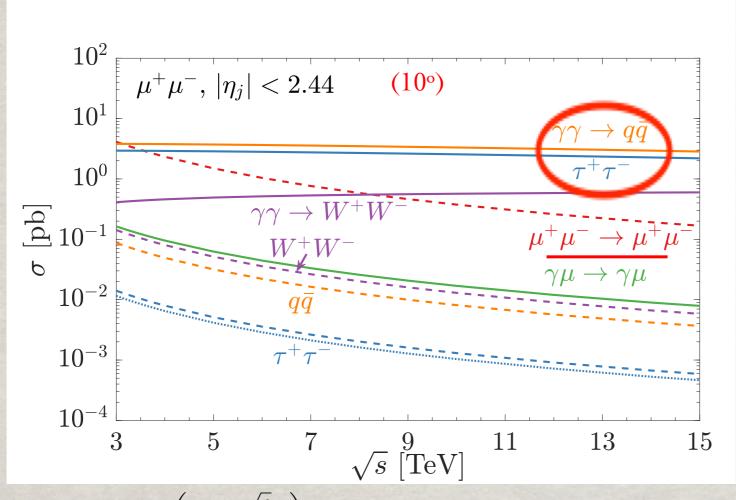
~ 3.5%


TH, Liu: 1210.7803;


Greco, TH, Liu: 1607.03210

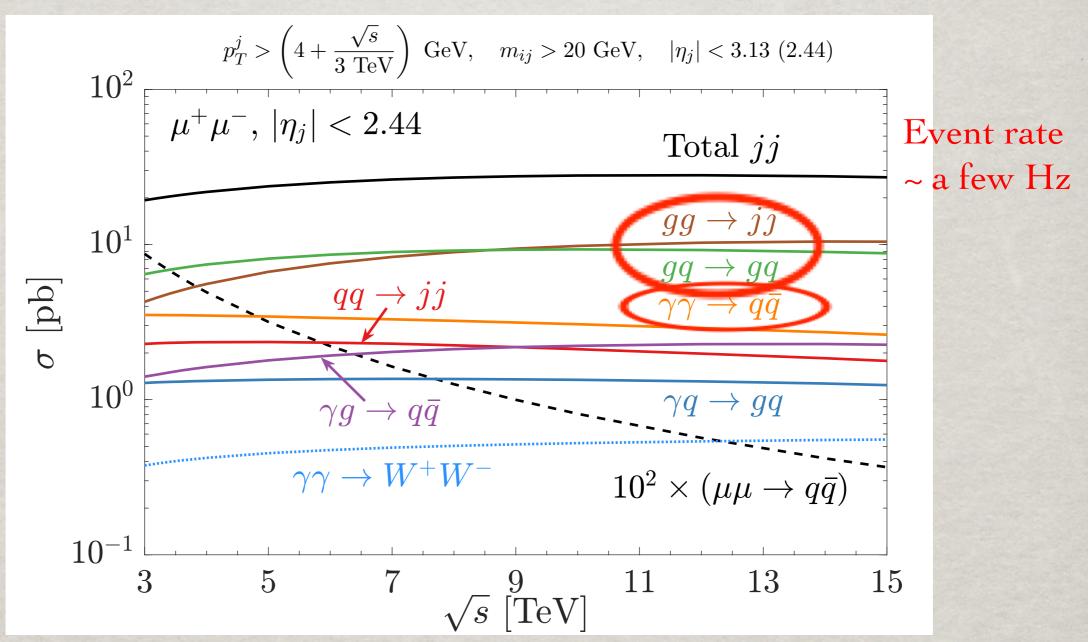
A MULTI-TEV MUON COLLIDER

Exciting energy-frontier! What will happen when you turn on a $\mu^+\mu^-$ Smasher?


Leading-order \mu^+\mu^- annihilation.

Photon-induced QED cross sections

large rates
$$\sigma_{fusion} \sim \frac{\alpha^2}{m_{jj}^2} \log^2(\frac{Q^2}{m^2})$$



$$p_T^j > \left(4 + \frac{\sqrt{s}}{3 \text{ TeV}}\right) \text{ GeV}, \quad m_{ij} > 20 \text{ GeV}, \quad |\eta_j| < 3.13 \ (2.44)$$

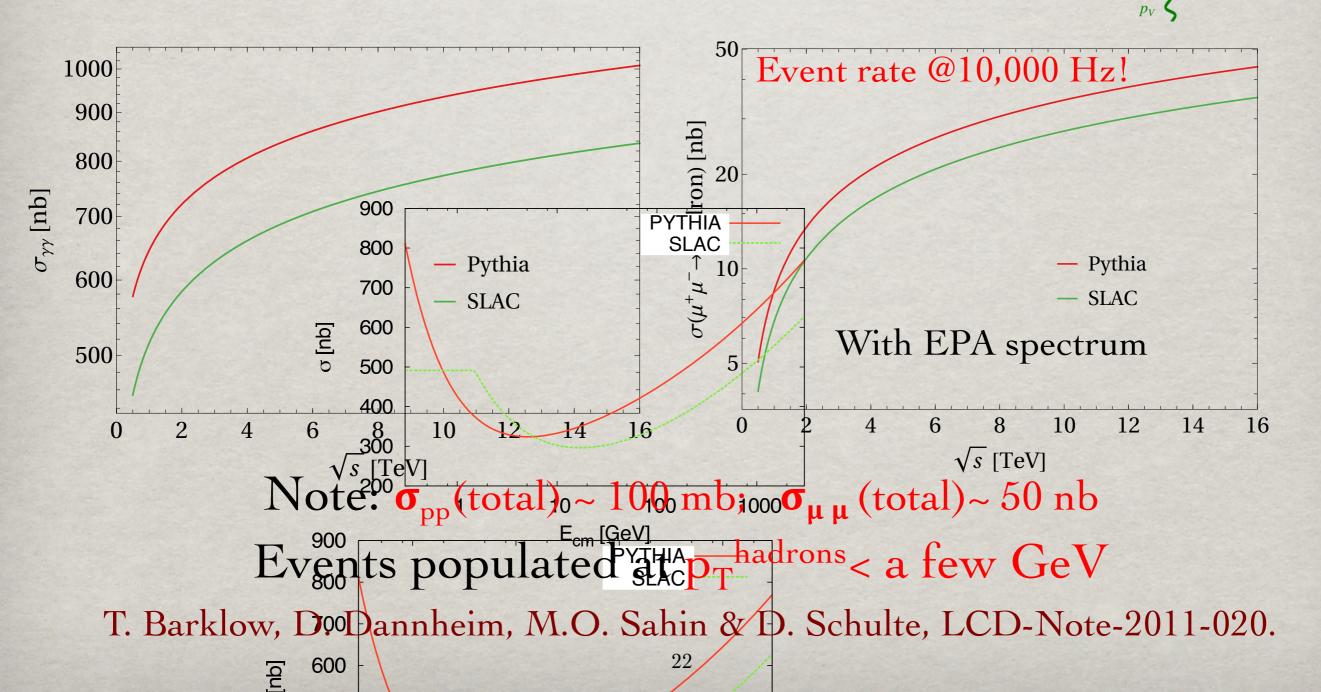
Quarks/gluons come into the picture via SM DGLAP:

$$\frac{\mathrm{d}}{\mathrm{d} \log Q^{2}} \begin{pmatrix} f_{L} \\ f_{U} \\ f_{D} \\ f_{\gamma} \\ f_{g} \end{pmatrix} = \begin{pmatrix} P_{\ell\ell} & 0 & 0 & 2N_{\ell}P_{\ell\gamma} & 0 \\ 0 & P_{uu} & 0 & 2N_{u}P_{u\gamma} & 2N_{u}P_{ug} \\ 0 & 0 & P_{dd} & 2N_{d}P_{d\gamma} & 2N_{d}P_{dg} \\ P_{\gamma\ell} & P_{\gamma u} & P_{\gamma d} & P_{\gamma\gamma} & 0 \\ 0 & P_{gu} & P_{gd} & 0 & P_{gg} \end{pmatrix} \otimes \begin{pmatrix} f_{L} \\ f_{U} \\ f_{D} \\ f_{\gamma} \\ f_{g} \end{pmatrix}$$

Di-jet production: $\gamma \gamma \to q\bar{q}, \ \gamma g \to q\bar{q}, \ \gamma q \to gq, \ qq \to qq(gg), \ gq \to gq, \ and \ gg \to gg(q\bar{q})$

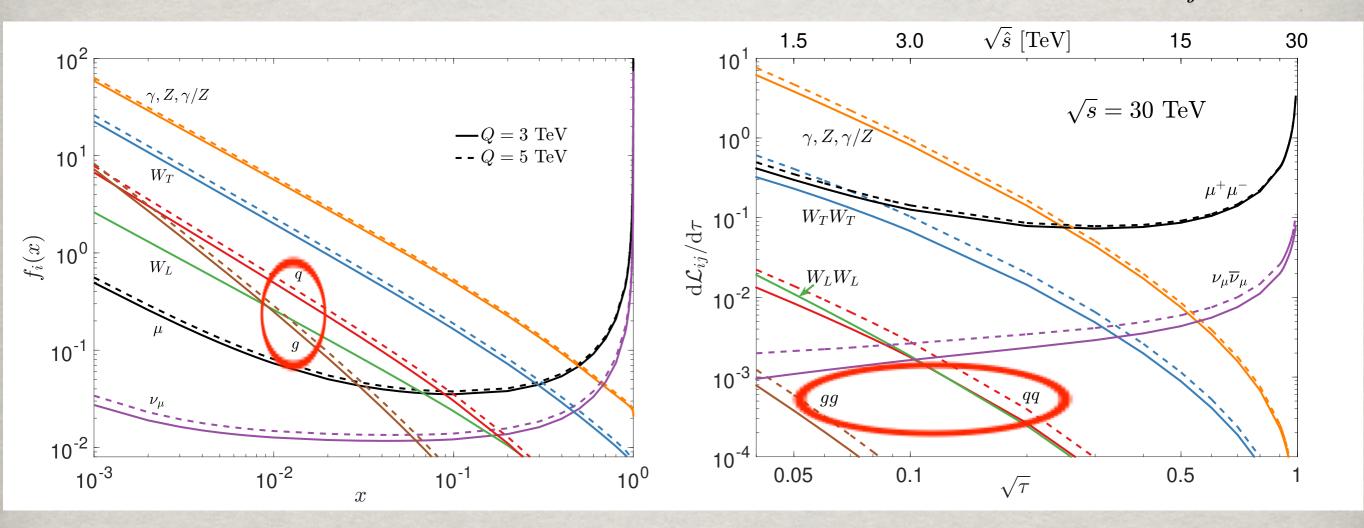
- Jet production dominates at low energies
- EW processes take over for $p_T > 60 \text{ GeV}$

TH, Yang Ma, Keping Xie, arXiv:2103.09844.


Total cross sections: $\gamma\gamma$ and $\mu^+\mu^- \rightarrow$ hadrons

PYTHIA parameterization:

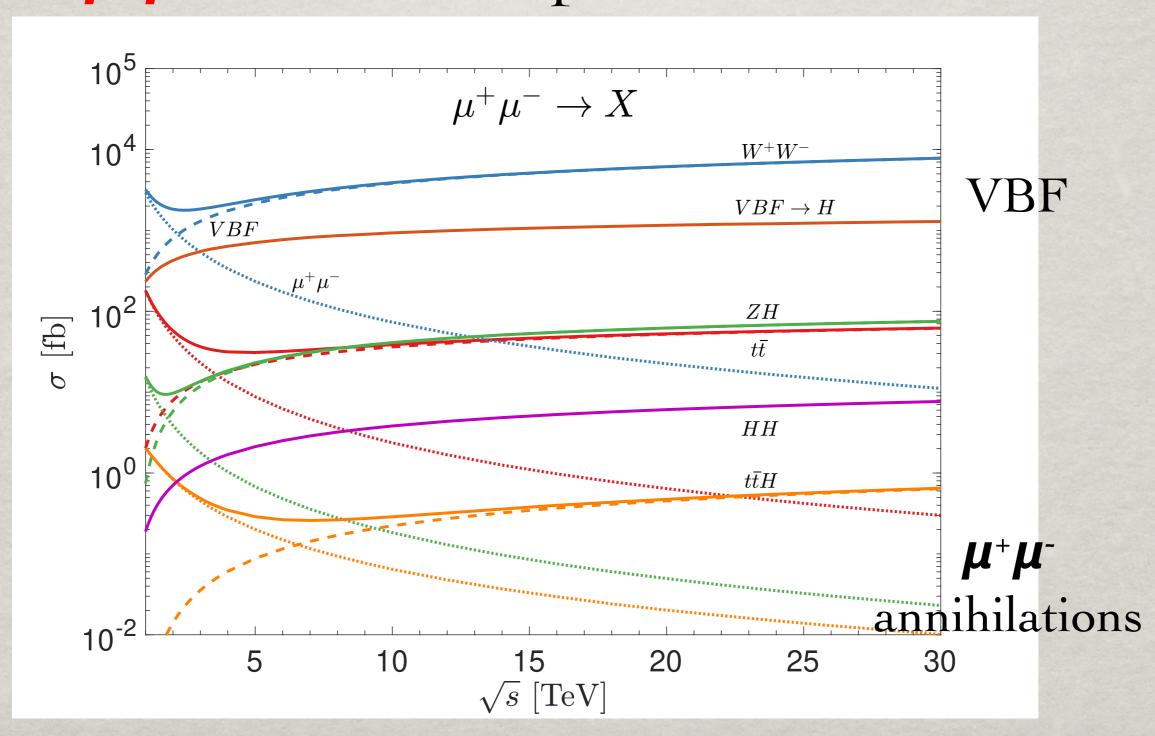
$$\sigma_{\gamma\gamma}(E_{cm}^2) = 211 \text{ nb}(E_{cm}^2 \text{GeV}^{-2})^{0.0808} + 215 \text{ nb}(E_{cm}^2 \text{GeV}^{-2})^{-0.4525}$$


SLAC parameterization:

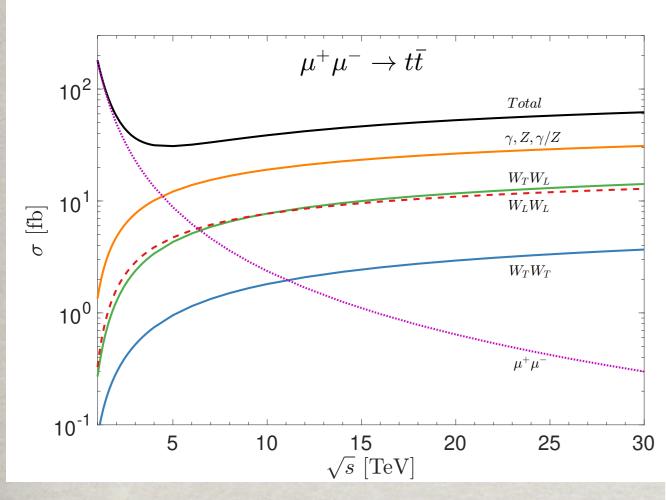
$$\sigma_{\gamma\gamma}(E_{cm}^2) = 200 \text{ nb}(1 + 0.0063[\ln(E_{cm}^2 \text{GeV}^{-2})]^{2.1} + 1.96(E_{cm}^2 \text{GeV}^{-2})^{-0.37})$$

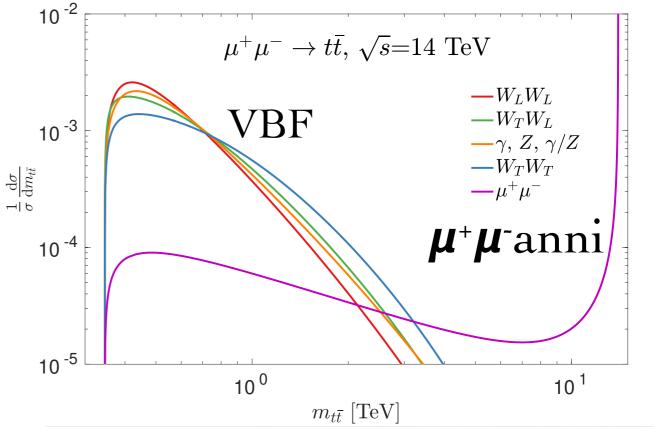
EW PDFs at a muon collider:

"partons" dynamically generated $\frac{\mathrm{d}f_i}{\mathrm{d}\ln Q^2} = \sum_{I} \frac{\alpha_I}{2\pi} \sum_{j} P_{i,j}^I \otimes f_j$



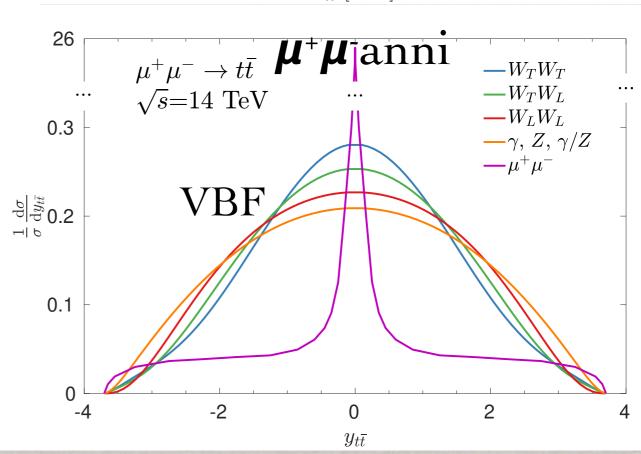
 μ^{\pm} : the valance. ℓ_R , ℓ_L , ν_L and B, $W^{\pm,3}$: LO sea. Quarks: NLO; gluons: NNLO.


TH, Yang Ma, Keping Xie, arXiv:2007.14300


"Semi-inclusive" processes

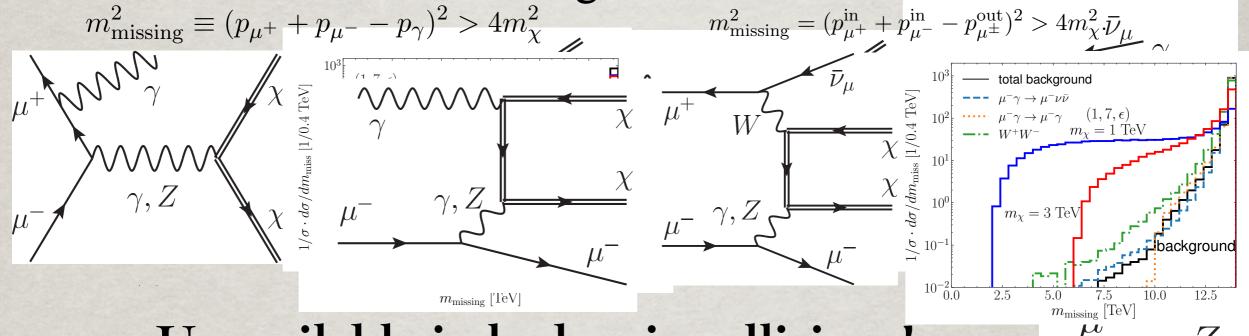
Just like in hadronic collisions: $\mu^+\mu^- \rightarrow \text{exclusive particles} + \text{remnants}$

• Underlying sub-processes:

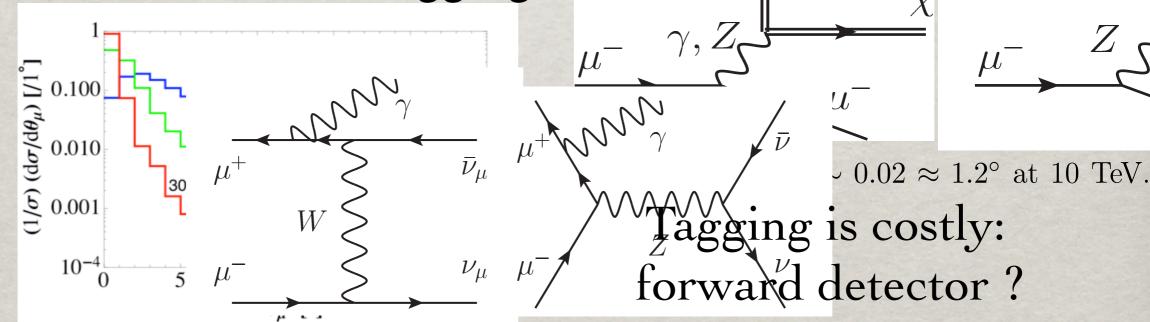


Partonic contributions

μ⁺μ⁻ Collider:

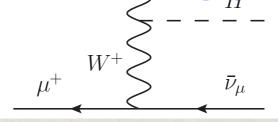

"Buy one, get one free"

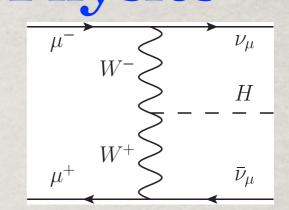
Annihilation + VBF


• Unique kinematic features:

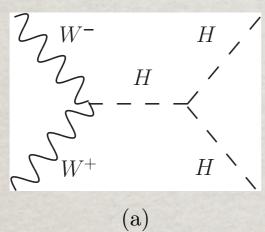
• "Recoil mass" \rightarrow "missing mass": $m_{\text{missing}}^2 \equiv (p_{\mu^+} + p_{\mu^-} - \sum p_i^{\text{obs}})^2$

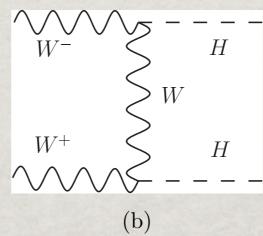
Unavailable in hadronic collisions!

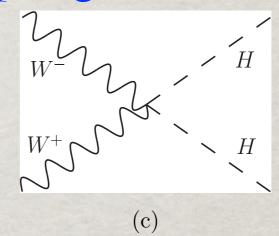

Forward tagging:


TH, Z. Liu, L.T. Wang, X. Wang: arXiv:2009.11287 TH, D. Liu, I. Low, X. Wang, arXiv:2008.12204

• Precision-Higgs Physics


$$\mu^{+}\mu^{-} \to \nu_{\mu}\bar{\nu}_{\mu} H$$
$$\mu^{+}\mu^{-} \to \mu^{+}\mu^{-} H$$



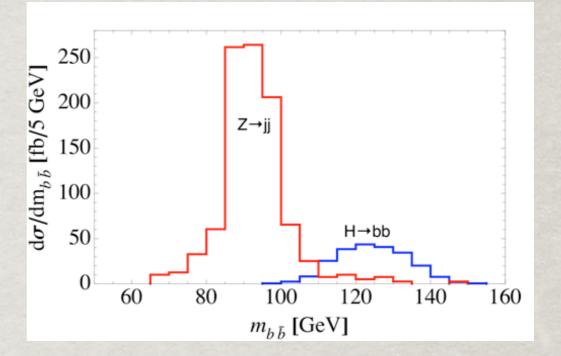

WWH / ZZH couplings

HHH / WWHH couplings:

\sqrt{s} (TeV)	3	6	10	14	30
benchmark lumi (ab ⁻¹)	1	4	10	20	90
σ (fb): $WW \to H$	490	700	830	950	1200
ZZ o H	51	72	89	96	120
$WW \rightarrow HH$	0.80	1.8	3.2	4.3	6.7
ZZ o HH	0.11	0.24	0.43	0.57	0.91
$WW \rightarrow ZH$	9.5	22	33	42	67
$WW \rightarrow t\bar{t}H$	0.012	0.046	0.090	0.14	0.28
WW o Z	2200	3100	3600	4200	5200
WW o ZZ	57	130	200	260	420

10M H

500k HH


TH, D. Liu, I. Low, X. Wang, arXiv:2008.12204

Achievable accuracies

Leading channel H → bb:

$$\Delta E/E = 10\%$$
.

$$10^{\circ} < \theta_{\mu^{\pm}} < 170^{\circ}$$
.

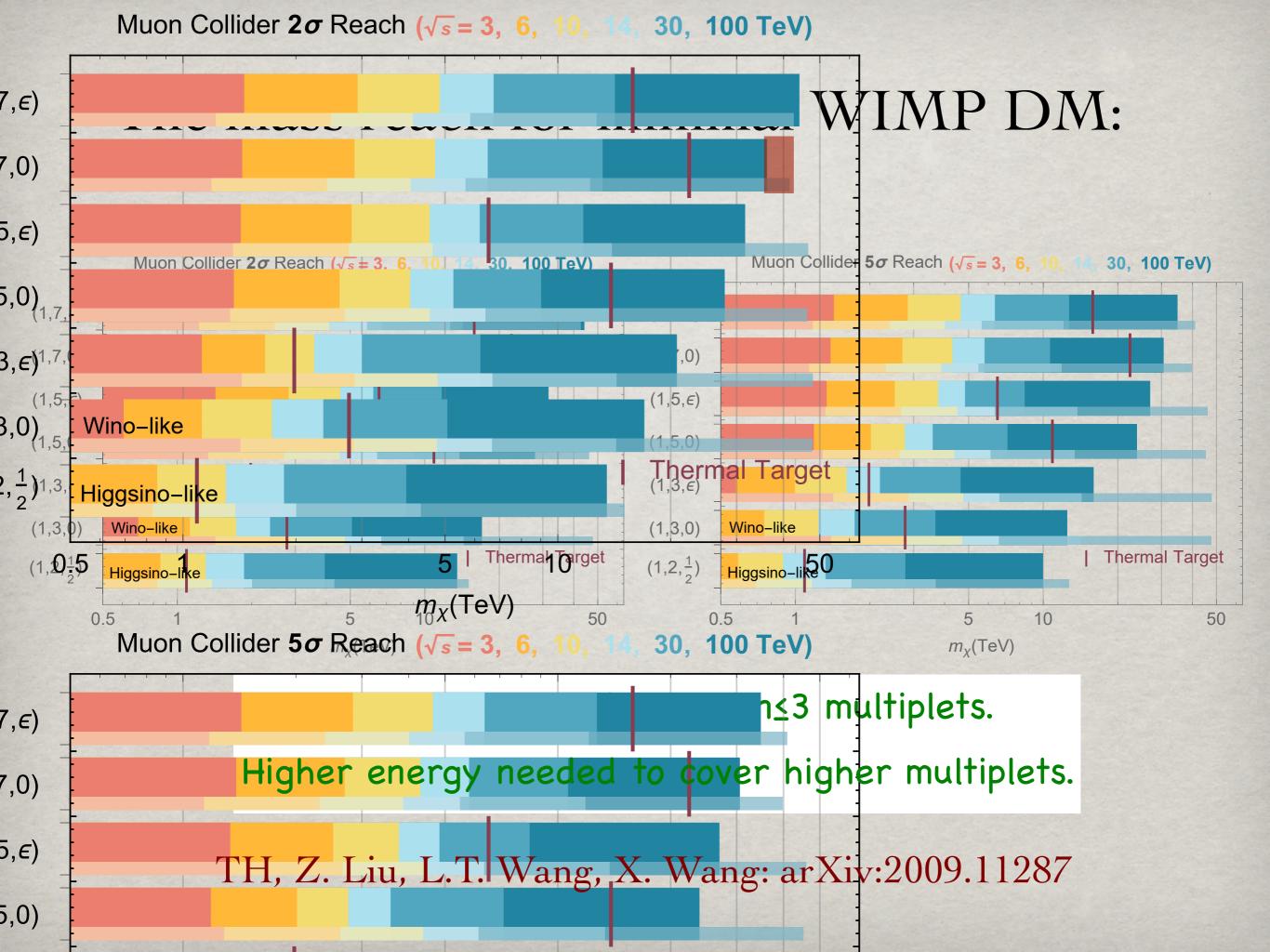
$$\mathcal{L} \supset \left(M_W^2 W_{\mu}^+ W^{-\mu} + \frac{1}{2} M_Z^2 Z_{\mu} Z^{\mu} \right) \left(\kappa_V \frac{2H}{v} + \kappa_{V_2} \frac{H^2}{v^2} \right) - \frac{m_H^2}{2v} \left(\kappa_3 H^3 + \frac{1}{4v} \kappa_4 H^4 \right)$$

\sqrt{s} (lumi.)	$3 \text{ TeV } (1 \text{ ab}^{-1})$	6 (4)	10 (10)	14 (20)	(90)	Compare
$WWH (\Delta \kappa_W)$	0.26%	0.12%	0.073%	0.050	0.023%	0.1% [41]
$\Lambda/\sqrt{c_i}$ (TeV)	4.7	7.0	9.0		16	(68% C.L.)
ZZH $(\Delta \kappa_Z)$	1.4%	0.89%	0.61%	0.46%	0.21%	0.13% [17]
$\Lambda/\sqrt{c_i}$ (TeV)	2.1	2.6	3.2	3.6	5.3	(95% C.L.)
$WWHH (\Delta \kappa_{W_2})$	5.3%	1.3%	0.62%	0 41%	0.20%	5% [36]
$\Lambda/\sqrt{c_i}$ (TeV)	1.1	2.1	3.1	3.8	5.5	(68% C.L.)
HHH $(\Delta \kappa_3)$	25%	10%	5.6%	3.9/	2.0%	5% [22, 23]
$\Lambda/\sqrt{c_i}$ (TeV)	0.49	0.77	1.0	1.2	1.7	(68% C.I

Table 7: Summary table of the expected accuracies at 95% C.L. for the Higgs couplings at a variety of muon collider collider energies and luminosities.

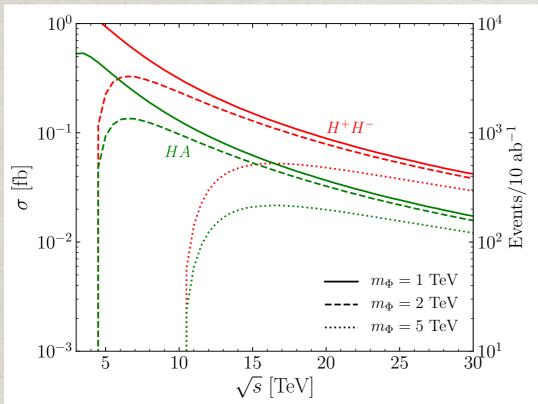
28 TH, D. Liu, I. Low, X. Wang, arXiv:2008.12204

• WIMP Dark Matter (a conservative SUSY scenario)

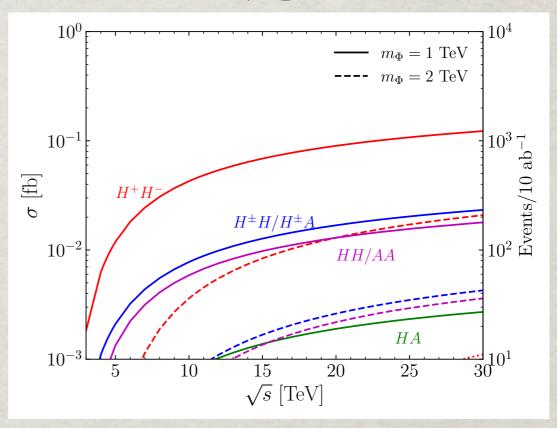

Consider the "minimal EW dark matter": an EW multi-plet

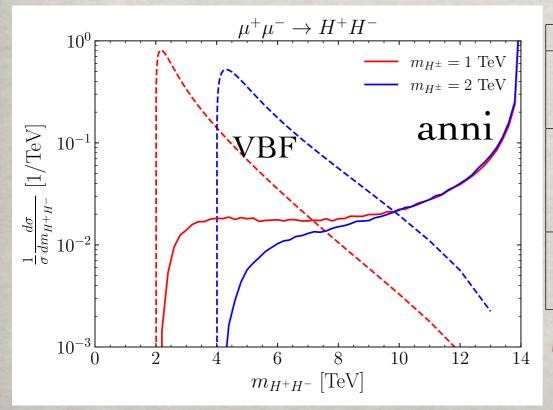
- The lightest neutral component as DM
- Interactions well defined > pure gauge
- Mass upper limit predicted >> thermal relic abundance

Model		Therm.	
(color	(n, Y)	target	
(1,2,1/2)	Dirac	1.1 TeV	
(1,3,0)	Majorana	2.8 TeV	Cirelli, Fornengo and Strumia:
$(1,3,\epsilon)$	Dirac	2.0 TeV	hep-ph/0512090, 0903.3381;
(1,5,0) Majorana		14 TeV	TH, Z. Liu, L.T. Wang, X. Wang:
$(1,5,\epsilon)$	Di_1		
(1,7,0)	Figure 5: Therm curve), adding	rections (red curve), and adding bound state formation (ma-	
$(1.7.\epsilon)$ gental We consider DM as a			fermion $SU(2)_L$ triplet (left panel) and as a fermion quintuplet
	to show that bo	und states hav	the $SU(2)_L$ -invariant approximation is not good, but it's enough we a negligible impact. In the latter case the $SU(2)_L$ -invariant


approximation is reasonably good, and adding bound states has a sizeable effect.

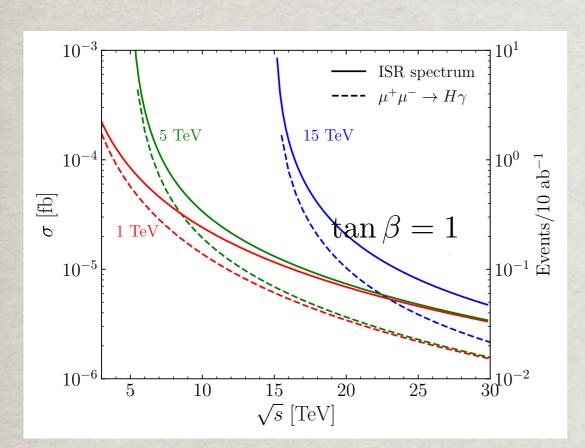
— Perturbative

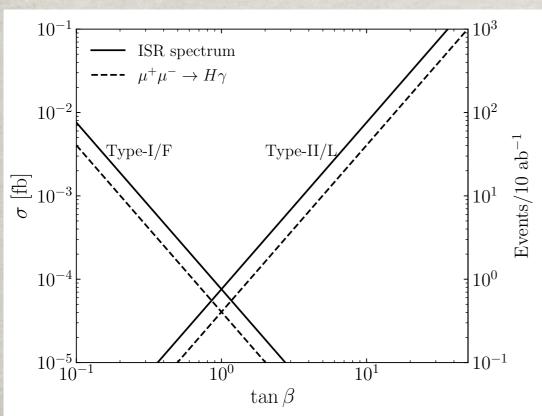


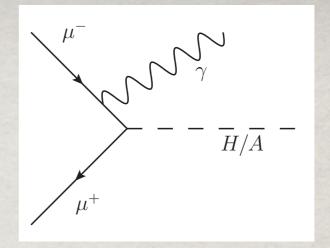

Heavy Higgs Bosons Production

annihilation

VBF






	production	Type-I	Type-II	Type-F	Type-L
	H^+H^-		$tar{\ell}$		
small $\tan \beta < 5$	HA/HH/AA		$t\bar{t}$	$ar{t}, tar{t}$	
	$H^{\pm}H/A$		$t\ell$		
	H^+H^-	$tar{b},ar{t}b$			$tb, au u_ au$
	HA/HH/AA	$oxed{tar{t}, tar{t}}$ $oxed{tar{t}, bar{b}}$		$t\bar{t}, \tau^+\tau^-$	
intermediate $\tan \beta$	$H^{\pm}H/A$	$tb, tar{t}$ $tb, tar{t}; tb, bar{b}$		$tb, t\bar{t}; tb, \tau^+\tau^-;$	
				$\tau \nu_{\tau}, t\bar{t}; \ \tau \nu_{\tau}, \tau^+ \tau^-$	
	H^+H^-	$tar{b},ar{t}b$	$tb, tb(au u_{ au})$	$tar{b},ar{t}b$	$ au^+ u_ au, au^- u_ au$
large $\tan \beta > 10$	HA/HH/AA	$tar{t},tar{t}$	$b\bar{b}, b\bar{b}(\tau^+\tau^-)$	$bar{b}, bar{b}$	$ au^+ au^-, au^+ au^-$
	$H^{\pm}H/A$	$tb, tar{t}$	$tb(\tau\nu_{\tau}), b\bar{b}(\tau^{+}\tau^{-})$ $tb, b\bar{b}$		$ au^{\pm} u_{ au}, au^{+} au^{-}$

TH, S. Li, S. Su, W. Su, Y. Wu, arXiv:2102.08386.

Radiative returns:

$$\hat{\sigma}(\mu^{+}\mu^{-} \to H) = \frac{\pi Y_{\mu}^{2}}{4} \delta(\hat{s} - m_{H}^{2}) = \frac{\pi Y_{\mu}^{2}}{4s} \delta(\tau - \frac{m_{H}^{2}}{s})$$

$$f_{\ell/\ell}(x) = \frac{\alpha}{2\pi} \frac{1 + x^{2}}{1 - x} \log \frac{s}{m_{\mu}^{2}}$$

$$\sigma = 2 \int dx_1 f_{\ell/\ell}(x_1) \hat{\sigma}(\tau = x_1) = \frac{\alpha Y_{\mu}^2}{4s} \frac{s + m_H^4/s}{s - m_H^2} \log \frac{s}{m_{\mu}^2}$$

Depending on the coupling, $M_{\rm H} \sim E_{\rm cm}$

TH, S. Li, S. Su, W. Su, Y. Wu, arXiv:2102.08386; TH, Z. Liu et al., arXiv:1408.5912.

Lots of recent works!

-- my apologies not to cover properly

- D. Buttazzo, D. Redogolo, F. Sala, arXiv:1807.04743 (VBF to Higgs)
- A. Costantini, F. Maltoni, et al., arXiv:2005.10289 (VBF to NP)
- M. Chiesa, F. Maltoni, L. Mantani, B. Mele, F. Piccinini, and X. Zhao, arXiv:2005.10289 (SM Higgs)
- R. Capdevilla, D. Curtin, Y. Kahn, G. Krnjaic, arXiv:2006.16277; arXiv:2101.10334 (g-2, flavor)
- P. Bandyopadhyay, A. Costantini et al., arXiv:2010.02597 (Higgs)
- D. Buttazzo, P. Paradisi, arXiv:2012.02769 (g-2)
- W. Yin, M. Yamaguchi, arXiv:2012.03928 (g-2)
- R. Capdevilla, F. Meloni, R. Simoniello, and J. Zurita, arXiv:2012.11292 (MD)
- D. Buttazzo, F. Franceschini, A. Wulzer, arXiv:2012.11555 (general)
- G.-Y. Huang, F. Queiroz, W. Rodejohann, arXiv:2101.04956; arXiv:2103.01617 (flavor)
- W. Liu, K.-P. Xie, arXiv:2101.10469 (EWPT)
- H. Ali, N. Arkani-Hamed, et al, arXiv:2103.14043 (Muon Smasher's Guide) Richard Ruiz et al., arXiv:2111.02442 (MadGraph5)

• • • • • •

ANYTHING FOR US TO DO?

Accelerator:

Need high-field magnets
High-energy proton source? **\mu**-storage? **\mu**-flux?
New ideas for muon-cooling?

Detector:

Beam-induced background suppression (BIB)?

Physics:

EW PDFs; EW fragmentation functions ...
MC simulation / event generator
New physics coverage; muon-flavor specific?

Summary

- High energy muon-collider is a new endeavor: Challenging technology; interdisciplinary to other fields; great physics potential!
- s-channel Higgs factory:
 - Direct measurements on $Y_{\mu} \& \Gamma_{H}$
 - Other BRs comparable to ete Higgs factories

Multi-TeV colliders:

- Unprecedented accuracies for WWH, WWHH, H³, H⁴
- Bread & butter SM EW physics in the new territory
- New particle (Q,H...) mass coverage $M_H \sim (0.5 1)E_{cm}$
- Decisive coverage for minimal WIMP DM M $\sim 0.5~E_{cm}$
- Complementary to Astro/Cosmo/GW & to FCC-hh:

Exciting journey ahead!