Quark masses and low energy constants in the continuum from the CLQCD ensembles

Yi-Bo Yang

Collaborators: Zhi-Cheng Hu, Bo-Lun Hu, Ji-Hao Wang, Ming Gong, Liuming Liu, Peng Sun, Wei Sun, Wei Wang, and Dian-Jun Zhao

Outline

Background

Renormalization

and final results

$\rightarrow a$

CLQCD ensembles

BMWc, Science 322(2008)1224

Other high precision LQCD inputs

CalLAT, Nature 558(2018)7708,91-94

LQCD ensembles used

- Several lattice spacings to do the continuum extrapolation;
- Several pion masses to do the chiral extrapolation to physical pion mass;
- Large enough volume or infinite volume extrapolation.

- Continuum limit should be independent of c_1 ;
- Larger $|c_1|$ can suppress the discretization error to $O(a^4);$
- But enlarge the simulation cost significantly at small a. \bullet

Gauge actions

	Naive	Staggered/HISQ	Wilson/Clover	Twisted-mass	Overlap/Domain wall
Form	$D^{\text{naive}} = \gamma_{\mu}(\delta_{x,x+\mu} - \delta_{x,x-\mu})$	$D^{\text{st}} =$ $\gamma^{\text{st}}_{\mu}(x)(\delta_{x,x+\mu} - \delta_{x,x-\mu})$	$D^{\rm clv} = D + aD^2 + ac_{sw}F_{\mu\nu}\sigma^{\mu\nu}$	$D^{\text{tm}} =$ $D^{\text{clv}} + i\tau_3 m$	$D^{\text{ov}} = [1 + \gamma_5 D(-\rho)/\sqrt{D^{\dagger}(-\rho)D(-\rho)}]/\rho$
Fermion copies	16	4	1	1	1
Chiral symmetry breaking	N/A	$\mathcal{O}(a^4)$	$\mathcal{O}(\alpha_s/a)$	$\mathcal{O}(\alpha_s)$	N/A
Cost	1	~1/4	~1.1	~1.1	~10-100

Fermion actions

8

http://flag.unibe.ch/2021/MainPage

Quark mass determination

- A natural concern of the clover fermion is, whether its additive chiral symmetry breaking is harmful for the chiral character of QCD, likes the quark mass.
- Only two Clover fermion results are included 0 in the FLAG averages of m_{ud} :
- BMW10A/B: 3.47(05)(05) MeV; S. Durr, et.al., BMWc., JEHP08 (2011) 08,148
- ALPHA 19: 3.54(12)(09) MeV.

M. Bruno, et.al., ALPHA, Eur.Phys.J.C80 (2020) 169 BMW10A/B used the RI/MOM renormalization scheme and claimed 2% uncertainty in total, less than 1% from the renormalization.

Concerns on the renormalization

- But more recent study suggests that using different intermediate renormalization scheme (and then convert to MS scheme) can make Z_{S} to differ by 30% at a = 0.11 fm.
- The systematic uncertainty of the renormalization should be rechecked,
- and also the other quantities relate to the chiral symmetry.

Outline

Background

Renormalization

and final results

$\rightarrow a$

CLQCD ensembles

CLQCD choice and advantages

- Maximum lattice size $48^3 \times 144$:
- Can reach the FLAG "green star" criteria with lowest cost.
- Clover fermion action with stout smearing:
- Can reach the physical quark mass at coarse $a \sim 0.1053(2)$ fm;
- Much cheaper than the OV/DW fermion but free of the fermion doubling;
- Additive chiral symmetry breaking can be resolved after the continuum extrapolation, with proper renormalization (to be shown later).
- Symanzik gauge action with tadpole improvement:

a

- Can reach quite fine $a \sim 0.03$ fm based on the study of MILC collaboration.
- Similar pion mass and volume at different lattice spacing:
 - Can estimate the discretization error with given pion mass and/or momentum.

Cost of each ensemble

- Cost of an independent configuration (per 10 traj.'s) with $\tau = 1.0$, converted to A100 GPU hours;
- Needs ~1,000 configurations per ensemble;
- Currently used 658k A100 hours, equals to 3.3M Chinese Yuan with the market price.
- Working on the Sugon machines to avoid the embargo of A100 GPU.

a

CLQCD ensembles Published/accepted works with the CLQCD ensembles

Quark mass through PCAC

- Due to the additive α_s/a correction, the dimensionless bare quark mass $\tilde{m}_q^b = m_q^b a$ is negative.
- The renormalized quark mass should be defined as $m_q^R = Z_m (m_q^b - m_{crti})$, where m_{crti} is defined as the $m_a^{\rm b}$ which vanishes the pion mass.
- One can avoid this difficulty by defining the quark mass through PCAC relation:

$$\langle 0 | \partial_4 A_4 | \mathrm{PS} \rangle = (m_q^{\mathrm{PC}} + m_{\bar{q}}^{\mathrm{PC}}) \langle 0 | P | \mathrm{PS} \rangle$$

T. Ishikawa, et.al., JLQCD, Phys.Rev.D78 (2008) 011502

• And then m_a^{PC} is always positive and can be renormalized as $m_a^R = Z_P / Z_A m_a^{PC}$.

-0.16

• Joint fit of $\tilde{m}_q^{\text{PC}} = m_q^{\text{PC}}a$, $\tilde{f}_{\text{PS}} = f_{\text{PS}}a$, and $\tilde{m}_{PS} = m_{PS}a$, with several 2pt at 0.0020 $a^{-1} \sim 2 \text{ GeV}$ and physical pion mass; 0.0018 • Used 48 measurements on each 0.0016 of 203 configurations. 0.0014 0.0012 m_{π} 0.085 \bigcirc \bigcirc 0.080 \bigcirc - 300 MeV \bigcirc 0.075 0.070 - 200 MeV 0.065 + 100 MeV 0.060 0.15 fm 0.10 fm 0.05 fm $\mathbf{0}$

Joint fit of pion correlators

• With the same quark propagator, the ratio between the nucleon mass and pion mass is

• Which is quite close to the physical value 0.939/0.135=6.96.

Nucleon mass v.s. pion mass

- Using the lattice spacing determined from the gradient flow, we have
- $m_{\pi} = 135.5(1.6)$ MeV, $m_N = 890(10)$ MeV.
- m_N are ~5% smaller than the physical value, and can be a discretization effect based on the lattice spacing dependence of f_{π} .

Outline

Background

Renormalization

and final results

$\rightarrow a$

CLQCD ensembles

Renormalization and final results Renormalization through intermediate scheme

$$m_{q}^{\overline{\text{MS}}}(\mu) = \frac{Z_{m}^{\text{MOM,Lat}}(Q,1/a)}{Z_{m}^{\text{MOM,Dim}}(Q,\mu,\epsilon)} Z_{m}^{\overline{\text{MS}},\text{Dim}}(Q,\mu,\epsilon)$$

- The RI/MOM renormalization targets to cancel the $\alpha_{s} \log(a)$ divergences using the off-shell quark matrix element;
- Up to the $\mathcal{O}(a^2p^2)$ correction which can be eliminated by the $a^2p^2 \rightarrow 0$ extrapolation.

 $(\epsilon)m_q^{\text{Lat}}(1/a) + \mathcal{O}(a^m, \alpha_s^n)$

Renormalization and final results two definitions of quark mass

 $m_q^{\text{RI}} = \frac{\frac{1}{12} \text{Tr}[S^{-1}(p)]|_{p^2 = \mu^2}}{Z_q^{\text{RI}}(\mu)} \text{ is the natural of the regularization independent (RI) quark mass and equals to } \hat{m}_q^{\text{RI}} = \frac{Z_A m_q^{\text{PC}}}{\hat{Z}_P^{\text{MOM}}(\mu)} \text{ for the }$ chiral fermion.

- But m_q^{RI} (data points) of the clover fermion suffer from huge lattice artifacts and diverges at large μ .
- $\hat{m}_a^{\rm RI}$ of the clover fermion has much smaller discretization error and its μ dependence is similar to that of the overlap fermion.

Renormalization and final results Z_A with MOM and SMOM schemes

 $(p'-p)^2 = p^2$

SMOM

MOM G. Martinelli, et.al., NPB445 (1995) 81

Y. Aoki, et.al., PRD78 (2008) 054510 C. Sturm, et.al., PRD80 (2009) 014501

- Clover fermion introduce additional chiral symmetry breaking between Z_V and Z_A , while the effect suppress at smaller lattice spacing.
- The difference between MOM and SMOM also suppresses \bullet after the continuum extrapolation, while the lattice spacing dependence of the MOM scheme is smaller.

Renormalization and final results Z_p with MOM and SMOM schemes

 $(p'-p)^2 = p^2$

SMOM

MOM G. Martinelli, et.al., NPB445 (1995) 81

Y. Aoki, et.al., PRD78 (2008) 054510 C. Sturm, et.al., PRD80 (2009) 014501

- Difference between MOM and SMOM is relatively small at finite lattice spacing, while would be larger after the continuum extrapolation.
- Lattice spacing dependence of the renormalized quark mass is mild.

Renormalization and final results M^2_{π}/m_q^{PC} (GeV) **Renormalized quark mass**

- Non-perturbative renormalization to MS 2 GeV eliminates the regularization scale 1/a dependence of m_{π}^2/m_a .
- m_{π}^2/m_a using the clover fermion also turns out to be consistent with that using the overlap fermion.
- The large uncertainty of the renormalized m_{π}^2/m_a majorly comes from the missing higher order effect of the perturbative matching

$$\frac{Z_P^{\overline{\text{MS}}}}{Z_P^{\text{MOM}}} = 1 + 0.4244\alpha_s + 1.007\alpha_s^2 + 2.722\alpha_s^3 + 8.263\alpha_s^4 + \mathcal{O}(\alpha_s^5)$$
$$= \frac{1 - 2.611\alpha_s - 0.2813\alpha_s^2 - 0.3349\alpha_s^3}{1 - 3.036\alpha_s} + \mathcal{O}(\alpha_s^5),$$
J.A. Gracey, Eur.Phys.J.C83

 and can be highly suppressed after the continuum extrapolation.

(2023) 181

Renormalization and final results $Z_{\rm S}$ with MOM and SMOM schemes

SMOM

MOM G. Martinelli, et.al., NPB445 (1995) 81

Y. Aoki, et.al., PRD78 (2008) 054510 C. Sturm, et.al., PRD80 (2009) 014501

- Difference between MOM and SMOM in Z_S is much larger than the Z_P case, while becomes smaller at smaller lattice spacing.
- Lattice spacing dependence using the MOM scheme is milder than the SMOM case.

14

Renormalization and final results Restore of chiral symmetry in the continuum

• Renormalized quark mass $m_a^R = Z_A/Z_P m_a^{PC}$ with 317 MeV pion mass at three

The intermediate renormalization scheme dependence is 3.1(1.5)%.

RI/MOM scheme has smaller discretization error.

• Feynman-Hellman theorem can extract $g_{S,\pi}$ as

$$g_{S,\pi}^{\rm FH} = \frac{1}{2} \frac{\partial m_{\pi}(m_q)}{\partial m_q} \simeq \frac{m_{\pi}}{4m_q} + \mathcal{O}(m_q, a^2)$$

which is 4.04(6)(12) for $m_{\pi} = 317$ MeV in the continuum.

Renormalized $g_{S,\pi}^{R,ME} = Z_S \frac{\langle H|S|H \rangle_{conn}}{\langle H|H \rangle}$ based on the direct calculation:

• The intermediate renormalization scheme dependence is 6.6(2.4)%.

• $g_{S,\pi}^{ME}$ using RI/MOM scheme has smaller discretization error, and agree with $g_{S,\pi}^{R,FH}$ within 2σ at all the lattice spacings.

Renormalization and final results Global fit of the pion mass and decay constant

$$\begin{split} m_{\pi,vv}^2 &= \Lambda_{\chi}^2 2y_v \left\{ 1 + \frac{2}{N_f} [(2y_v - y_s)\ln(2y_v) + (y_v - y_s)] \right. \\ &+ 2y_v (2\alpha_8 - \alpha_5) + 2y_s N_f (2\alpha_6 - \alpha_4) \right\} \\ &\left. (1 + c_{m,a}a^2 + c_{m,l}e^{-m_{\pi}L}), \right. \\ F_{\pi,vv} &= F(1 - \frac{N_f}{2}(y_v + y_s)\ln(y_v + y_s) + y_v \alpha_5 + y_s N_f \alpha_4 \\ &\left. (1 + c_{f,a}a^2 + c_{f,l}e^{-m_{\pi}L}) \right] \end{split}$$

Global fit of all the ensembles to obtain the quark mass dependence of m_{π} and f_{π} in the continuum and infinite volume limit, which allows us to extract the χ PT low energy constants.

Renormalization and final results

P.Zyla et,al, PTEP(2020)083C01 (PDG2020):

• $m_p = 938.27 \text{ MeV} = m_{p,\text{OCD}} + 1.00(16) \text{ MeV} + \dots;$ • $m_n = 939.57$ MeV; • $m_{\pi}^0 = 134.98$ MeV; • $m_{\pi}^{+} = 139.57 \text{ MeV} = m_{\pi}^{0} + 4.53(6) \text{ MeV} + \dots;$ X. Feng, et,al. Phys.Rev.Lett.128(2022)062003 • $m_K^0 = 497.61(1) \text{ MeV} = m_{K,\text{OCD}}^0 + 0.17(02) \text{ MeV} + \dots$ • $m_K^+ = 493.68(2) \text{ MeV} = m_{K,\text{OCD}}^+ + 2.24(15) \text{ MeV} + \dots$

D. Giusti, et,al. PRD95(2017)114504

QED effects in the pesudoscalar masses

Renormalization and final results Quark mass of three light flavors

Summary

- test;
- We chose the clover fermion and Symanzik gauge actions to to restore the chiral symmetry at 5% level.
- on-going.

• Lattice QCD ensembles at multiple lattice spacing, pion mass and volume are the foundation of the SM high accuracy prediction and

generate the ensembles, and figured out the proper renormalization

• Current prediction of quark masses and low energy constants agree with the lattice averages within 5-10%, and more accurate studies are