第六届强子谱和强子结构研讨会 2023年8月27日-30日,中国科学院大学,北京

Light-flavor tensor meson nonet in chiral effective field theory

Zhi-Hui Guo(郭志辉)

Hebei Normal University (河北师范大学)

Outline:

- 1. Background
- 2. Tensor mesons in Resonance Chiral Theory
- 3. Phenomenologies (Exp and Lat)
 - (a) Tensor masses
 - (b) $T \rightarrow PP'$ decays
 - (c) $T \rightarrow P\gamma$ & $T \rightarrow \gamma\gamma$
- 4. Summary

Background Low lying mesons of QCD

- well established vectors: ρ , K^* , ω , φ

(VMD: vector meson dominace (VMD) in many situations)

- scalars with opaque nature: σ , κ , $f_0(980)$, $a_0(980)$
- less focused tensors: $f_2(1270)$, $f_2'(1525)$, $K_2^*(1430)$, $a_2(1320)$

(See also disucssions via pp scattering: [Geng, Molina, Oset, PRD'08'09] [Du, Gulmez et al., EPJC'17'18])

After integration of the heavy d.o.f (resonances), low energy constants (LECs) of χPT can be predicted: [Ecker et al., NPB'88] [Cirigliano et al, NPB'06]

$$\mathcal{L}_4 = L_1 \langle u_\mu u^\mu \rangle^2 + L_2 \langle u_\mu u^\nu \rangle \langle u^\mu u_\nu \rangle + L_3 \langle u_\mu u^\mu u_\nu u^\nu \rangle + \cdots$$

$$L_3 = -\frac{3G_V^2}{4M_V^2} + \frac{c_d^2}{2M_S^2} \quad \text{or} \quad L_3 = 4\pi f^4 \left(\frac{2\Gamma_{\rm S}^{(0)}}{3M_{\rm S}^{(0)\,5}} - \frac{9\Gamma_{\rm V}^{(0)}}{M_{\rm V}^{(0)\,5}}\right) \quad \text{[ZHG et al., JHEP'07]}$$

Contributions from tensor resonances are still under debate ! [Toublan, PRD'96] [Ecker, Zauner, ., EPCJ'07] [ZHG Ph.D thesis, '09]

- Vectors: ρ , K^* , ω , φ
- **Tensors:** f_2 , f_2 ', K_2^* , a_2

Mixings: vectors V.S. tensors

$$\psi_8 = \frac{1}{\sqrt{6}} (u\bar{u} + d\bar{d} - 2s\bar{s})$$

$$\psi_1 = \frac{1}{\sqrt{3}} (u\bar{u} + d\bar{d} + s\bar{s})$$

$$f' = \psi_8 \cos\theta - \psi_1 \sin\theta$$

$$f = \psi_8 \sin\theta + \psi_1 \cos\theta$$

✓ Vector mixing angle (ω-φ mixing)
 θ_V~36.5°: 3% away from θ_{id}
 ✓ Teonsr mixing angle (f₂-f₂' mixing)

[PDG, 2022]

- $\theta_T \sim (28 \sim 30)^\circ$: (15~21)% away from θ_{id}
- Implication: 1/Nc correction (OZI rule violation) is sizable for the tensor resonances.

Quick view of the light-flavor tensor mesons

[PDG, 2022]

<i>f</i> ₂ (1270)	$I^{G}(J^{PC}) = 0^{+}(2^{+})^{+}$
Mass $m = 1275.5$ Full width $\Gamma = 18$	$\pm 0.8 \text{ MeV}$ 6.7 $^{+2.2}_{-2.5} \text{ MeV}$ (S = 1.4)
f2(1270) DECAY MODES	S Fraction (Γ_i/Γ) Cont
ππ	$(84.2 \ +2.9 \ -0.9$)%
$\pi^{+}\pi^{-}2\pi^{0}$	(7.7 + 1.1 - 3.2)%
ĸĸ	(4.6 + 0.5 - 0.4) %
$2\pi^+2\pi^-$	(2.8 ±0.4)%
$\eta \eta$ $4\pi^0$	$(4.0 \pm 0.8) \times 10^{-3}$ $(3.0 \pm 1.0) \times 10^{-3}$
γγ 	$(1.42\pm0.24)\times10^{-5}$
$\frac{\eta \pi \pi}{K^0 K^- \pi^+ + \text{c.c.}}$	$< 3.4 \times 10^{-3}$
e ⁺ e ⁻	$< 6 \times 10^{-10}$

$f'_2(1525)$ Mass $m = 1517.4$ Full width $\Gamma = 96$	$I^{G}(J^{PC}) = 0^{+}(2^{++})$ $\pm 2.5 \text{ MeV} (S = 2.8)$ $\pm 5 \text{ MeV} (S = 2.2)$
f2(1525) DECAY MODES	Fraction (Γ_i/Γ) S
ĸĸ	(87.6±2.2) %
ηη	(11.6±2.2) %
ππ	$(8.3 \pm 1.6) \times 10^{-3}$
$\gamma\gamma$	$(9.5\pm1.1)\times10^{-7}$
K*(1430)	$I(J^{P}) = \frac{1}{2}(2^{+})$
	1080 March 1847 - 56
$K_2^*(1430)^{\pm}$ ma	ss $m = 1427.3 \pm 1.5$ MeV (
$K_2^*(1430)^\pm$ ma $K_2^*(1430)^0$ ma	ss $m = 1427.3 \pm 1.5$ MeV (ss $m = 1432.4 \pm 1.3$ MeV
$K_2^*(1430)^\pm$ ma $K_2^*(1430)^0$ ma $K_2^*(1430)^\pm$ full	ss $m = 1427.3 \pm 1.5$ MeV (ss $m = 1432.4 \pm 1.3$ MeV width $\Gamma = 100.0 \pm 2.1$ MeV
$K_2^*(1430)^\pm$ ma $K_2^*(1430)^0$ ma $K_2^*(1430)^\pm$ full $K_2^*(1430)^0$ full	ss $m = 1427.3 \pm 1.5$ MeV (ss $m = 1432.4 \pm 1.3$ MeV width $\Gamma = 100.0 \pm 2.1$ MeV width $\Gamma = 109 \pm 5$ MeV (S
$K_2^*(1430)^\pm$ ma $K_2^*(1430)^0$ ma $K_2^*(1430)^\pm$ full $K_2^*(1430)^0$ full $K_2^*(1430)$ DECAY MODES	ss $m = 1427.3 \pm 1.5$ MeV (ss $m = 1432.4 \pm 1.3$ MeV width $\Gamma = 100.0 \pm 2.1$ MeV width $\Gamma = 109 \pm 5$ MeV (S Fraction (Γ_i/Γ)
$K_2^*(1430)^{\pm}$ ma $K_2^*(1430)^0$ ma $K_2^*(1430)^{\pm}$ full $K_2^*(1430)^0$ full $K_2^*(1430)$ DECAY MODES $K\pi$	ss $m = 1427.3 \pm 1.5$ MeV (ss $m = 1432.4 \pm 1.3$ MeV width $\Gamma = 100.0 \pm 2.1$ MeV width $\Gamma = 109 \pm 5$ MeV (S Fraction (Γ_i/Γ) (49.9±1.2) %

[Lattice: HSC, PRD'18]

m_π=391 MeV

f_2^a	1470(15)	$-\frac{i}{2}160(18)$ MeV
n_2	1505(5)	$-\frac{i}{2}20(3)$ MeV
K_2^{\star}	1577(7)	$-\frac{i}{2}66(7)$ MeV
f_2^b	1602(10)	$-\frac{i}{2}54(14)$ MeV,
_		
Ι	$f_2 \rightarrow \pi \pi$	136.0 ± 22.0
Ι	$f_2 \rightarrow K\bar{K}$	19.2 ± 7.8
Ι	$f'_2 \rightarrow \pi \pi$	4.3 ± 3.1
Ι	$f'_2 \rightarrow K\bar{K}$	49.7 ± 20.1
Ι	$a_2 \rightarrow K\bar{K}$	7.1 ± 1.9
Ι	$a_2 \rightarrow \pi \eta$	13.1 ± 3.0
Ι	$K_2^* \rightarrow \pi K$	62 ± 12
	-	

a2(1320)	$I^{G}(J^{PC}) = 1^{-}(2^{+})^{+}$
----------	------------------------------------

Mass $m = 1318.2 \pm 0.6$ MeV (S = 1.2	!)
Full width $\Gamma = 107 \pm 5$ MeV ^[/]	

a2(1320) DECAY MODES	Fraction (Γ_I/Γ) Co		
3π	(70.1 ±2.7)%		
$\eta \pi$	(14.5 ±1.2)%		
$\omega \pi \pi$	(10.6 ± 3.2) %		
KK	(4.9 ±0.8)%		
$\eta'(958)\pi$	$(5.5 \pm 0.9) \times$	10^{-3}	
$\pi^{\pm}\gamma$	$(2.91\pm0.27)\times10^{-3}$		
$\gamma\gamma$	(9.4 ±0.7)×	10^{-6}	
e+e-	< 5 ×	10-9	

K2(1430) DECAY MODES	Fraction (1 / 1)		
Kπ	(49.9±1.2) %		
K*(892)π	(24.7±1.5) %		
K [*] (892)ππ	(13.4±2.2) %		
Κρ	(8.7±0.8)%		
Kω	(2.9±0.8) %		
$K^+\gamma$	$(2.4\pm0.5)\times10^{-3}$		
Kη	$(1.5^{+3.4}_{-1.0}) \times 10^{-3}$		
$K\omega\pi$	$< 7.2 \times 10^{-4}$		
$K^0\gamma$	$< 9 \times 10^{-4}$		

Masses, $T \rightarrow PP'$, $T \rightarrow P\gamma$ will be focused in this talk.

Tensor mesons in Resonance Chiral Theory

Tensor meson with $J^P = 2^+$: symmetric rank-2 tensor $T_{\mu\nu}$

The on-shell tensor is traceless, i.e. $T_{\mu}^{\mu} = 0$

 $\mathcal{L}_{\mathrm{kin}} = -\frac{1}{2} \langle T_{\mu\nu} D^{\mu\nu,\rho\sigma} T_{\rho\sigma} \rangle$ $D^{\mu\nu,\rho\sigma} = (\Box + M_T^2) \left[\frac{1}{2} (g^{\mu\rho} g^{\nu\sigma} + g^{\mu\sigma} g^{\nu\rho}) - g^{\mu\nu} g^{\rho\sigma} \right]$ $+ g^{\mu\nu} \partial^{\rho} \partial^{\sigma} + g^{\rho\sigma} \partial^{\mu} \partial^{\nu}$ $- \frac{1}{2} (g^{\mu\sigma} \partial^{\rho} \partial^{\nu} + g^{\mu\rho} \partial^{\nu} \partial^{\sigma} + g^{\nu\sigma} \partial^{\rho} \partial^{\mu} + g^{\nu\rho} \partial^{\mu} \partial^{\sigma})$

$$\mathcal{L}_m^{(0)} = -rac{M_T^2}{2} \langle T_{\mu
u} T^{\mu
u}
angle$$

$$\sum_{\lambda} \epsilon_{\mu\nu}(k;\lambda) \epsilon^*_{\rho\sigma}(k;\lambda) = \frac{1}{2} \left(P_{\mu\rho} P_{\nu\sigma} + P_{\nu\rho} P_{\mu\sigma} \right) - \frac{1}{3} P_{\mu\nu} P_{\rho\sigma} \\ \left(P_{\mu\nu} \equiv g_{\mu\nu} - \frac{k_{\mu}k_{\nu}}{M_T^2} \right)$$

[Bellucci et al., NPB'94] [Toublan, PRD'96] [Ecker Zauner, EPJC'07]

Interactions between resonances and pseudo Nambu-Goldstone bosons (pNGBs)

1/Nc counting rule: number of traces

One additional trace brings one more 1/Nc suppression factor.

- Quark-mass corrections only enter via the operators themselves. Couplings are independent of m_q (crucial for chiral extrapolation).
- Flavor assignment for light-flavor tensor nonet

$$T_{\mu\nu} = \begin{pmatrix} \frac{a_2^0}{\sqrt{2}} + \frac{f_2^8}{\sqrt{6}} + \frac{f_2^0}{\sqrt{3}} & a_2^+ & K_2^{*+} \\ a_2^- & -\frac{a_2^0}{\sqrt{2}} + \frac{f_2^8}{\sqrt{6}} + \frac{f_2^0}{\sqrt{3}} & K_2^{*0} \\ K_2^{*-} & \bar{K}_2^{*0} & -\frac{2f_2^8}{\sqrt{6}} + \frac{f_2^0}{\sqrt{3}} \end{pmatrix}_{\mu\mu}$$

Relevant operators for the *T* **masses**

[Chen, Cheng, Yan, Duan, ZHG, PRD'23]

$$\mathbf{LO} \qquad \qquad \mathcal{L}_m^{(0)} = -\frac{M_T^2}{2} \langle T_{\mu\nu} T^{\mu\nu} \rangle$$

N

NLO
$$\mathcal{L}_{m}^{(1)} = \lambda_{T} \langle T_{\mu\nu} T^{\mu\nu} \chi_{+} \rangle + \lambda_{T}' \langle T_{\mu\nu} \rangle \langle T^{\mu\nu} \rangle \qquad \mathbf{O}(\delta) \sim \mathbf{O}(p^{2}) \sim \mathbf{O}(1/N_{c})$$
$$\underbrace{\mathcal{O}(p^{2}, N_{c}^{0})}_{\mathcal{O}(p^{2}, N_{c}^{0})} \qquad \mathcal{O}(\delta) \sim \mathbf{O}(p^{2}) \sim \mathbf{O}(1/N_{c})$$
NNLO
$$\langle T_{\mu\nu} T^{\mu\nu} \chi_{+} \chi_{+} \rangle, \quad \langle T_{\mu\nu} T^{\mu\nu} \rangle \langle \chi_{+} \rangle, \quad \langle T_{\mu\nu} \rangle \langle T^{\mu\nu} \chi_{+} \rangle$$

(impossible to pin down their coefficients when only focusing masses)

Relevant operators for the $T \rightarrow PP'$ decays

$$\begin{aligned} \mathscr{L}_{TPP}^{(0)} &= g_T \langle T_{\mu\nu} \{ u^{\mu}, u^{\nu} \} \rangle \\ \mathscr{L}_{TPP}^{(1)} &= f_T \langle T_{\mu\nu} \{ \{ u^{\mu}, u^{\nu} \}, \chi_+ \} \rangle + f_T' \langle T_{\mu\nu} (u^{\mu} \chi_+ u^{\nu} + u^{\nu} \chi_+ u^{\mu}) \rangle \\ &+ g_T' \langle T_{\mu\nu} \rangle \langle u^{\mu} u^{\nu} \rangle + g_T'' (\langle T_{\mu\nu} u^{\mu} \rangle \langle u^{\nu} \rangle + \langle T_{\mu\nu} u^{\nu} \rangle \langle u^{\mu} \rangle) , \end{aligned}$$

Operators for the $T \rightarrow P\gamma$, $\gamma\gamma$ decays

$$\mathscr{L}^{TP\gamma} = i \frac{c_{TP\gamma}}{2} \epsilon_{\mu\nu\alpha\beta} \langle T^{\alpha\lambda} [f^{\mu\nu}_{+}, \partial^{\beta} u_{\lambda}] \rangle$$

$$\mathscr{L}^{(0)}_{T\gamma\gamma} = c_{T\gamma\gamma} \langle T_{\mu\nu} \Theta^{\mu\nu}_{\gamma} \rangle, \quad \mathscr{L}^{(1)}_{T\gamma\gamma} = d_{T\gamma\gamma} \langle T_{\mu\nu} \Theta^{\mu\nu}_{\gamma} \chi_{+} \rangle \qquad \Theta^{\mu\nu}_{\gamma} = f^{\mu}_{+\alpha} f^{\alpha\nu}_{+} + \frac{1}{4} g^{\mu\nu} f^{\rho\sigma}_{+} f_{+\rho\sigma}$$

Phenomenologies

Masses of tensor resonances

$$f_2^8 = \sin \theta_T f_2 + \cos \theta_T f_2', \quad f_2^0 = \cos \theta_T f_2 - \sin \theta_T f_2'$$

Up to NLO

$$M_{f_2}^2 = M_T^2 - 4\lambda_T m_K^2 - 3\lambda_T' - \sqrt{16\lambda_T^2 (m_K^2 - m_\pi^2)^2 - 8\lambda_T \lambda_T' (m_K^2 - m_\pi^2) + 9\lambda_T'^2}$$
$$M_{f_2'}^2 = M_T^2 - 4\lambda_T m_K^2 - 3\lambda_T' + \sqrt{16\lambda_T^2 (m_K^2 - m_\pi^2)^2 - 8\lambda_T \lambda_T' (m_K^2 - m_\pi^2) + 9\lambda_T'^2}$$
$$M_{a_2}^2 = M_T^2 - 4\lambda_T m_\pi^2$$

 $M_{K_2^*}^2 = M_T^2 - 4\lambda_T m_K^2$

Case 1: Exp data only

Exp data
$$M_{f_2}^{\text{Exp}} = 1275.5 \pm 0.8,$$
 $M_{a_2}^{\text{Exp}} = 1318.2 \pm 0.6,$ $M_{K_2^*}^{\text{Exp}} = 1429.9 \pm 4.1,$ $M_{f_2'}^{\text{Exp}} = 1517.4 \pm 2.5,$

Fitted parameters

 $M_T = (1308.5 \pm 1.2) \text{ MeV}, \quad \lambda_T = -0.336 \pm 0.008, \quad \lambda'_T = (25718 \pm 1054) \text{ MeV}^2$ **Prediction:** $\theta_T^{\text{Phy}} = (29.1 \pm 0.1)^\circ$

Case 2: Lat data only

Lat data	$M_{f_2}^{ m Lat} = 1470 \pm 15,$	$M_{a_2}^{ m Lat} = 1505 \pm 5,$
$(m_{\pi}=391 \text{ MeV}, m_{K}=550 \text{ MeV})$	$M_{K_2^*}^{ m Lat} = 1577 \pm 7,$	$M_{f_2'}^{\rm Lat} = 1602 \pm 10,$

Fitted parameters

 $M_T = (1444 \pm 18) \text{ MeV}, \quad \lambda_T = -0.307 \pm 0.052, \quad \lambda'_T = (27920 \pm 16526) \text{ MeV}^2,$ **Prediction:** $\theta_T^{\text{Lat}} = (25.0^{+5.6}_{-4.4})^{\circ}$

An important lessson:

• Mass splitting parameters λ_T , λ_T ' from Exp and Lat are compatible, while M_T from the two fits are different.

Case 3: Joint fit to both data from Exp and Lat [Chen, Cheng, Yan, Duan, ZHG, PRD'23]

To reconcile M_T from Exp and Lat: $\lambda_T'' \langle T_{\mu\nu} T^{\mu\nu} \rangle \langle \chi_+ \rangle$ (NNLO)

$$M_T = (998.7 \pm 26.4)$$
 MeV, $\lambda_T = -0.335 \pm 0.009$,

Parameters from joint fit

$$\lambda'_T = (25732 \pm 1216) \text{ MeV}^2, \qquad \lambda''_T = -0.350 \pm 0.026,$$

$T \rightarrow P P' \text{ decays } (P=\pi,K,\eta,\eta')$

Two-mixing-angle formalism for $\eta - \eta'$ $\begin{pmatrix} \eta \\ \eta' \end{pmatrix} = \frac{1}{F} \begin{pmatrix} F_8 \cos \theta_8 & -F_0 \sin \theta_0 \\ F_8 \sin \theta_8 & F_0 \cos \theta_0 \end{pmatrix} \begin{pmatrix} \eta_8 \\ \eta_0 \end{pmatrix}$

Examples of decay width formulas

$$\begin{split} \Gamma_{f_2 \to \pi\pi} &= \left[\frac{4\cos\theta_T + 2\sqrt{2}\sin\theta_T}{F_{\pi}^2} g_T + \frac{(16\cos\theta_T + 8\sqrt{2}\sin\theta_T)m_{\pi}^2}{F_{\pi}^2} f_T + \frac{6\cos\theta_T}{F_{\pi}^2} g_T' \right. \\ &+ \frac{(8\cos\theta_T + 4\sqrt{2}\sin\theta_T)m_{\pi}^2}{F_{\pi}^2} f_T' \right]^2 \frac{p^5(m_{f_2}, m_{\pi}, m_{\pi})}{30\pi m_{f_2}^2}, \end{split}$$

$$\begin{split} &\Gamma_{f_2 \to \eta \eta} = \\ &\left\{ \frac{2}{3\sqrt{3}F_0^2 F_8^2 \cos^2(\theta_0 - \theta_8)} \{ -\sin\theta_T [\sqrt{2}F_0^2 [3g_T + 2(2f_T + f_T')(8m_K^2 - 5m_\pi^2)] \cos^2\theta_0 \\ &+ 2F_0 F_8 [6g_T + 8f_T (4m_K^2 - m_\pi^2)] \cos\theta_0 \sin\theta_8 + 8\sqrt{2}F_8^2 (2f_T + f_T')(m_K^2 - m_\pi^2) \sin^2\theta_8] \\ &+ \cos\theta_T [F_0^2 [6g_T + 8f_T (4m_K^2 - m_\pi^2)] \cos^2\theta_0 + 16\sqrt{2}F_0 F_8 (2f_T + f_T')(m_K^2 - m_\pi^2) \cos\theta_0 \sin\theta_8 \\ &+ F_8^2 (6g_T + 9g_T' + 16f_T m_K^2 + 8f_T' m_K^2 + 8f_T m_\pi^2 + 4f_T' m_\pi^2) \sin^2\theta_8] \} \right\}^2 \frac{p^5(m_{f_2}, m_\eta, m_\eta)}{30\pi m_{f_2}^2}, \end{split}$$

For others channels, see

[Chen, Cheng, Yan, Duan, ZHG, PRD'23]

Fit I: One-mixing-angle description for η - η ' (F₈=F₀=F, θ_8 = θ_0 = θ)

Parameters from the joint fit to the widths from Exp and Lat

 $g_T = (16.6 \pm 1.1) \text{ MeV}, \qquad f_T = (3.9 \pm 1.4) \times 10^{-6} \text{ MeV}^{-1},$ $g'_T = (4.8 \pm 0.6) \text{ MeV}, \qquad f'_T = (-3.1 \pm 2.9) \times 10^{-6} \text{ MeV}^{-1}, \qquad \theta^{\text{Phy}} = (-9.0 \pm 5.5)^\circ,$

Important: F_{π} = F_{K} =F must be taken to obtain reasonable fit, which is consistent with the one-mixing-angle description.

Fit II: Two-mixing-angle description for η-η'

$$g_T = (19.9 \pm 1.5) \text{ MeV}, \qquad f_T = (1.2 \pm 0.2) \times 10^{-5} \text{ MeV}^{-1},$$

 $g'_T = (6.3 \pm 0.7) \text{ MeV}, \qquad f'_T = (7.5 \pm 5.3) \times 10^{-6} \text{ MeV}^{-1}, \qquad \theta_8^{\text{Phy}} = (-17.3 \pm 6.3)^\circ,$

Important: we need to distinguish F_{π} , F_{K} in the decay widths, which is consistent with the two-mixing-angle description that receives from higher order chiral corrections.

÷.	[PDG, 2022]	Fit I	Fit II
$\Gamma_{f_2 \to \pi\pi}$	157.2 ± 7.3	156.9 ± 14.3	157.2 ± 15.5
$\Gamma_{f_2 \to K\bar{K}}$	8.6 ± 1.1	9.4 ± 1.5	8.6 ± 1.6
$\Gamma_{f_2 \to \eta\eta}$	0.7 ± 0.2	1.0 ± 0.2	0.8 ± 0.3
$\Gamma_{f'_2 \to \pi\pi}$	0.7 ± 0.2	0.6 ± 0.5	0.7 ± 0.4
$\Gamma_{f'_2 \to K\bar{K}}$	75.3 ± 6.3	74.1 ± 12.4	70.2 ± 12.3
$\Gamma_{f'_2 \to \eta \eta}$	10.0 ± 2.6	9.7 ± 3.5	7.5 ± 2.9
$\Gamma_{a_2 \to K\bar{K}}$	5.2 ± 1.1	3.3 ± 1.2	4.0 ± 1.3
$\Gamma_{a_2 \to \pi \eta}$	15.5 ± 2.1	13.3 ± 2.9	13.2 ± 3.4
$\Gamma_{a_2 \to \pi \eta'}$	0.6 ± 0.1	0.6 ± 0.1	0.6 ± 0.1
$\Gamma_{K_2^* \to \eta K}$	$0.2^{+0.4}_{-0.2}$	$0.2^{+0.4}_{-0.2}$	$0.1\substack{+0.4\\-0.1}$
$\Gamma_{K_2^* \to \pi K}$	52.1 ± 6.1	53.5 ± 6.4	59.9 ± 7.1

	- THSC		
	PRD'15 '18]	Fit I	Fit II
$\Gamma_{f_2 \to \pi\pi}$	136.0 ± 22.0	132.0 ± 10.8	117.0 ± 10.2
$f_2 \rightarrow K\bar{K}$	19.2 ± 7.8	24.4 ± 3.7	20.9 ± 3.3
$\Gamma_{f'_2 \to \pi\pi}$	4.3 ± 3.1	$(1.2^{+16.5}_{-1.2}) \times 10^{-2}$	0.2 ± 0.2
$f'_2 \rightarrow K\bar{K}$	49.7 ± 20.1	59.7 ± 9.2	53.4 ± 7.8
$a_2 \rightarrow K\bar{K}$	7.1 ± 1.9	8.0 ± 2.3	9.2 ± 2.2
$\Gamma_{a_2 \to \pi n}$	13.1 ± 3.0	13.8 ± 2.5	17.9 ± 2.0
$\Gamma_{K_{2}^{*} \rightarrow \pi K}$	62 ± 12	47.4 ± 6.3	48.4 ± 6.4

Predictions to the trajectories of decay widths by varying m_{π}

$$\begin{array}{l} \bigstar \quad T \rightarrow P \gamma \\ \mathcal{L}^{TP\gamma} = i \frac{c_{TP\gamma}}{2} \epsilon_{\mu\nu\alpha\beta} \langle T^{\alpha\lambda} [f^{\mu\nu}_{+}, \partial^{\beta} u_{\lambda}] \rangle \\ \Gamma^{Exp}_{a_{2}^{\pm} \rightarrow \pi^{\pm}\gamma} = (0.31 \pm 0.04) \text{ MeV}, \\ \Gamma^{Exp}_{K_{2}^{*\pm} \rightarrow K^{\pm}\gamma} = (0.24 \pm 0.06) \text{ MeV}, \end{array}$$

$$\begin{array}{l} c_{TP\gamma} = (5.4 \pm 0.5) \times 10^{-5} \text{ MeV}^{-1} \\ \Gamma^{Theo}_{a_{2}^{\pm} \rightarrow \pi^{\pm}\gamma} = (0.30 \pm 0.04) \text{ MeV}, \\ \Gamma^{Theo}_{K_{2}^{\pm} \rightarrow \pi^{\pm}\gamma} = (0.25 \pm 0.03) \text{ MeV}, \end{array}$$

Lesson: the LO $c_{TP\gamma}$ is already enough to describe the available $T \rightarrow P\gamma$ data. $T \rightarrow \gamma\gamma$ decays $\Gamma_{f_2 \rightarrow \gamma\gamma}^{\text{Exp}} = 2.7 \pm 0.5$, $\Gamma_{f'_2 \rightarrow \gamma\gamma}^{\text{Exp}} = 0.082 \pm 0.015$, $\Gamma_{a_2 \rightarrow \gamma\gamma}^{\text{Exp}} = 1.0 \pm 0.1$ Case 1: only take LO $\mathcal{L}_{T\gamma\gamma}^{(0)} = c_{T\gamma\gamma} \langle T_{\mu\nu} \Theta_{\gamma}^{\mu\nu} \rangle$

- Fix $\theta_T = 29.0^\circ$ from the mass determination, an overall description to all the three channels can not be satisfactorily achieved.
- To free θ_T , one would obtain $\theta_T = 27.2 \pm 1^\circ$, which disagrees with $\theta_T = 29.0 \pm 0.4^\circ$ from the mass determination.

Case 2: LO + NLO $\mathcal{L}_{T\gamma\gamma}^{(0)} = c_{T\gamma\gamma} \langle T_{\mu\nu} \Theta_{\gamma}^{\mu\nu} \rangle \quad \mathcal{L}_{T\gamma\gamma}^{(1)} = d_{T\gamma\gamma} \langle T_{\mu\nu} \Theta_{\gamma}^{\mu\nu} \chi_{+} \rangle$

Fix $\theta_{\rm T} = 29.0^{\circ}$, $c_{T\gamma\gamma} = (2.4 \pm 0.1) \times 10^{-4} \text{ MeV}^{-1}$, the fit gives $d_{T\gamma\gamma} = (-3.2 \pm 1.5) \times 10^{-11} \text{ MeV}^{-3}$, $\Gamma_{f_2 \to \gamma\gamma}^{\text{Theo}} = 2.6 \pm 0.2$, $\Gamma_{f'_2 \to \gamma\gamma}^{\text{Theo}} = 0.082 \pm 0.015$, $\Gamma_{a_2 \to \gamma\gamma}^{\text{Theo}} = 1.0 \pm 0.1$,

Summary

- Quark-mass and 1/Nc corrections are systematically incorpoated for the tensor mesons within Resonance Chiral Theory.
- > Tensor masses and $T \rightarrow PP'$ decay widths from Exp and Lat are well described. The f_2 - f_2' mixing angle and the pion-mass dependence of tensor masses and decay widths are predicted.
- Satisfactory descripitons of two types of radiative decays: $T \rightarrow P\gamma \& T \rightarrow \gamma\gamma$, are obtained.
- > This work provides useful inputs to the future study of the tensor contributions to the $PP' \rightarrow PP'$ and $P\gamma \rightarrow P'\gamma$ and $\gamma\gamma \rightarrow \gamma\gamma$ processes.