Experimental review on conventional heavy flavor spectroscopy

Jibo HE (何吉波), UCAS (中国科学院大学) 第六届强子谱与强子结构研讨会 (August 27-30, 2023)

Quark model & Strong interaction

- Flavor: *u*, *d*, *s*, *c*, *b*, *t*
- Color: R, G, B
- Hadron: Colorless
 - Meson: $Q\bar{q}$

– Baryon: $Qqq^{(\prime)}$

Volume 8, number 3	PHYSICS LETTERS	1 February 1964
A SCI	HEMATIC MODEL OF BARYONS AND ME	SONS *
	M. GELL-MANN	
	California Institute of Technology, Pasadena, California	
	Received 4 January 1964	
We then refe	r to the members u3, d-	$\frac{1}{3}$, and $s^{-\frac{1}{3}}$ of
he triplet as	''quarks'' 6) g and the m	embers of the
nti trinlot o	a anti-guarka a Baryon	s con now bo
unti-tripiet a	s anti-quarks q. Baryons	s call now be
constructed f	rom quarks by using the	combinations
aga), (aga	(\bar{a}) , etc., while mesons	are made out
444/3 (444	(\mathbf{q}) , (\mathbf{r}) , (\mathbf{r})	
NT IAAN IAAA	(α) of (α) if is assuming i	rnar rne lowes

SU(4)

• Meson/Baryon by *u,d,s,c*

Samuel C.C.Ting

Hadron spectroscopy

- Test our knowledge of QCD: mass & width
- Today's discovery, tomorrow's precision tool $-B_{s2}^{*0}$ state, used to tag B^+ , E_{miss} reconstruction

Present main players

CMS

New excited B_s^0 states

- Observed in $m(B^+K^-)$
 - directly to B^+K^-
 - through $B^{*+}K^{-}$

 $m_1 = 6063.5 \pm 1.2 \text{ (stat)} \pm 0.8 \text{ (syst)} \text{ MeV},$ $\Gamma_1 = 26 \pm 4 \text{ (stat)} \pm 4 \text{ (syst)} \text{MeV},$ $m_2 = 6114 \pm 3 \text{ (stat)} \pm 5 \text{ (syst) MeV},$ $\Gamma_2 = 66 \pm 18 \text{ (stat)} \pm 21 \text{ (syst) MeV},$ $f_1 = 0.47 \pm 0.11 \text{ (stat)} \pm 0.15 \text{ (syst)},$

if through $B^{*+}K^-$, $B^{*+} \rightarrow B^+\gamma$ $m_1 = 6108.8 \pm 1.1 \text{ (stat)} \pm 0.7 \text{ (syst) MeV},$ $\Gamma_1 = 22 \pm 5 \text{ (stat)} \pm 4 \text{ (syst) MeV},$ $m_2 = 6158 \pm 4 \text{ (stat)} \pm 5 \text{ (syst) MeV},$ $\Gamma_2 = 72 \pm 18 \text{ (stat.)} \pm 25 \text{ (syst)} \text{ MeV},$ $f_1 = 0.42 \pm 0.11 \text{ (stat)} \pm 0.16 \text{ (syst)}.$

 $(\overline{b}s)$

Charmonium(like) states

[F.-K. Guo (郭奉坤), PoS LATTICE 2022 (2023) 232]

Charmonium in $B \rightarrow (K_S^0 K \pi) K$ ($c\bar{c}$)

• Best single measurement of $\eta_c, \eta_c(2S)$ mass/width

Final state	p-val. [%]	Res.	Mass [MeV]	Width [MeV]	Yield
$K^0_{\rm S}K^+K^-\pi^+$	16.3	η_c	$2984.84 \pm 0.23 \pm 1.01$	$30.0 \pm 0.7 \pm 0.2$	17700 ± 190
		$J\!/\psi$	$-0.27 \pm 0.11 \pm 0.61$	0.0929 (fixed)	3386 ± 70
$K^0_{ m S}K^+K^+\pi^-$	1.5	η_c	$2985.19 \pm 0.24 \pm 1.88$	$29.4\pm0.8\pm0.8$	17210 ± 210
		J/ψ	$-0.81 \pm 0.11 \pm 0.67$		3310 ± 80
Average		η_c	$2985.01 \pm 0.17 \pm 0.89$	$29.7 \pm 0.5 \pm 0.2$	
		$J\!/\psi$	$-0.54 \pm 0.08 \pm 0.45$		
$K^0_{\rm S}K^+K^-\pi^+$	46.6	$\eta_c(2S)$	$3636.92 \pm 0.71 \pm 1.50$	$11.70 \pm 2.04 \pm 1.39$	1960 ± 80
		χ_{c1}	$3509.32 \pm 0.70 \pm 0.84$	0.88 (fixed)	1300 ± 50
$K^0_{ m S}K^+K^+\pi^-$	5.3	$\eta_c(2S)$	$3639.28 \pm 0.84 \pm 3.83$	$9.18 \pm 2.67 \pm 1.70$	1720 ± 100
		χ_{c1}	$3510.35 \pm 0.69 \pm 1.00$		1460 ± 70
Average		$\eta_c(2S)$	$3637.90 \pm 0.54 \pm 1.40$	$10.77 \pm 1.62 \pm 1.08$	
		χ_{c1}	$3509.84 \pm 0.69 \pm 0.64$		

B_c^+ spectroscopy

• B_c has a rich spectrum

GKLRY *

State

Decav

B⁺_c mass measurement (b̄c) Six decay modes, with all Run1+2 data, precision improved by a factor of 2

Bottomonium(like) states

New structure $\Upsilon(10753)$

• In the E-dependence of $e^+e^- \rightarrow \Upsilon(nS)\pi^+\pi^$ cross-sections

 $M = 10752.7 \pm 5.9^{+0.7}_{-1.1} \text{ MeV}$ $\Gamma = 35.5^{+17.6}_{-11.3} \stackrel{+3.9}{_{-3.3}} \text{ MeV}$

Charmed baryon spectroscopy

Evidence of $\Lambda_c^+(2910)$ • In $\overline{B}{}^0 \rightarrow \Sigma_c(2455)^{++/0}\pi^{\pm}\bar{p}$ decays, 4.2 σ , good candidate as $\Lambda_c^+(1/2-, 2P)$ [PRL 130 (2023) 031901] $m = 2913.8 \pm 5.6 \pm 3.8$ MeV Data All Fit

(cud)

[PRL 124 (2020) 222001

 $\Xi_c(2965)^0$

 $14.1 \pm 0.9 \pm 1.3$

18

\mathcal{Z}_{c}^{**0} in B^{+} decay

- $B^+ \to \Lambda_c^+ \bar{\Lambda}_c^- K^+$
 - $\mathcal{E}_c(2923)^0$ and $\mathcal{E}_c(2939)^0$ confirmed

 $M(\Lambda_c^+ \overline{\Lambda}_c^- K^-)$ [MeV]

- Evidence for a new state $\Xi_c(2880)^0$ Events / 10 MeV/c² Fotal non Ξ_c(2930) Bkg Phase Space Sideband **Generic MC** Mass (MeV) Width (MeV) Significance State 15 10 $2881.8 \pm 3.1 \pm 8.5 \quad 12.4 \pm 5.2 \pm 5.8$ 3.8*σ* $\Xi_c(2880)^0$ $\Xi_c(2923)^0$ 2924.5 ± 0.4 ± 1.1 4.8 ± 0.9 ± 1.5 $> 10\sigma$ $\Xi_c(2939)^0$ 2938.5 ± 0.9 ± 2.3 11.0 ± 1.9 ± 7.5 2.8 2.85 2.9 2.95 $> 10\sigma$ $M_{K\Lambda_c}$ (GeV/c²) Candidates / (3 MeV) 250 (3 MeV $\Xi_c(2923)^0$ 140 - data LHCb $5 \, \text{fb}^{-1}$ — total fit 200 120 ----- excited Ξ_c^0 Candidates 100 $\Xi_c(2939)^0$ ····· non-resonant 150 ····· background 80 100 60 40 $\Xi_{c}(2880)^{0}?$ 50 $(2790)^0?$ 20 0 5250 5300 5350 2850 2900 2950 2800

 $M(\Lambda_c^+K^-)$ [MeV]

(csd)

Ω_c^0 mass

• Best measurement of Ω_c^0 mass while observing its CS decays $\Omega^- K^+, \Xi^- \pi^+$

Candidates/(1 MeV 🕂 Data LHCb - Total fit $m(\Omega_c^0) = 2695.28 \pm 0.07 \pm 0.27 \pm 0.30 \text{ MeV}$ $5.4 \, \text{fb}^{-1}$ Signal Background 2695.2 ± 1.7 MeV, PDG 2023 Candidates/(1 MeV) 009 008 008 LHCb 5.4 fb^{-1} 2700 2680 2720 2740 2660 $M(\Omega^{-}K^{+})$ [MeV] Candidates/(1 MeV) 000 000 000 000 LHCb $5.4 \, \text{fb}^{-1}$ 200 100

2720

 $M(\Omega^{-}\pi^{+})$ [MeV]

2740

2680

2660

2700

2720

 $M(\Xi^{-}\pi^{+})$ [MeV]

2680

2660

2700

20

2740

(css)

Observation of excited Ω_c^0 states

- Five states observed in $m(\Xi_c^+K^-)$ in 2017, nature unclear
 - Excited Ω_c^0 (css), molecular, pentaquark (cssq \bar{q})?

Ω_c^{**0} in Ω_b^- decay

400

(css)

LHCb

 $+ \Xi_c^+ K^-$

-Full fit

 $\Omega_b^- \to \Xi_c^+ K^- \pi^-$ [PRD 104 (2021) L091102] Candidates / (12 MeV)

22

• Spin of Ω_c^{**0} probed, not conclusive yet – Assignment of (1/2, 1/2, 3/2, 3/2) rejected by 3.5σ

Two new charmed hadrons

Difficult to distinguish threshold structure and feed-down

 $m(\Xi_c^+K^-)$ [MeV]

Doubly heavy baryons

- Production @ 13 TeV, in LHCb acceptance $-\sigma(\Xi_{cc}^{++}) = \sigma(\Xi_{cc}^{+}) \sim 40 \text{ nb}, \sigma(\Omega_{cc}^{+}) \sim 13 \text{ nb}$ $-\sigma(\Xi_{bc}^{+}) = \sigma(\Xi_{bc}^{0}) \sim 17 \text{ nb}, \sigma(\Omega_{bc}^{0}) \sim 5 \text{ nb}$
 - $-M(\mathcal{Z}_{cc}^{+}) \approx M(\mathcal{Z}_{cc}^{++}): 3.5-3.7 \text{ GeV}, M(\Omega_{cc}^{+}), +0.1-0.2 \text{ GeV}$ $-M(\mathcal{Z}_{bc}^{+}) \approx M(\mathcal{Z}_{bc}^{0}): 6.8-7.1 \text{ GeV}, M(\Omega_{bc}^{0}), +0.05-0.1 \text{ GeV}$
- Lifetime

$$-\tau(\Xi_{cc}^{+}) \approx \tau(\Omega_{cc}^{+}) \approx \frac{1}{3}\tau(\Xi_{cc}^{++}), \tau(\Xi_{cc}^{++}): 0.2-1.05 \text{ ps}$$

$$-\Xi_{bc}^{+}, \ \Xi_{bc}^{0}, \ \Omega_{bc}^{0}: 0.1-0.5 \text{ ps}$$

Decay $\mathcal{Z}_{c}^{+}\pi^{+}$ [PRL 121 (2018) 162002]

 $\Xi_c^{\prime +} \pi^+_{\text{[JHEP 05 (2022) 038]}}$

Observation of $\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$

- $\Lambda_c^+ K^- \pi^+ \pi^+$ identified as the most promising channel [F.-S. Yu *et al.*, CPC 42 (2018) 051001]
- $E^{\underline{z}_{cc}^{++}} = E_{cc}^{\underline{z}_{cc}^{++}} = \frac{\Lambda_c^{+}}{\underline{z}_{cc}^{++}} = \frac{\kappa^{-} \pi^{+}}{\underline{z}_{cc}^{+}} = \frac{\kappa^{-} \pi^{-}}{\underline{z}_{cc}^{+}} = \frac{\kappa^{-} \pi^{-}}{\underline$
- First observation, in 2016 (>12σ) & Run-I (>7σ)

[PRL 119 (2017) 112001]

Precision measurement of $m(\Xi_{cc}^{++})$

 UROP, preparing to search for excited states, event-selection re-optimised

 $m(\Xi_{cc}^{++}) = 3621.55 \pm 0.23 \pm 0.30 \text{ MeV}/c^2$ c.f., 3620.6 \pm 0.65 \pm 0.31 MeV/c^2

Search for Ω_{cc}^+ (ccs)

- $\Omega_{cc}^+ \to \Xi_c^+ K^- \pi^+$
 - Hint at 3876 MeV, local (global) significance of $3.2\sigma (1.8\sigma)$
 - Production relative to \mathcal{Z}_{cc}^{++}

Search for Ξ_{bc}^+ (bcu)

- $\Xi_{bc}^+ \to J/\psi \Xi_c^+$

 - Production relative to $B_c^+ \rightarrow J/\psi D_s^+$

Beauty baryons

Observation of $\mathcal{Z}_{h}(6100)^{-1}$

(bsd)

PRL 126 (2021) 252003]

32

$E_b(6327)^0 \text{ and } E_b(6333)^0$ (bsu)

• Observed in $\Lambda_b^0 K^- \pi^+$, consistent w/ 1D doublets

$$\begin{split} m_{\Xi_b(6327)^0} &= 6327.28 \,{}^{+0.23}_{-0.21}(\text{stat}) \pm 0.12(\text{syst}) \pm 0.24(m_{A_b^0}) \,\,\text{MeV} \\ m_{\Xi_b(6333)^0} &= 6332.69 \,{}^{+0.17}_{-0.18}(\text{stat}) \pm 0.03(\text{syst}) \pm 0.22(m_{A_b^0}) \,\,\text{MeV} \\ \Delta m &\equiv m_{\Xi_b(6333)^0} - m_{\Xi_b(6327)^0} = 5.41 \,{}^{+0.26}_{-0.27}(\text{stat}) \pm 0.12(\text{syst}) \,\,\text{MeV} \\ \Gamma_{\Xi_b(6327)^0} &< 2.20 \,\,(2.56) \,\,\text{MeV} \,\,\text{at} \,\,90\% \,\,(95\%) \,\,\text{CL} \\ \Gamma_{\Xi_b(6333)^0} &< 1.60 \,\,(1.92) \,\,\text{MeV} \,\,\text{at} \,\,90\% \,\,(95\%) \,\,\text{CL} \end{split}$$

$\Xi_{h}(6087)^{0}$ and $\Xi_{h}(6095)^{0}$

- Two new states observed
 - $-\Xi_{h}(6087)^{0} \rightarrow \Xi_{h}'(\Xi_{h}^{0}\pi^{-})\pi^{+}$ $-\Xi_{h}(6095)^{0} \rightarrow \Xi_{h}^{*-}(\Xi_{h}^{0}\pi^{-})\pi^{+}$

(bsu)

Confirmation

1st Obser

Improvements

Value [MeV]

 $6099.74 \pm 0.11 \pm 0.02 \pm 0.6 (\Xi_h^{-})$

 $6087.24 \pm 0.20 \pm 0.06 \pm 0.5 \ (\Xi_b^0)$

 $6095.36 \pm 0.15 \pm 0.03 \pm 0.5 (\Xi_b^0)$

 $5952.37 \pm 0.02 \pm 0.01 \pm 0.6 \ (\Xi_{h}^{-})$

 $5935.13 \pm 0.01 \pm 0.00 \pm 0.5 \ (\Xi_h^0)$

 $23.60 \pm 0.11 \pm 0.02$

 $0.94 \pm 0.30 \pm 0.08$

 $16.20 \pm 0.20 \pm 0.06$

 $2.43 \pm 0.51 \pm 0.10$

 $24.32 \pm 0.15 \pm 0.03$

 $0.50 \pm 0.33 \pm 0.11$

 $15.80 \pm 0.02 \pm 0.01$

 $0.87 \pm 0.06 \pm 0.05$

 $3.66 \pm 0.01 \pm 0.00$

 $0.03 \pm 0.01 \pm 0.03$

 $24.27 \pm 0.03 \pm 0.01$

 $1.43 \pm 0.08 \pm 0.08$

 $Q_0(\Xi_b^-(6100))$

 Γ ($\Xi_{b}^{-}(6100)$)

 $m_0(\Xi_h^-(6100))$

 $Q_0 (\Xi_b^0(6087))$

 $m_0(\Xi_b^0(6087))$

 $Q_0(\Xi_b^0(6095))$

 Γ ($\Xi_{b}^{0}(6095)$)

 $m_0(\Xi_b^0(6095))$

 $Q_0(\Xi_b^{*0})$

 Γ (Ξ_{h}^{*0})

 $m_0(\Xi_{h}^{*0})$

 $Q_0(\Xi_{b}^{'-})$

 Γ $(\Xi_{b}^{\prime-})$

 $m_0(\Xi_b^{'-})$

 $Q_0(\Xi_b^{*-})$

 $(\Xi_{k}^{0}(6087))$

Ω_b^- mass

• Mass difference measured using $\Omega_b^- \rightarrow J/\psi \Omega^-(\Lambda K^-)$ and $\Xi_b^- \rightarrow J/\psi \Xi^-(\Lambda \pi^-)$

(bss)

Summary

- Many results on the conventional heavy flavor spectroscopy in the past years
 - Meson: $D_{s0}(2590)^+, B_c^{(*)}(2S)^+$
 - Quarkonium: $\Upsilon(10753)$
 - Charmed baryon: excited Ω_c/Ξ_c states
 - Doubly heavy baryon: Ξ_{cc}^{++}
 - Beauty baryon: excited Ω_b/Ξ_b states

Much more will come soon, stay tuned

• Your suggestions are always welcome