第六届强子谱和强子结构研讨会

河北师范大学

PHYSICAL REVIEW D 107, 034022 (2023)

in collaboration with Yun-Hua Chen, Chun-Gui Duan, and Zhi-Hui Guo

Outline:

- 1. 引言
- 2. 有效拉氏量的构造
- 3. 跃迁振幅的计算
- 4. 整体拟合和唯象学讨论
- 5. 总结

▶ 引言

为了解释ρπ疑难,众多理论学家给出了不同的分析:

- □ 在J/\0 质量附近存在一个矢量胶球[M. Suzuki, PRD'01]
- 在桑偶素态中存在更高的福克成分(Fock components)[Y. Q. Chen and E. Braaten, PRL'98]
- 轻味矢量ρ中的内禀粲组分(intrinsic charm portions)[S. J. Brodsky and M. Karliner, PRL'97]
- □ 波函数中的节点[S.S.Pinsky,PLB'90]
- □ 介子混合机制[T. Feldmann and P. Kroll, PRD'00]
- 末态相互作用[X. Q. Li, D. V. Bugg, and B. S. Zou, PRD'97, Q. Zhao, PLB'11, Q. Wang, G. Li, and Q. Zhao, PRD'12, J. M. Gerard and A. Martini, PLB'14]

>有效拉氏量的构造

我们首先引入矢量共振态的有效拉氏量。在RxT的内禀偶宇称区域中, 矢量的最小相互作用算符(矢量和光子场间的耦合)可表示为

$$\mathcal{L}_{V}^{(2)} = \frac{F_{V}}{2\sqrt{2}} \left\langle V_{\mu\nu} f_{+}^{\mu\nu} \right\rangle$$

带有pNGB和外源场的基本手征张量定义为

$$U = u^{2} = e^{i\frac{\sqrt{2}\Phi}{F}}, u_{\mu} = i[u^{+}(\partial_{\mu} - ir_{\mu})u - u(\partial_{\mu} - ul_{\mu})u^{+}], f_{\pm}^{\mu\nu} = uF_{L}^{\mu\nu}u^{+} \pm u^{+}F_{R}^{\mu\nu}u^{+}$$

九重态的矢量共振态和pNGB矩阵的味道形式分别为

$$V_{\mu\nu} = \begin{pmatrix} \frac{1}{\sqrt{2}} \rho^{0} + \frac{1}{\sqrt{6}} \omega_{8} + \frac{1}{\sqrt{3}} \omega_{0} & \rho^{+} & K^{*+} \\ \rho^{-} & -\frac{1}{\sqrt{2}} \rho^{0} + \frac{1}{\sqrt{6}} \omega_{8} + \frac{1}{\sqrt{3}} \omega_{0} & K^{*0} \\ K^{*-} & \bar{K}^{*0} & -\frac{2}{\sqrt{6}} \omega_{8} + \frac{1}{\sqrt{3}} \omega_{0} \end{pmatrix}_{\mu\nu} \Phi = \begin{pmatrix} \frac{1}{\sqrt{2}} \pi^{0} + \frac{1}{\sqrt{6}} \eta_{8} + \frac{1}{\sqrt{3}} \eta_{0} & \pi^{+} & K^{+} \\ \pi^{-} & -\frac{1}{\sqrt{2}} \pi^{0} + \frac{1}{\sqrt{6}} \eta_{8} + \frac{1}{\sqrt{3}} \eta_{0} & K^{0} \\ K^{-} & \bar{K}^{0} & -\frac{2}{\sqrt{6}} \eta_{8} + \frac{1}{\sqrt{3}} \eta_{0} \end{pmatrix}_{\mu\nu}$$

 $\eta - \eta'$ 混合

$$\begin{pmatrix} \eta \\ \eta' \end{pmatrix} = \frac{1}{F} \begin{pmatrix} F_8 \cos \theta_8 & -F_0 \sin \theta_0 \\ F_8 \sin \theta_8 & F_0 \cos \theta_0 \end{pmatrix} \begin{pmatrix} \eta_8 \\ \eta_0 \end{pmatrix}$$

夸克味基(quark-flavor basis)来描述双混合角:

$$\begin{pmatrix} \eta \\ \eta' \end{pmatrix} = \frac{1}{F} \begin{pmatrix} F_q \cos \theta_q & -F_s \sin \theta_s \\ F_q \sin \theta_q & F_s \cos \theta_s \end{pmatrix} \begin{pmatrix} \eta_q \\ \eta_s \end{pmatrix}$$

▶ 有效拉氏量的构造

内禀奇宇称(odd-intrinsic-parity)部分中的共振态手征理论拉式量包括两个 不同的类型,分别是VVP和VJP类型,J是外源场

$$\mathcal{L}_{VVP} = d_1 \varepsilon_{\mu\nu\rho\sigma} \left\langle \{V^{\mu\nu}, V^{\rho\alpha}\} \nabla_{\alpha} u^{\sigma} \right\rangle + i d_2 \varepsilon_{\mu\nu\rho\sigma} \left\langle \{V^{\mu\nu}, V^{\rho\sigma}\} \chi_{-} \right\rangle + d_3 \varepsilon_{\mu\nu\rho\sigma} \left\langle \{\nabla_{\alpha} V^{\mu\nu}, V^{\rho\alpha}\} u^{\sigma} \right\rangle + d_4 \varepsilon_{\mu\nu\rho\sigma} \left\langle \{\nabla^{\sigma} V^{\mu\nu}, V^{\rho\alpha}\} u_{\alpha} \right\rangle - i d_5 M_V^2 \sqrt{\frac{2}{3}} \varepsilon_{\mu\nu\rho\sigma} \left\langle V^{\mu\nu} V^{\rho\sigma} \right\rangle \ln(\det u)$$

$$\mathcal{L}_{VJP} = \frac{c_{1}}{M_{V}} \varepsilon_{\mu\nu\rho\sigma} \left\langle \{V^{\mu\nu}, f_{+}^{\rho\alpha}\} \nabla_{\alpha} u^{\sigma} \right\rangle + \frac{c_{2}}{M_{V}} \varepsilon_{\mu\nu\rho\sigma} \left\langle \{V^{\mu\alpha}, f_{+}^{\rho\sigma}\} \nabla_{\alpha} u^{\nu} \right\rangle + \frac{ic_{3}}{M_{V}} \varepsilon_{\mu\nu\rho\sigma} \left\langle \{V^{\mu\nu}, f_{+}^{\rho\sigma}\} \chi_{-} \right\rangle \\ + \frac{ic_{4}}{M_{V}} \varepsilon_{\mu\nu\rho\sigma} \left\langle V^{\mu\nu} [f_{-}^{\rho\sigma}, \chi_{+}] \right\rangle + \frac{c_{5}}{M_{V}} \varepsilon_{\mu\nu\rho\sigma} \left\langle \{\nabla_{\alpha} V^{\mu\nu}, f_{+}^{\rho\alpha}\} u^{\sigma} \right\rangle + \frac{c_{6}}{M_{V}} \varepsilon_{\mu\nu\rho\sigma} \left\langle \{\nabla_{\alpha} V^{\mu\alpha}, f_{+}^{\rho\sigma}\} u^{\nu} \right\rangle \\ + \frac{c_{7}}{M_{V}} \varepsilon_{\mu\nu\rho\sigma} \left\langle \{\nabla^{\sigma} V^{\mu\nu}, f_{+}^{\rho\alpha}\} u_{\alpha} \right\rangle - ic_{8} M_{V} \sqrt{\frac{2}{3}} \varepsilon_{\mu\nu\rho\sigma} \left\langle V^{\mu\nu} \tilde{f}_{+}^{\rho\sigma} \right\rangle \ln(\det u)$$

高能限制:

对耦合常数的高能限制,可以大大减少RxT中自由参数的数量。 该过程还使RxT中计算的振幅与QCD中高能行为一致。通过将VVP格林 函数的领头阶算符乘积展开式和RxT下的计算结果对比,并且要求矢 量形状因子在高能极限下趋于0,从而实现了对共振态耦合常数的高 能限制:

$$4c_{3} + c_{1} = 0, \quad c_{1} - c_{2} + c_{5} = 0, \quad c_{5} - c_{6} = \frac{N_{C}}{64\pi^{2}} \frac{M_{V}}{\sqrt{2}F_{V}},$$
$$d_{1} + 8d_{2} - d_{3} = \frac{F^{2}}{8F_{V}^{2}}, \quad d_{3} = -\frac{N_{C}}{64\pi^{2}} \frac{M_{V}^{2}}{F_{V}^{2}}, \quad c_{8} = -\frac{\sqrt{2}M_{0}^{2}}{\sqrt{3}M_{V}^{2}}c_{1}$$

▶ 有效拉氏量的构造

其次构造有效拉氏量来描述关于*J*/ψ(ψ')粒子衰变的过程。我们用Proca 矢量场来描述*J*/ψ(ψ')是为了减少顶点的数量。首先考虑*J*/ψ(ψ')衰变成一 个轻矢量和一个pNGB的强相互作用顶点:

$$\mathcal{L}_{\psi(\psi')VP} = M_{\psi(\psi')} h_1^{(\prime)} \varepsilon_{\mu\nu\rho\sigma} \psi^{(\prime)\mu} \left\langle u^{\nu} V^{\rho\sigma} \right\rangle + \frac{1}{M_{\psi(\psi')}} h_2^{(\prime)} \varepsilon_{\mu\nu\rho\sigma} \psi^{(\prime)\mu} \left\langle \{u^{\nu}, V^{\rho\sigma}\} \chi_+ \right\rangle$$
$$+ M_{\psi(\psi')} h_3^{(\prime)} \varepsilon_{\mu\nu\rho\sigma} \psi^{(\prime)\mu} \left\langle u^{\nu} \right\rangle \left\langle V^{\rho\sigma} \right\rangle$$

其中第一项与三胶子湮灭(单OZI压低)图相关,第二项表示由夸克质量引起的SU(3)味对称性的破缺,最后一项对应于双重OZI压低图。 $M_{\psi(\psi')}$ 因子的引入使得 $h_{i=1,2,3}$ 是无量纲的。电磁相互作用即 $h_{1,2,3} = 0$ 。

▶ 有效拉氏量的构造

对于J/ψ与pNGB和光子场的相互作用,可以写出相关算符,

$$\mathcal{L}_{\psi P \gamma} = g_1 \varepsilon_{\mu \nu \rho \sigma} \psi^{\mu} \left\langle u^{\nu} f_{+}^{\rho \sigma} \right\rangle + \frac{1}{M_{\psi}^2} g_2 \varepsilon_{\mu \nu \rho \sigma} \psi^{\mu} \left\langle \{u^{\nu}, f_{+}^{\rho \sigma}\} \chi_{+} \right\rangle$$

其中第二项表示 $J/\psi P\gamma$ 顶点中由夸克质量引起的SU(3)味的对称性破缺, 其中 $P = \pi$, η , η' 。

J/ψ和光子场之间的耦合可以表示为,

$$\begin{aligned} \mathcal{L}_{\psi\gamma} &= \frac{1}{2\sqrt{2}} \frac{f_{\psi}}{M_{\psi}} \left\langle \hat{\psi}_{\mu\nu} f_{+}^{\mu\nu} \right\rangle \\ & \pm r \hat{\psi}_{\mu\nu} = \partial_{\mu} \psi^{\nu} - \partial_{\nu} \psi^{\mu} , \quad f_{\psi} \\ & = \int_{\psi} \frac{27M_{\psi}\Gamma_{\psi \to e^{+}e^{-}}}{32\pi\alpha^{2}} \int_{\psi}^{\frac{1}{2}}, \\ & r = \int_{\psi} \frac{1}{2} \int_{\psi} \frac{$$

▶ 跃迁振幅的计算

 $\psi'(q) \rightarrow V(k)P(q-k)$ 衰变振幅可以写成

$$\mathcal{M}_{\psi' \to VP} = \varepsilon_{\mu\nu\rho\sigma} \epsilon^{\mu}_{\psi'} \epsilon^{\nu}_{V} q^{\rho} k^{\sigma} G_{\psi' \to VP}$$

其中q和k分别代表 ψ '和V的四动量; $s = k^2$; ϵ_{ψ} 和 ϵ_V 是极化失量。

▶ 跃迁振幅的计算

辐射衰变 J/ψ → $\eta^{(')}\gamma^{(*)}$ 的一般振幅采用如下形式表示

$$\mathcal{M}_{\psi \to \eta^{(\prime)} \gamma^*} = e \varepsilon_{\mu \nu \rho \sigma} \epsilon_{\psi}^{\mu} \epsilon_{\gamma^*}^{\nu} q^{\rho} k^{\sigma} \lambda_{\eta_c \eta^{(\prime)}} g_{\psi \eta_c \gamma^*}(s) e^{i \delta_{\eta^{(\prime)}}}$$

辐射衰变 $J/\psi(q) \rightarrow P(q-k)\gamma^*(k)$ 的一般振幅采用如下形式表示

$$\mathcal{M}_{\psi \to P\gamma^*} = e\varepsilon_{\mu\nu\rho\sigma}\epsilon^{\mu}_{\psi}\epsilon^{\nu}_{\gamma^*}q^{\rho}k^{\sigma}G_{\psi \to P\gamma^*}(s)$$

▶ 跃迁振幅的计算——衰变宽度

ψ'→VP的衰变宽度为

$$\Gamma(\psi' \to VP) = \frac{1}{96\pi M_{\psi'}^3} \left\{ \left[M_{\psi'}^2 - (M_V - m_P)^2 \right] \left[M_{\psi'}^2 - (M_V + m_P)^2 \right] \right\}^{\frac{3}{2}} \left| G_{\psi' \to VP} \right|^2$$

 $J/\psi \rightarrow P\gamma$ 的衰变宽度是

$$\Gamma(\psi \to P\gamma) = \frac{1}{3} \alpha \left(\frac{M_{\psi}^2 - M_P^2}{2M_{\psi}}\right)^3 \left| G_{\psi \to P\gamma^*}(0) \right|^2$$

 J/ψ → $P\gamma^*$ → Pl^+l^- 的衰变宽度为

$$\Gamma(\psi \to Pl^+l^-) = \int_{4m_l^2}^{(M_{\psi} - m_P)^2} \frac{\alpha^2 (2m_l^2 + s)}{72\pi M_{\psi}^3 s^3} \sqrt{s(s - 4m_l^2)} [\lambda(s, M_{\psi}, m_P)]^3 \left| G_{\psi \to P\gamma^*}(s) \right|^2 ds$$

其中

$$\lambda(s, M_{\psi}, m_{P}) = \sqrt{[s - (M_{\psi} - m_{P})^{2}][s - (M_{\psi} + m_{P})^{2}]}$$

▶ 整体拟合

F_8	$(1.41 \pm 0.02)F_{\pi}$	F_0	$(1.36 \pm 0.03)F_{\pi}$
θ_8	$(-24.3 \pm 0.4)^{\circ}$	θ_0	$(-12.8 \pm 0.5)^{\circ}$
F_V	139.04 ± 1.72	<i>c</i> ₃	0.0046 ± 0.0003
C4	-0.0014 ± 0.0001	d_2	0.100 ± 0.008
h_1	$(-2.35 \pm 0.06) \times 10^{-5}$	h_2	$(-3.08 \pm 0.60) \times 10^{-5}$
h_3	$(3.39 \pm 0.22) \times 10^{-6}$	g_1	$(-2.40 \pm 0.06) \times 10^{-5}$
g_2	$(-2.23 \pm 0.48) \times 10^{-4}$	r_1	0.40 ± 0.04
h'_1	$(0.33 \pm 0.23) \times 10^{-6}$	h'_2	$(-4.01 \pm 0.32) \times 10^{-5}$
h'_3	$(0.85 \pm 0.47) \times 10^{-6}$	g'_1	$(-1.70 \pm 0.47) \times 10^{-4}$
g/2	$(0.18 \pm 0.95) \times 10^{-3}$	δ_{η}	$(117.12 \pm 3.81)^{\circ}$
$\delta_{n'}$	$(50.03 \pm 16.01)^{\circ}$	β	512.86 ± 7.36 MeV
β'	$112.97\pm0.98~{\rm MeV}$	$F_{a}^{(*)}$	$(1.24 \pm 0.02)F_{\pi}$
$F_{s}^{(*)}$	$(1.52 \pm 0.02)F_{\pi}$	$\theta_a^{(*)}$	$(37.3 \pm 0.7)^{\circ}$
$\theta_s^{(*)}$	$(35.1 \pm 0.4)^{\circ}$	$\chi^2/d.o.f$	157.25/(135 - 23) = 1.40

参数间的相关性: d₅=3.57d₂+0.01

211.112 E 2018 N 1 11 0 14 14 14

▶ 唯象学讨论——宽度及分支比

	Experiment	Fit		Experiment	Fit
$\Gamma_{\omega \to \pi \gamma}$	724.78 ± 34.64	705.65 ± 17.40	$w' \rightarrow o\pi$	0.032 ± 0.012	0.037 ± 0.010
$\Gamma_{\rho^0 \to \pi^0 \gamma}$	70.08 ± 12.37	73.23 ± 1.81		0.022 ± 0.006	0.021 ± 0.005
$\Gamma_{K^{*0} \to K^0 \gamma}$	116.36 ± 11.27	108.95 ± 2.69	$\psi \rightarrow \rho \eta$	0.010 + 0.017	0.021 ± 0.000
$\Gamma_{m \rightarrow \pi e^- e^+}$	6.68 ± 0.63	6.40 ± 0.16	$\psi^{r} \rightarrow \rho^{o} \eta$	0.019 ± 0.017	0.028 ± 0.008
$\Gamma_{m \to \pi u^- u^+}$	1.16 ± 0.18	0.63 ± 0.02	$\psi' \rightarrow \omega \pi^0$	0.021 ± 0.006	0.021 ± 0.004
Γ	3.91 ± 0.41	5.30 ± 0.11	$\psi' \rightarrow \omega \eta$		0.005 ± 0.003
Γ_{ω}	44.73 ± 3.39	43.93 ± 0.96	$\psi' \rightarrow \omega \eta'$	0.032 ± 0.025	0.033 ± 0.019
$\Gamma \rho^{-} \rightarrow \eta \gamma$	55.28 ± 1.23	55.01 ± 1.00	$\psi' \to \phi \eta$	0.031 ± 0.003	0.032 ± 0.003
$\Gamma \phi \rightarrow \eta \gamma$	0.26 ± 0.01	0.26 ± 0.01	$\psi' \rightarrow \phi \eta'$	0.0154 ± 0.0020	0.016 ± 0.002
$\Gamma \phi \rightarrow \eta \gamma$	474 ± 0.29	5.05 ± 0.18	$w' \rightarrow K^{*+}K^- + c.c.$	0.029 ± 0.004	0.029 ± 0.004
$\Gamma \eta \rightarrow \omega \gamma$ Γ	0.52 ± 0.02	0.50 ± 0.01	$W' \rightarrow K^{*0} \bar{K}^0 + c.c.$	0.109 ± 0.020	0.080 ± 0.011
$\eta \rightarrow \gamma \gamma$	434 ± 0.20	3.92 ± 0.11	$\varphi \rightarrow n - n + c.c.$		
$\Gamma_{\eta \to \gamma \gamma}$	$(9.04 \pm 0.89) \times 10^{-3}$	$(8.32 \pm 0.23) \times 10^{-3}$			
$\eta \rightarrow \gamma e e'$	$(9.04 \pm 0.03) \times 10^{-3}$	$(0.32 \pm 0.23) \times 10^{-3}$			
$\eta \rightarrow \gamma \mu^{-} \mu^{+}$	$(0.41 \pm 0.07) \times 10^{-2}$	$(0.39 \pm 0.01) \times 10^{-2}$		Experiment	Fit
$\eta' \rightarrow \gamma \mu^- \mu^+$	$(2.12 \pm 0.01) \times 10^{-2}$	$(1.47 \pm 0.04) \times 10^{-1}$	$I/m \rightarrow a^0 \pi^0$	56+07	55 ± 03
$1 \phi \rightarrow \eta e^- e^+$	0.439 ± 0.018	0.400 ± 0.008	$J/\psi \rightarrow \rho \pi$ $J/\psi \rightarrow \rho \pi$	16.9 ± 1.5	16.2 ± 1.0
			$J/\psi \rightarrow \rho^0 \eta$	0.193 ± 0.023	0.185 ± 0.021
			$J/\psi \to \rho^0 n'$	0.081 ± 0.008	0.080 ± 0.007
			$J/\psi \to \omega \pi^0$	0.45 ± 0.05	0.45 ± 0.04
			$J/\psi \to \omega \eta$	1.74 ± 0.20	1.65 ± 0.09
			$J/\psi \to \omega \eta'$	0.189 ± 0.018	0.189 ± 0.018
			$J/\psi \to \phi \eta$	0.74 ± 0.08	0.76 ± 0.06
			$I/\psi \to \phi \eta'$ 0.46 ± 0.05	0.45 ± 0.05	
			$J/\psi \rightarrow K^{*+}K^{-} + \text{c.c.}$	6.0 ± 1.0	6.6 ± 0.3
			$J/\psi \rightarrow K^{*0}\bar{K}^0 + \text{c.c.}$	4.2 ± 0.4	3.8 ± 0.2
			$J/\psi ightarrow \pi^0 \gamma$	0.0356 ± 0.0017	0.0341 ± 0.0016
			$J/\psi \to \eta\gamma$	1.085 ± 0.018	1.085 ± 0.013
			$J/\psi \to \eta' \gamma$	5.25 ± 0.07	5.35 ± 0.04
			$J/\psi o \pi^0 e^+ e^-$	$(0.076 \pm 0.014) \times 10^{-2}$	$(0.129 \pm 0.004) \times 10^{-2}$
			$J/\psi \to \eta e^+ e^-$	$(1.42 \pm 0.08) \times 10^{-2}$	$(1.35 \pm 0.02) imes 10^{-2}$
			$J/\psi \to \eta' e^+ e^-$	$(6.59 \pm 0.18) \times 10^{-2}$	$(6.08 \pm 0.05) \times 10^{-2}$

▶ 唯象学讨论—— $J/\psi \rightarrow \eta\gamma^*$ 形状因子

✓ bin宽度减小时,轻矢量共振态信号明显加强。
 ✓ 最近,BESIII实验组给出了J/ψ→ηe⁺e⁻形状因子的相关数据[M. Ablikim et al.,PRD'19,21],其中实验分析除了QED的贡献外,只包含e⁺e⁻ 谱中的ρ共振态的贡献。然而,ρ的贡献应该来自一个同位旋破缺的中间过程J/ψ→ηρ→ηe⁺e⁻。相比之下,ω和φ的贡献可能更重要。是因为它们通过同位旋守恒的中间过程J/ψ→ρω和J/ψ→ηφ进入,它们的分支比分别比J/ψ→ηρ的分支比大约大8倍和4倍。

▶ 唯象学讨论——J/ $\psi(\psi') \rightarrow PV形状因子的模$

Isospin conserved cases	Experiment	Strong interaction	EM interaction
$ G_{J/\psi \to \rho^0 \pi^0} $	2.537 ± 0.154	2.899 ± 0.075	0.385 ± 0.006
$ G_{J/\psi \to \rho \pi} $	4.408 ± 0.191	5.022 ± 0.129	0.709 ± 0.009
$ G_{J/\psi \to \omega \eta} $	1.497 ± 0.084	1.586 ± 0.037	0.132 ± 0.009
$ G_{J/\psi \to \omega \eta'} $	0.562 ± 0.026	0.647 ± 0.028	0.119 ± 0.008
$ G_{J/\psi \to \phi \eta} $	1.060 ± 0.056	1.270 ± 0.045	0.198 ± 0.031
$ G_{J/\psi \to \phi \eta'} $	0.974 ± 0.052	1.074 ± 0.049	2.031 ± 0.044
$ G_{J/\psi \to K^{*+}K^{-}} $	2.011 ± 0.161	2.313 ± 0.048	0.216 ± 0.036
$ G_{J/\psi \to K^{*0}\bar{K}^0} $	1.686 ± 0.078	2.308 ± 0.048	0.715 ± 0.009
Isospin violated cases	Experiment	EM interaction	Strong interaction
$ G_{I/w \to o^0 n} $	0.498 ± 0.029	0.487 ± 0.028	
$ G_{I/w \rightarrow 0} n' $	0.367 ± 0.018	0.365 ± 0.017	
$ G_{J/\psi \to \omega \pi^0} $	0.721 ± 0.039	0.720 ± 0.035	
Isospin conserved cases	Experiment	Strong interaction	EM interaction
$ G_{w'} \to \rho \pi $	0.255 ± 0.044	0.029 ± 0.036	0.255 ± 0.016
$ G_{w'} \to \omega \eta $	•••	0.103 ± 0.038	0.036 ± 0.003
$ G_{w'} \to \omega \eta' $	0.288 ± 0.096	0.212 ± 0.079	0.079 ± 0.013
$ G_{w'} \to \phi \eta $	0.275 ± 0.013	0.285 ± 0.030	0.565 ± 0.029
$ G_{\psi'} \to \phi \eta' $	0.213 ± 0.013	0.197 ± 0.068	0.412 ± 0.067
$ G_{w'} \rightarrow K^{*+}K^- $	0.181 ± 0.012	0.263 ± 0.021	0.093 ± 0.021
$ G_{\psi'} \to K^{*0} \bar{K}^0 $	0.352 ± 0.031	0.267 ± 0.021	0.568 ± 0.007
Isospin violated cases	Experiment	EM interaction	Strong interaction
$ G_{w'} \to \rho^0 \eta $	0.219 ± 0.028	0.216 ± 0.026	
$ G_{w'} \to \rho^0 \eta' $	0.222 ± 0.083	0.271 ± 0.040	
$ G_{\psi'} \to \omega \pi^0 $	0.207 ± 0.028	0.208 ± 0.019	

✓ $\psi' \rightarrow \rho \pi$ 电磁相 互作用是主导, J/ψ → ρπ强相 互作用是主导。 ✓ 我们发现J/ψ → $K^*\overline{K} + c.c.$ 过程 中 SU(3) 破缺效 应在带电和中 性振幅中的贡 献是类似的, 然而 ψ' → $K^*\overline{K} + c.c. \neq$ SU(3)对称破缺 效应在带电和 中性过程中是 不同的。

 $\frac{1}{M_{\psi(\psi')}}h_{2}^{(\prime)}\varepsilon_{\mu\nu\rho\sigma}\psi^{(\prime)\mu}\left\langle\{u^{\nu},V^{\rho\sigma}\}\chi_{+}\right\rangle \qquad \frac{ic_{4}}{M_{\nu}}\varepsilon_{\mu\nu\rho\sigma}\left\langle V^{\mu\nu}[f_{-}^{\rho\sigma},\chi_{+}]\right\rangle$

▶ 总结

- ✓ 我们采用构造有效拉氏量的方法来同时研究 $J/\psi(\psi') \rightarrow VP, J/\psi \rightarrow PY, J/\psi \rightarrow PI^+I^-$ 衰变过程和轻味强子的辐射衰变。
- ✓ 我们特别注意了 $J/\psi(\psi') \to VP$ 过程中强相互作用和电磁相互作用的相对量级,强相互作用的影响在 $J/\psi \to \rho\pi$ 衰变过程中占主导地位,电磁相互作用则在 $\psi' \to \rho\pi$ 过程中最重要,这为 $\rho\pi$ 疑难提供了一个解释。
- ✓ 我们发现J/ψ→ K* \bar{K} + c. c.过程的强相互作用是主导作用, SU(3)破 缺效应在带电和中性振幅中的贡献是类似的, 然而ψ'→ K* \bar{K} + c. c. 过程的强相互作用和电磁相互作用量级大小类似, 但SU(3)对称破 缺效应在带电和中性过程中是不同的。这为中性B(ψ'→ K*⁰ \bar{K}^0 + c. c.)/B(J/ψ→ K*⁰ \bar{K}^0 + c. c.)和带电B(ψ'→ K*⁺K⁻ + c. c.)/B(J/ ψ→ K*⁺K⁻ + c. c.)过程出现不同的分支比提供了合理解释。

