重味奇特态实验综述

安刘攀 北京大学

强子谱和强子结构研讨会, 2023.08.29@国科大雁栖湖校区

Exotic hadrons

➢The existence of exotic hadrons was already predicted since the establishment of quark model by M. Gell-Mann and G. Zweig in 1964

> Different compositions and binding schemes: $q\bar{q}g$ hybrid, glueball, compact multiquark state, molecular state ...

Study of exotic hadrons can

✓ provide new insights into internal structure and dynamics of hadrons

✓ act as a unique probe to non-perturbative behavior of QCD

2023/8/29

Theoretical scenarios

Since the **discovery of** $\chi_{c1}(3872)$ by BELLE in 2003, there is an explosion of discoveries of candidates for heavy tetra- and penta-quark states

➤Two main players for multiquark state modelling:

Compact multiquark

(Di-)quarks bound via color forces \circ Typical size O(1 fm)

 $\circ\,\text{Mass}$ proximity to threshold <code>accidental</code>

SU(3)_{flavor} multiplets from combinations
 of (di-)quarks

 $\odot\,\text{No}$ (strong) hierarchy of couplings

Hadron molecule

Hadrons bound via mesonic exchange
Typical size > 1 fm
Mass proximity to threshold natural
SU(3)_{flavor} multiplets from combinations of component hadrons
Fall-apart decay dominant

Other possible scenarios: hadro-quarkonium, hybrid ...

Experimental discoveries help drive the development of multiquark studies

Experimental observations

 $\checkmark Q \overline{Q} q \overline{q}$ $\bullet Z: I = 1$ $\bullet Y: J^{PC} = 1^{--}$

• X: Others

 $\checkmark Q\bar{Q}qqq: P_c^+, P_{cs}^0$

✓ Open-flavor: T_{cc}^+ , T_{cs}^0 , $T_{c\bar{s}}$

Exotic hadron measurements

Quarkonium-like Quarkonium-like tetraquark

Open-charm tetraquark

Disclaimer: not able to cover all results

2023/8/29

Exotic hadron measurements

Quarkonium-like tetraquark

Quarkonium-like pentaquark

Open-charm tetraquark

Disclaimer: not able to cover all results

2023/8/29

 $\chi_{c1}(3872)$ (or X(3872))

 $\succ \chi_{c1}(3872)$ is the first observed charmonium-like exotic hadron with most abundant experimental information

✓ Firstly observed in $B^{\pm} \to K^{\pm}\chi_{c1}(3872)$ with $\chi_{c1}(3872) \to J/\psi\pi^{+}\pi^{-}$ by Belle

8/36

Nature of $\chi_{c1}(3872)$ (I)

No consensus: conventional $\chi_{c1}(2^3P_1)$, $D^0\overline{D}^{*0}$ molecular state, tetraquark, $c\overline{c}g$ hybrid, vector glueball, or mixed?

Experimental study

\checkmark Production in collisions and in weak decays

• Multiplicity-dependent modification of $\chi_{c1}(3872)$ production in pp collisions

$$\begin{array}{c} \frac{\mathcal{B}\left(B^{0} \rightarrow \chi_{c1}(3872)K^{0}\right)}{\mathcal{B}\left(B^{+} \rightarrow \chi_{c1}(3872)K^{+}\right)} \text{ and } \frac{\mathcal{B}\left(B^{0}_{S} \rightarrow \chi_{c1}(3872)\phi\right)}{\mathcal{B}\left(B^{+} \rightarrow \chi_{c1}(3872)K^{+}\right)} \\ \text{suggesting not a pure charmonium} \end{array}$$

almost half that of $\psi(2S)$, [PR D84 (2011) 052004] [PRL 125 (2020) 152001]

✓ Decays

• $\mathcal{B}(\chi_{c1}(3872) \rightarrow D^0 \overline{D}^{*0}) > 30\%$

[arXiv: hep-ph/0410284]

- Discovery of $\chi_{c1}(3872) \rightarrow J/\psi \pi^+ \pi^- \pi^0$ is consistent with the prediction of molecular nature
- $\mathcal{B}(\chi_{c1}(3872) \rightarrow \psi(2S)\gamma)/\mathcal{B}(\chi_{c1}(3872) \rightarrow J/\psi\gamma) \sim 5.6$

Nature of $\chi_{c1}(3872)$ (II)

Experimental study

✓ Lineshape: Flatté lineshape accounts for the opening up of $D^0 \overline{D}^{*0}$ threshold

• BESIII (preliminary): $\chi_{c1}(3872) \rightarrow J/\psi \pi^+ \pi^- \& D^0 \overline{D}{}^0 \pi^0$

Nature of $\chi_{c1}(3872)$ (II)

► Experimental study

✓ Lineshape: Flatté lineshape accounts for the opening up of $D^0 \overline{D}^{*0}$ threshold

BELLE: $\chi_{c1}(3872) \rightarrow D^0 \overline{D}^{*0} (\rightarrow \overline{D}^0 \gamma / \pi^0)$

[PRD 107, 112011 (2023)]

 \overline{Z}_A : Weinberg's compositeness;

 $\bar{Z}_A = 1$: pure elementary (compact)

 $\overline{Z}_A = 0$: pure bound (molecular)

BESIII

 $-12.6 \pm 5.5^{+6.6}_{-6.2}$

 $12.3 \pm 6.8^{+6.0}_{-6.4}$

 $-16.5^{+7.0}_{-27.6}$

 $-4.1^{+0.9}_{-33}{}^{+2.8}_{-44}$

 $0.18^{+0.06}_{-0.17}$

X(3960) and $\chi_{c0}(3930)$

[arXiv: 2211.05034] [arXiv: 2210.15153]

	<i>M</i> [MeV]	Γ [MeV]	J ^{PC}
X(3960)	3955 <u>+</u> 6 <u>+</u> 12	$48 \pm 17 \pm 10$	0++
$\chi_{c0}(3930)$	3924 <u>+</u> 2	17 <u>+</u> 5	U

➤Same particle?

 \mathcal{FF} : Fit fraction

 $\frac{\Gamma(X \to D^+ D^-)}{\Gamma(X \to D_s^+ D_s^-)} = \frac{\mathcal{B}(B^+ \to D^+ D^- K^+) \times \mathcal{FF}_{B^+ \to D^+ D^- K^+}^X}{\mathcal{B}(B^+ \to D_s^+ D_s^- K^+) \times \mathcal{FF}_{B^+ \to D_s^+ D_s^- K^+}^X} = 0.29 \pm 0.09 \pm 0.10 \pm 0.08$

✓ Creation of $s\bar{s}$ from vacuum is suppressed wrt $u\bar{u}$ or dd✓ $X \to D_s^+ D_s^-$ has smaller phase-space factor than $X \to D^+ D^-$ ⇒ X has an exotic nature! Candidate for $c\bar{c}s\bar{s}$

Different particles?

✓ No obvious candidate within conventional charmonium multiplets for them; likely to be exotic

New states included in updated model:

 $\checkmark 1^+ Z_{cs}^+$ and $1^+ X$ produce the largest improvements

4.4

- ✓ Additional Z_{cs}^+ (either 1⁺ or 1⁻)
- \checkmark Two X with 1⁻ and 2⁻

 $m_{\phi K^+}$ [GeV]

 $Z_{cs}^+ \rightarrow T_{\psi s1}^{\theta}(4000)^+$

Amplitude fit result

[PRL 127 (2021) 082001]

Contribution	Significance $[\times \sigma]$	$M_0 [{ m MeV}]$	$\Gamma_0 [{ m MeV}]$	$\mathrm{FF}\left[\% ight]$
$X(2^{-})$				
X(4150)	4.8(8.7)	$4146 \pm 18 \pm 33$	$135\pm28{+59\atop-30}$	$2.0 \pm 0.5 {}^{+ 0.8}_{- 1.0}$
$X(1^{-})$				
X(4630)	5.5 (5.7)	$4626 \pm 16 {}^{+\ 18}_{-\ 110}$	$174 \pm 27 {}^{+ 134}_{- 73}$	$2.6 \pm 0.5 {}^{+ 2.9}_{- 1.5}$
All $X(0^+)$				$20 \pm 5 {}^{+ 14}_{- 7}$
X(4500)	20(20)	$4474\pm3\pm3$	$77\pm6{}^{+10}_{-8}$	$5.6\pm0.7^{+2.4}_{-0.6}$
X(4700)	17 (18)	$4694 \pm 4 {}^{+ 16}_{- 3}$	$87\pm8{}^{+16}_{-6}$	$8.9 \pm 1.2 {}^{+ 4.9}_{- 1.4}$
$\mathrm{NR}_{J/\psi\phi}$	4.8(5.7)			$28 \pm 8 {}^{+19}_{-11}$
All $X(1^+)$				$26 \pm 3 {+}^{+}_{-10}{}^{8}$
X(4140)	13 (16)	$4118 \pm 11 {}^{+ 19}_{- 36}$	$162 \pm 21 {}^{+ 24}_{- 49}$	$17\pm3{+19\atop-6}$
X(4274)	18(18)	$4294 \pm 4^{+3}_{-6}$	$53 \pm 5 \pm 5$	$2.8 \pm 0.5 {}^{+ 0.8}_{- 0.4}$
X(4685)	15 (15)	$4684 \pm 7 {}^{+13}_{-16}$	$126 \pm 15 {+ 37 \atop - 41}$	$7.2 \pm 1.0 {}^{+ 4.0}_{- 2.0}$
 All $Z_{cs}(1^+)$				$25 \pm 5^{+11}_{-12}$
$Z_{cs}(4000)$	15 (16)	$4003 \pm 6 { + \ 4 \atop - 14}$	$131 \pm 15 \pm 26$	$9.4 \pm 2.1 \pm 3.4$
$Z_{cs}(4220)$	5.9(8.4)	$4216 \pm 24 {}^{+43}_{-30}$	$233 \pm 52 {}^{+ 97}_{- 73}$	$10 \pm 4 \frac{+10}{-7}$

$\succ J^P$ assignments:

 $\checkmark J^P$ for previously reported four X states confirmed

 $\checkmark Z_{cs}(4000) J^P = 1^+$ and $X(4685) J^P = 1^+$ firmly determined

- ✓*X*(4150): 2⁻ preferred by 4σ ; *X*(4630): 1⁻ over 2⁻ at 3σ
- $\checkmark Z_{cs}(4220)$ could be 1⁺ or 1⁻

2023/8/29

Z_{cs}^+ at LHCb vs BESIII

► BESIII observed a Z_{cs}^- structure in K^+ recoil-mass spectra in $e^+e^- \rightarrow K^+(D_s^-D^{*0} + D_s^{*-}D^0)$

 $M(Z_{cs}(4000)^+) = 4003 \pm 6^{+4}_{-14} \text{ MeV}$ $\Gamma(Z_{cs}(4000)^+) = 131 \pm 15 \pm 26 \text{ MeV}$ $M(Z_{cs}(3985)^{-}) = 3985.2^{+2.1}_{-2.0} \pm 1.7 \text{ MeV}$ $\Gamma(Z_{cs}(3985)^{-}) = 13.8^{+8.1}_{-5.2} \pm 4.9 \text{ MeV}$

Same state or not?

Evidence of neutral Z_{CS}^0 > BESIII: $e^+e^- \rightarrow K_S^0(D_s^+D^{*-} + D_s^{*+}D^-)$ > LHCb: $B^0 \rightarrow J/\psi\phi K_S^0$

✓ significance is 4σ (5.4 σ under isospin symmetry assumption)

$$Z_{cs}^+ \to T_{\psi s1}^\theta (4000)^+$$

$$M(T_{\psi s1}^{\theta}(4000)^{0}) = 3991 \stackrel{+12}{_{-10}} \stackrel{+9}{_{-17}} \text{MeV}$$

$$\Gamma(T_{\psi s1}^{\theta}(4000)^{0}) = 105 \stackrel{+29}{_{-25}} \stackrel{+17}{_{-23}} \text{MeV}$$

$$\Delta M = -12^{+11}_{-10} {}^{+6}_{-4} \,\mathrm{MeV}$$

[arXiv: 2301.04899]

σ^{dress}(K⁰K⁰J/ψ) (pb)

Liupan An

$$e^+e^- \rightarrow J/\psi K^+K^-$$

✓ First observation of $Y(4230) \rightarrow J/\psi K^+K^-$ ✓ First observation of Y(4500)

	Parameters	Solution I	Solution II
	M/MeV	$4225.3 \pm 2.3 \pm 21.5$ $72.9 \pm 6.1 \pm 30.8$	
Y(4230)	Γ_{tot}/MeV		
29 σ	$\Gamma_{ee} \mathcal{B}/\mathrm{eV}$	$0.42 \pm 0.04 \pm 0.15$	$0.29 \pm 0.02 \pm 0.10$
	M/MeV	$4484.7 \pm 13.3 \pm 24.1$ $111.1 \pm 30.1 \pm 15.2$	
Y(4500)	Γ_{tot}/MeV		
8σ	$\Gamma_{ee} \mathcal{B}/\mathrm{eV}$	$1.35 \pm 0.14 \pm 0.07$	$0.41 \pm 0.08 \pm 0.13$
Phase angle	φ /rad	$1.72 \pm 0.09 \pm 0.52$	$5.49 \pm 0.35 \pm 0.58$

[CPC 46, 111002 (2022)]

2023/8/29

✓ First observation (26 σ) of $Y(4230) \rightarrow J/\psi K_S^0 K_S^0$

✓ Strong evidence (4.2 σ) for Y(4710) ($\psi(5S)$?); waiting for update from $e^+e^- \rightarrow J/\psi K^+K^-$

	Mass (MeV) Width (MeV)	
Y(4230)	$4226.9 \pm 6.6 \pm 22.0$	$71.7 \pm 16.2 \pm 32.8$
Y(4710)	$4704.0 \pm 52.3 \pm 69.5$	$183.2 \pm 114.0 \pm 96.1$

[PRD 107, 092005 (2023)] 18/36

✓ First observation of these structures in $D^{*0}D^{*-}\pi^+$

[PRL 130, 121901 (2023)]

✓ BW1: $\psi(4160)$ or Y(4230)?

- ✓ BW2: $\psi(4415)$?
- ✓ BW3: necessary to describe structure at ~4.79 GeV (6.1 σ)

2023/8/29

ψ -pair structures at LHCb

>X(6900) observed by LHCb, matching the lineshape of a T_{ccccc} resonance; a broader structure close to the threshold is also found

Two possible interpretations:

 $M(X(6900)) = 6905 \pm 11 \pm 7 \text{ MeV}/c^{2}$ $\Gamma(X(6900)) = 80 \pm 19 \pm 33 \text{ MeV}/c^{2}$ $M(X(6900)) = 6886 \pm 11 \pm 11 \text{ MeV}/c^{2}$ $\Gamma(X(6900)) = 168 \pm 33 \pm 69 \text{ MeV}/c^{2}$

→Other possibilities: feeddown contribution, e.g. $T_{ccccc} \rightarrow \chi_c(\rightarrow J/\psi\gamma) + J/\psi$; near-threshold kinematic rescattering effects

[[]Science Bulletin 65 (2020) 1983]

ψ -pair structures at CMS and ATLAS

21/36

135 fb⁻¹ (13 TeV

m_{Jly J/y} [GeVi

135 fb⁻¹ (13 Te\

mJ/wJ/w [GeV]

4.1 *σ*

BW₃

 $7287^{+20}_{-18}\pm 5$

 $95^{+59}_{-40}\pm19$

 156^{+64}_{-51}

 $7134\substack{+48+41\\-25-15}$

 97^{+40+29}_{-29-26}

CMS

Data — Fit -BW1 --- BW3 BW --- Background

Jata — Fit

 BW_2

 492^{+78}_{-73}

 6847^{+44+48}_{-28-20}

 191^{+66+25}_{-49-17}

-BW1 --- BWa

BW3 --- Background Interfering BWs

Observation of $\Upsilon(10753) \rightarrow \omega \chi_{bJ}$

[DRI	120	001002	(2023)
ILLU	130,	031305	(2023)

Channel	$\sqrt{s} \; ({ m GeV})$	$N^{ m sig}$
$e^+e^- o \omega \chi_{b0}$	10.701	$0.0^{+1.1}_{-0.0}$
$e^+e^- ightarrow \omega \chi_{b1}$		$0.0\substack{+2.1\-0.0}$
$e^+e^- ightarrow \omega \chi_{b2}$		$0.1\substack{+2.2\-0.1}$
$e^+e^- ightarrow \omega \chi_{b0}$	10.745	$3.0^{+5.5}_{-4.7}$
$e^+e^- ightarrow \omega \chi_{b1}$		$68.9^{+13.7}_{-13.5}$
$e^+e^- ightarrow \omega \chi_{b2}$		$27.6^{+11.6}_{-10.0}$
$e^+e^- ightarrow \omega \chi_{b0}$	10.805	$3.6^{+3.8}_{-3.1}$
$e^+e^- ightarrow \omega \chi_{b1}$		$15.0\substack{+6.8 \\ -6.2}$
$e^+e^- ightarrow \omega \chi_{b2}$		$3.3^{+5.3}_{-3.8}$

$$\begin{split} & \triangleright \sigma_B(e^+e^- \rightarrow \omega \chi_{b1}) / \sigma_B(e^+e^- \rightarrow \omega \chi_{b2}) \\ &= 1.3 \pm 0.6 \text{ at } \sqrt{s} = 10.745 \text{ GeV} \\ & \checkmark \text{Contradicts expectation of pure D-wave of 15} \\ & \checkmark 1.8 \sigma \text{ difference to S-D mixture of 0.2} \\ & \triangleright \Upsilon(10753) \rightarrow \omega \chi_{bJ} \& \Upsilon(10860) \rightarrow \Upsilon(nS) \pi \pi \\ & \text{ are different states} \end{split}$$

Exotic hadron measurements

Quarkonium-like Quarkonium-like tetraquark

Open-charm tetraquark

Disclaimer: not able to cover all results

2023/8/29

Observation of P_c^+ in $\Lambda_b^0 \to J/\psi K^- p$

 $> P_c^+(c\bar{c}uud)$ states were first observed in $\Lambda_b^0 \to J/\psi K^- p$ using LHCb Run1 data

 \blacktriangleright Later, the $\Lambda_b^0 \rightarrow J/\psi K^- p$ study was updated using Run 1 + Run 2 data

✓ A new narrow $P_c^+(4312)$ observed with significance of 7.3 σ

✓ The $P_c^+(4450)$ structure is resolved into two peaks, $P_c^+(4440)$ and $P_c^+(4457)$

Proximity of $\Sigma_c^+ \overline{D}^0$ and $\Sigma_c^+ \overline{D}^{*0}$ thresholds to the peaks suggests they play an important role in the dynamics

P_c search in $B_s^0 \rightarrow J/\psi p\bar{p}$

Liupan An

[PRL 128 (2022) 062001]

> Dataset: Full Run1+Run2 LHCb data corresponding to 9 fb⁻¹ > The B_s^0 sample is flavor untagged, assuming CP symmetry

Hints of horizontal and vertical bands in (18.8 - 19.0) GeV²

 \Rightarrow 4D $(m_{p\bar{p}}, \theta_p, \theta_\mu, \phi)$ amplitude analysis

2023/8/29

 ✓ Add Breit-Wigner shaped P_c⁺ and P_c⁻ with floating and identical M, Γ and couplings

25/36

$B_s^0 \rightarrow J/\psi p \bar{p}$ - evidence of new P_c

[PRL 128 (2022) 06200

Significance of the P_c estimated with look-elsewhere effect considered \checkmark The best J^P hypothesis is $1/2^+$ for $P_c^+ \Rightarrow 3.7\sigma$ \checkmark For different J^P hypotheses in $1/2^\pm, 3/2^\pm \Rightarrow 3.1 - 3.7\sigma$ \checkmark None of the J^P hypotheses can be excluded at 95%

➢No evidence of

 $\checkmark P_c(4312)$ and $P_c(4440)$ observed in $\Lambda_b^0 \rightarrow J/\psi K^- p$

✓ Glueball candidate $f_{I}(2230)$

Evidence of P_{cs}^0 in $\Xi_b^- \to J/\psi \Lambda K^-$ [Science Bulletin 66 (2021) 1278] $\gg P_{cs}^0$ ($c\bar{c}sud$), strange partner of P_c^+ , is searched for in $\Xi_b^- \to J/\psi \Lambda K^ \gg$ Dataset: Full Run1+Run2 LHCb data corresponding to 9 fb⁻¹ \gg Six-dimensional amplitude fit performed

 $m(P_{cs}^{0}) = 4458.8 \pm 2.9^{+4.7}_{-1.1} \text{ MeV}, \Gamma(P_{cs}^{0}) = 17.3 \pm 6.5^{+8.0}_{-5.7} \text{ MeV}$

✓ Mass ~19 MeV below of $\Xi_c^0 \overline{D}^{*0}$ threshold

✓ The data cannot confirm or refute the two-peak hypothesis

 $\checkmark J^P$ determination needs more data

2023/8/29

Amplitude analysis of $B^- \rightarrow J/\psi \Lambda \bar{p}$

Amplitude contributions

✓ $\Lambda \bar{p}$: $\bar{K}_4^*(2045)$, $\bar{K}_2^*(2250)$, $\bar{K}_3^*(2320)$ and $J^P = 1^$ non-resonant (NP) component (\bar{K}^* -only model cannot describe data)

 $\checkmark J/\psi \bar{p}$: $J^P = 1/2^-$ NR component (preferred over resonant lineshape)

 $\checkmark J/\psi \Lambda: \mathbf{P}_{\psi s}^{\Lambda}$

[arXiv: 2210.10346]

Observation of $P_{\psi s}^{\Lambda} \rightarrow J/\psi \Lambda$

[arXiv: 2210.10346]

 $\geq P_{\psi s}^{\Lambda}$ observed with significance $> 10\sigma$

> J = 1/2 is established

P = -1 preferred; $J^P = 1/2^+$ excluded at 90% CL

$$M(P_{\psi s}^{\Lambda}) = 4338.2 \pm 0.7 \pm 0.4 \text{ MeV}$$

 $\Gamma(P_{\psi s}^{\Lambda}) = 7.0 \pm 1.2 \pm 1.3 \text{ MeV}$

➢Key properties

✓ First observation of pentaquark with strange quark content $c\bar{c}uds$

✓Narrow

✓ Close to $\mathcal{Z}_c^+ D^-$ threshold and in S-wave

 \succ The most precise single measurement of B^- mass

 $M(B^{-}) = 5279.44 \pm 0.05 \pm 0.07 \text{ MeV}$

Exotic hadron measurements

Quarkonium-like Quarkonium-like tetraquark

Open-charm tetraquark

Disclaimer: not able to cover all results

2023/8/29

T_{cs} in $B^+ \rightarrow D^+ D^- K^+$

[PRL 125 (2020) 242001] [PR D102 (2020) 112003]

Resonant structures observed in the D^-K^+ system from an amplitude analysis of the $B^+ \rightarrow D^+D^-K^+$ decay

 $\begin{aligned} X_0(2900): \quad M &= 2.866 \pm 0.007 \pm 0.002 \,\text{GeV}/c^2 \,, \qquad \Gamma &= 57 \pm 12 \pm 4 \,\text{MeV} \\ X_1(2900): \quad M &= 2.904 \pm 0.005 \pm 0.001 \,\text{GeV}/c^2 \,, \qquad \Gamma &= 110 \pm 11 \pm 4 \,\text{MeV} \end{aligned}$

First discovery of open-charm tetraquarks with four different flavors $[cs\overline{u}d]!$ The observation motivates study of $B \rightarrow \overline{D}D_s\pi$

Study of $B^0 \to \overline{D}{}^0 D_s^+ \pi^-$ and $B^+ \to D^- D_s^+ \pi^+$

[arXiv: 2212.02716]

➤Full 9 fb⁻¹ Run1+Run2 LHCb data

 \Rightarrow 4420 $B^0 \rightarrow \overline{D}{}^0 D_s^+ \pi^-$ candidates with signal purity of 90.7%

3940 $B^+ \rightarrow D^- D_s^+ \pi^+$ candidates with signal purity of **95.2%**

✓ Faint horizontal band at $M^2(D_s^+\pi) \approx 8.5 \text{ GeV}^2$ indicating $T_{c\bar{s}}$ candidates

⇒ Joint amplitude analysis where amplitudes of the two decays are related through isospin symmetry

2023/8/29

Observation of $T^a_{c\bar{s}0}(2900)^{0/++}$

 \succ Fit with two $D_s^+\pi$ states sharing resonance parameters

[arXiv: 2212.02716]

 $> T^{a}_{c\bar{s}0}(2900)^{0} \rightarrow D^{+}_{s}\pi^{-} \& T^{a}_{c\bar{s}0}(2900)^{++} \rightarrow D^{+}_{s}\pi^{+} \text{ significance} > 9\sigma$ $< A \text{ second } 1^{-} D^{+}_{s}\pi \text{ state yields significance of only } 1.3\sigma$ $< \text{Additional } D\pi, D^{+}_{s}\pi, DD^{+}_{s} \text{ resonances disfavored}$

► $J^P = 0^+$ favored over other spin-parity by more than 7.5σ $M = 2.908 \pm 0.011 \pm 0.020 \text{ GeV}$ $\Gamma = 0.136 \pm 0.023 \pm 0.011 \text{ GeV}$ ► Flavor partner of $T_{cs0}(2900)$? Multiplets to be revealed in the future.

2023/8/29

Observation of T_{cc}^+ in $D^0 D^0 \pi^+$

 \succ Dataset: Full Run1+Run2 LHCb data corresponding to 9 fb⁻¹

➢ Prompt $D^0D^0\pi^+$ candidates selected; Non- D^0 background subtracted according to $(m_{K_1^-}\pi_1^+, m_{K_2^-}\pi_2^+)$ fit

✓ Simple Breit-Wigner

✓ Unitarized 3-body Breit-Wigner

[arXiv: 2109.01038] (<u>Nature Physics</u>) [arXiv: 2109.01056] (<u>Nature Communications</u>)

2023/8/29

Study of T_{cc}^+ in $D^0 D^0 \pi^+$

 $> T_{cc}^+$ decay via offshell D^* to $D^0 D^0 \pi^+$

 \triangleright Results in agreement with expectations for isoscalar T_{cc}^+ with $J^P = 1^+$

2023/8/29

Summary and prospects

➤A new "particle zoo"

2023/8/29

Liupan An

36/36

[Rev. Mod. Phys. 90, 15003 (2018)]

Back up

ω contribution to $\chi_{c1}(3872) → J/ψπ^+π^ \gg \chi_{c1}(3872) \rightarrow J/\psi \rho^0$ is isospin violating; [arXiv: 2204.12597] quantifying the isospin violation is important to understand its nature \succ Full 9 fb⁻¹ Run1+Run2 LHCb data $\Rightarrow 6788 \pm 117 B^+ \rightarrow \chi_{c1}(3872)(\rightarrow J/\psi \pi^+ \pi^-)K^+$ signal candidates Decays /(5 MeV) Decays /(5 MeV LHCb 350 350 300 300 🗕 data 250 250 total fit data 200 200 150 150 100 100 $\cdots \rho^0$ - ω interference 50 50 500 700 500 700 400 600 400 600 $m_{\pi^+\pi^-}$ [MeV] $m_{\pi^+\pi^-}$ [MeV]

Fotal ω contribution: $(21.4 \pm 2.3 \pm 2.0)\%$

Excluding interference: $(1.9 \pm 0.4 \pm 0.3)\%$