Σ and Ξ electromagnetic form factors in the extended vector meson dominance model

闫冰

中国科学院近代物理研究所 & 成都理工大学

Phys. Rev. D 107, 076008 (2023)

第六届强子谱和强子结构研讨会 2023年8月28日

引言 **02** Σ和Ξ形状因子

Σ和Ξ电荷半径 **04** 总结

引言

重子对产生(类时)

微分散射截面:

矢量介子主导模型

$F_{1}(q^{2}) = \frac{g}{f_{V}} \frac{m_{V}^{2}}{m_{V}^{2} - q^{2}}; \qquad \frac{g}{f_{V}} \to \beta \qquad F_{1}(q^{2}) = \sum_{i} \beta \frac{m_{V}^{2}}{m_{V}^{2} - q^{2}}; \\F_{2}(q^{2}) = \frac{\kappa}{f_{V}} \frac{m_{V}^{2}}{m_{V}^{2} - q^{2}}; \qquad \frac{\kappa}{f_{V}} \to \alpha \qquad F_{2}(q^{2}) = \sum_{i} \alpha \frac{m_{V}^{2}}{m_{V}^{2} - q^{2}};$					
g(t)	Р	$\chi^2(\Gamma_{\rho}=0)$	$\chi^2(\Gamma_{\rho}=112 \mathrm{MeV})$		
(4,,+)_1	3	8.79	2.63		
(1 - γt)-	5	1.75	1.40	F. lachello, A. D. Jackson, and A. Lande, Phys. Lett. B	
(1_\ +)-2	3	3.00	0.945	43B, 191 (1973).	
(1-γι)-	5	1.79	0.924		
Eikonal eg	3	9.36	1.80		
	5	1.65	1.08		
$g(q^2) = \frac{1}{(1)}$	$\frac{1}{-\gamma q^2}^2$		$F_1(e)$	$q^{2} = g(q^{2}) \left(\sum_{i} \beta \frac{m_{V}^{2}}{m_{V}^{2} - q^{2}} \right);$ $q^{2} = g(q^{2}) \left(\sum_{i} \alpha \frac{m_{V}^{2}}{m_{V}^{2} - q^{2}} \right);$ 7	

Σ和三形状因子

Σ形状因子

通过同位旋分解同时描述Σ同位旋三重态的形状因子

$$\begin{split} \left| \Sigma^{+} \overline{\Sigma}^{-} \right\rangle &= \frac{1}{\sqrt{2}} \left| 1,0 \right\rangle + \frac{1}{\sqrt{3}} \left| 0,0 \right\rangle + \frac{1}{\sqrt{6}} \left| 2,0 \right\rangle, \\ \left| \Sigma^{-} \overline{\Sigma}^{+} \right\rangle &= -\frac{1}{\sqrt{2}} \left| 1,0 \right\rangle + \frac{1}{\sqrt{3}} \left| 0,0 \right\rangle + \frac{1}{\sqrt{6}} \left| 2,0 \right\rangle, \\ \left| \Sigma^{0} \overline{\Sigma}^{0} \right\rangle &= -\frac{1}{\sqrt{3}} \left| 0,0 \right\rangle + \sqrt{\frac{2}{3}} \left| 2,0 \right\rangle \end{split}$$

$$F_{1}^{\Sigma^{+}} = g(q^{2})(f_{1}^{\Sigma^{+}} + \frac{\beta_{\rho}}{\sqrt{2}}B_{\rho} - \frac{\beta_{\omega\phi}}{\sqrt{3}}B_{\omega\phi})$$

$$F_{2}^{\Sigma^{+}} = g(q^{2})(f_{2}^{\Sigma^{+}}B_{\rho} - \frac{\alpha_{\omega\phi}}{\sqrt{3}}B_{\omega\phi})$$

$$F_{1}^{\Sigma^{-}} = g(q^{2})(f_{1}^{\Sigma^{-}} - \frac{\beta_{\rho}}{\sqrt{2}}B_{\rho} - \frac{\beta_{\omega\phi}}{\sqrt{3}}B_{\omega\phi})$$

$$F_{2}^{\Sigma^{-}} = g(q^{2})(f_{2}^{\Sigma^{-}}B_{\rho} - \frac{\alpha_{\omega\phi}}{\sqrt{3}}B_{\omega\phi})$$

$$F_{1}^{\Sigma^{0}} = g(q^{2})(\frac{\beta_{\omega\phi}}{\sqrt{3}} - \frac{\beta_{\omega\phi}}{\sqrt{3}}B_{\omega\phi})$$

$$F_{2}^{\Sigma^{0}} = g(q^{2})(\mu_{\Sigma^{0}}B_{\omega\phi})$$

$$B_i = \frac{m_i^2}{m_i^2 - q^2 - im_i\Gamma_i}, i = \rho, \omega\phi$$

通过q²=0时电磁形状因子的约束行为 $G_{E}^{\Sigma^{+}} = 1, \quad G_{M}^{\Sigma^{+}} = \mu_{\Sigma^{+}};$ $G_{E}^{\Sigma^{-}} = -1, \quad G_{M}^{\Sigma^{-}} = \mu_{\Sigma^{-}};$ $f_{1}^{\Sigma^{+}} = 1 - \frac{\beta_{\rho}}{\sqrt{2}} + \frac{\beta_{\omega\phi}}{\sqrt{3}}, \qquad f_{2}^{\Sigma^{+}} = \mu_{\Sigma^{+}} - 1 + \frac{\alpha_{\omega\phi}}{\sqrt{3}};$ $f_{1}^{\Sigma^{-}} = -1 + \frac{\beta_{\rho}}{\sqrt{2}} + \frac{\beta_{\omega\phi}}{\sqrt{3}}, \qquad f_{2}^{\Sigma^{-}} = \mu_{\Sigma^{-}} + 1 + \frac{\alpha_{\omega\phi}}{\sqrt{3}};$

王形状因子

$$\begin{split} F_1^{\Xi^-} &= g(q^2)(f_1^{\Xi^-} - \frac{\beta_{\rho}}{\sqrt{2}} B_{\rho} - \frac{\beta_{V_1}}{\sqrt{2}} B_{V_1} - \frac{\beta_{V_2}}{\sqrt{2}} B_{V_2} + \frac{\beta_{\omega\phi}}{\sqrt{2}} B_{\omega\phi}) \\ F_2^{\Xi^-} &= g(q^2)(f_2^{\Xi^-} B_{\rho} - \frac{\alpha_{V_1}}{\sqrt{2}} B_{V_1} - \frac{\alpha_{V_2}}{\sqrt{2}} B_{V_2} + \frac{\alpha_{\omega\phi}}{\sqrt{2}} B_{\omega\phi}) \\ F_1^{\Xi^0} &= g(q^2)(f_1^{\Xi^0} + \frac{\beta_{\rho}}{\sqrt{2}} B_{\rho} + \frac{\beta_{V_1}}{\sqrt{2}} B_{V_1} + \frac{\beta_{V_2}}{\sqrt{2}} B_{V_2} + \frac{\beta_{\omega\phi}}{\sqrt{2}} B_{\omega\phi}) \\ F_2^{\Xi^0} &= g(q^2)(f_2^{\Xi^0} B_{\rho} + \frac{\alpha_{V_1}}{\sqrt{2}} B_{V_1} + \frac{\alpha_{V_2}}{\sqrt{2}} B_{V_2} + \frac{\alpha_{\omega\phi}}{\sqrt{2}} B_{\omega\phi}) \\ B_i &= \frac{m_i^2}{m_i^2 - q^2 - im_i \Gamma_i}, i = \rho, \omega\phi, V_1, V_2 \end{split}$$

$$\begin{split} G_{E}^{\Xi^{-}} &= -1, G_{M}^{\Xi^{-}} = \mu_{\Xi^{-}}; G_{E}^{\Xi^{0}} = 0, G_{M}^{\Xi^{0}} = \mu_{\Xi^{0}} \\ f_{1}^{\Xi^{-}} &= -1 + \frac{\beta_{\rho}}{\sqrt{2}} + \frac{\beta_{V_{1}}}{\sqrt{2}} + \frac{\beta_{V_{2}}}{\sqrt{2}} - \frac{\beta_{\omega\phi}}{\sqrt{2}}, \\ f_{2}^{\Xi^{-}} &= \mu_{\Xi^{-}} + 1 + \frac{\alpha_{V_{1}}}{\sqrt{2}} + \frac{\alpha_{V_{2}}}{\sqrt{2}} - \frac{\alpha_{\omega\phi}}{\sqrt{2}}; \\ f_{1}^{\Xi^{0}} &= -\frac{\beta_{\rho}}{\sqrt{2}} - \frac{\beta_{V_{1}}}{\sqrt{2}} - \frac{\beta_{V_{2}}}{\sqrt{2}} - \frac{\beta_{\omega\phi}}{\sqrt{2}}, \\ f_{2}^{\Xi^{0}} &= \mu_{\Xi^{0}} - \frac{\alpha_{V_{1}}}{\sqrt{2}} - \frac{\alpha_{V_{2}}}{\sqrt{2}} - \frac{\alpha_{\omega\phi}}{\sqrt{2}}; \end{split}$$

11

Σ超子拟合参数

γ (GeV-2)	β _ρ	β _{ωφ}	$\alpha_{\omega\phi}$	χ²/dof
0.527±0.024	1.63 ± 0.07	-0.08±0.06	-3.18±0.77	1.69

王超子拟合参数

β _ρ	β _{ωφ}	β _{v1}	β _{v2}	m _{v1} (GeV)		
0.616±0.024	-0.774±0.023	0.099 ± 0.003	0.115±0.002	2.742±0.007		
$lpha_{\omega \phi}$	α _{v1}	α _{v2}	Γ _{v1} (MeV)	χ²/dof		
9.346±0.837	-0.039±0.003	-0.113±0.071	71±28	0.29		

L.-M. Wang, S.-Q. Luo, and X. Liu, Phys. Rev. D 105, 034011 (2022).

 $m_{1^{--}}^{\Xi\Xi} = (2.79 \pm 0.11) \text{ GeV}$

在QCD求和规则框架下王束缚态质量

B.-D. Wan, S.-Q. Zhang, and C.-F. Qiao, Phys. Rev. D 105, 014016 (2022).

Σ和三电荷半径

Ξ、Σ超子电磁半径平方均值 $\left< r_{ch}^2 \right>$ (fm²)与其他理论对比

重子	Ξο	Ξ-	Σ+	Σ0	Σ-
This Work	-0.04 ± 0.01	0.58 ± 0.01	0.80 ± 0.02	0.10 ± 0.01	0.70±0.02
ChPT[1]	0.13±0.03	0.49 ± 0.05	0.60 ± 0.02	-0.03±0.01	0.67±0.03
ChPT[2]	0.36 ± 0.02	0.61 ± 0.01	0.99 ± 0.03	0.10±0.02	0.780
ChET[3]	-0.015±0.007	0.601±0.127	0.719±0.116	0.010 ± 0.004	0.700±0.124
ChCQM[4]	0.091	0.587	0.825	0.089	0.643

$$\left\langle r_{ch}^{2} \right\rangle = \begin{cases} \frac{-6}{G_{E}(0)} \frac{dG_{E}(Q^{2})}{dQ^{2}} |_{Q^{2} \to 0}, \Sigma^{+}, \Sigma^{-}, \Xi^{-} \\ -6 \frac{dG_{E}(Q^{2})}{dQ^{2}} |_{Q^{2} \to 0}, \Sigma^{0}, \Xi^{0} \end{cases}$$

B. Kubis and U. G. Meissner, Eur. Phys. J. C 18, 747 (2001).
 A. N. Hiller Blin, Phys. Rev. D 96, 093008 (2017).
 M. Yang and P. Wang, Phys. Rev. D 102, 056024 (2020).
 G. Wagner, A. J. Buchmann, and A. Faessler, Phys. Rev. C 58, 3666 (1998).

$$\left\langle r_{ch}^{2} \right\rangle = 0.61 \pm 0.12 \pm 0.09 \text{ fm}^{2}$$

Phys. Lett. B 522, 233 (2001), (SELEX Collaboration).

$$\left< r_{ch}^2 \right> = 0.91 \pm 0.32 \pm 0.4 \text{ fm}^2$$

Eur. Phys. J. C 8, 59 (1999), (WA89 Collaboration).

总结

1.我们通过引入同位旋分解对 Σ 同位旋三重态和 Ξ 同位旋二重态以同样的参数 γ , 分别拟合得到耦合常数描述了其有效形状因子和反应总截面的结果,并且成功再现了 反应 $e^+e^- \rightarrow \Sigma^+ \overline{\Sigma}^-, \Sigma^0 \overline{\Sigma}^0, \Sigma^- \overline{\Sigma}^+$ 总截面的比率9.7±1.3:3.3±0.7:1。

$$g(q^2) = \frac{1}{\left(1 - \gamma q^2\right)^2}$$

2.在对 Ξ 拟合时引入了两个共振,其一质量为2742±7MeV,宽度为71±28MeV; 另一共振结构为BESIII合作组对 Ξ⁻截面拟合所得,质量为2993±28MeV,宽度为 88±79MeV。

3.将模型返回到类空,得到 Σ 同位旋三重态和 Ξ 同位旋二重态的电荷半径平方均值,其中 Σ^- 的结果在误差范围内和两个实验数据一致。

感谢您的倾听, 期待您的批评与建议!