

Mini-workshop of SMBH and Fundamental Physics, ITP, Beijing, 26th September, 2021

SHADOW OF THE SUPPERMASSIVE BLAC

IN M87

: EHT Observations and Theoretical Interpretation

Yosuke Mizuno (水野 陽介)

Tsung-Dao Lee Institute Shanghai Jiao Tong University

Table of Contents

- Event Horizon Telescope Collaboration & shadow image of M87
 - intensity map & new polarization map
- Theoretical interpretation of shadow of M87 from new polarization results
- Testing theory of gravity via shadow image
- Future of EHT + ngEHT
- Summary

Event Horizon Telescope

Black Holes with the Largest Angular Sizes

Source	BH Mass (M _{solar})	Distance (Mpc)	1 Rg (µas)	
Sgr A*	4 x 10 ⁶	0,008	10	M 87 (NGC 4486) Litra-high-sensitivity HDTV I.L. color cemara (NHK) Exp. 4C sec. (10 frames coeddor) January 16, 1000 Subaru Telescope, National Astronomical Observatory of Japan Copyright (2) 1999, National Astronomical Observatory of Japan, all rights reserved
M87	3.3 - 6.2 x 10 ⁹	16,8	3.6 - 7.3	
M104	1 x 109	10	2	
Cen A Event Horizon Telesco	5 x 107	4	0,25	

Relativistic Jets

- Outflow of highly collimated plasma
 - Microquasars, Active Galactic Nuclei, Gamma-Ray Bursts, Jet velocity ~c
 - Generic systems: Compact object (Neutron Star, Black Hole) + accretion flows
 - Jets are common in the universe
- Key Issues of Relativistic Jets
 - Acceleration & Collimation
 - Propagation & Stability
 - Origin of high energy particle (particle acceleration)

Event Horizon Telescope

The M87 Jet

The Event Horizon Telescope Collaboration

EHTC aims to image for the first time the shadow of a black hole using sub-mm VLBI

Event Horizon Telescope 2017

Sgr A*

M87

Credit: M. Moscibrodzka

Calibrated data sets (before imaging)

Fourier domain

Event Horizon Telescope

EHT 2017 M87 data look consistent with an asymmetric ring ("crescent")

Event Horizon Telescope & Black Hole Shadow

- In April 2017, EHT has observed asymmetric ring morphology of the central compact radio source in M87.

Event Horizon Telescope

Interpreted as lensed emission surrounding the spinning Kerr black hole shadow

Averaged Polarimetric Images

Image-Averaged Quantities

net linear polarization fraction

$$|m|_{\text{net}} = \frac{\sqrt{\left(\sum_{i} Q_{i}\right)^{2} + \left(\sum_{i} U_{i}\right)^{2}}}{\sum_{i} I_{i}}$$

intensity-weighted average polarization fraction

$$\langle |m| \rangle = \frac{\sum_{i} \sqrt{Q_{i}^{2} + U_{i}^{2}}}{\sum_{i} I_{i}}$$

polarization structure with a decomposition into azimuthal mode (Palumbo et al. 20)

$$\beta_2 = \frac{1}{I_{\text{ring}}} \int_{\rho_{\min}}^{\rho_{\max}} \int_{0}^{2\pi} P(\rho, \varphi) e^{-2i\varphi} \rho \, d\varphi \, d\rho$$

Event Horizon Telescope

Distribution based on M87 images with different D-term calibration

M87 April 11, single pipeline example (ehtim)

(EHTC+ 21a)

Image-Averaged Quantities

 $\int_{0}^{3 \times 2\pi} P(\rho,\varphi) e^{-2i\varphi} \rho d\varphi d\rho$ amplitude & phase $I_{\mathrm{ring}} \stackrel{\bullet}{\rho_{\mathrm{min}}} \tilde{0}$ **Event Horizon Telescope**

Use these values for model constraint

11

Theoretical Modeling Pipeline

What ingredients do we need for realistic theoretical model of BH Shadow?

- 1. Plasma dynamics (accretion flow & jet) around the black hole
- 2. Radiation process
- 3. BH Spacetime
- 4. VLBI array configuration and schedule (for EHT 2017 observation)

computational infrastructure

GRMHD simulations in arbitrary spacetimes (BHAC) \Rightarrow ray-traced, deconvolved images (BHOSS) \Rightarrow comparison with observations (GENA)

developed in Frankfurt team

• Black Hole spin $-1 < a^* < 1$

Accretion type (SANE or MAD depends on magnetic flux)

SANE: Standard and Normal Evolution MAD: Magnetically Arrested Disk

GRRT

GRMHD

- Black Hole mass
- Accretion rate

3 GRRT codes (BHOSS, ipole, Raptor)

- Radiation microphysics (thermal synchrotron, eDF: R-beta model)
- Orientation towards the observer (inclination and jet position angle)

Prior knowledge from observations

- BH mass: 6.2e9 or 3.5e9 Msun
- Inclination angle: 17 or 163 deg with jet position angle 288 deg

Event Horizon Telescope

What about the parameter space?

Simulation Library >15 GRMHD runs

4 GRMHD codes (BHAC, iharm, KORAL, H-AMR)

Image Library >60,000 images

 $\frac{T_i}{T_e} = R_{\text{high}} \frac{\beta_p^2}{1 + \beta_p^2} + \frac{1}{1 + \beta_p^2}$ Electrons colder at high plasma beta (disk), warmer at low plasma beta (jet)

- Model the accretion flow (RIAF) onto a black hole
- Torus in hydrodynamical equilibrium with poloidal B-field
- Monitor accretion rate and evolve until quasi-steady state

Kerr black hole with a=0.94, SANE model

GRMHD Simulations

Credit: L.Weih, L. Rezzolla, Frankfurt BHCam team

Shadow of Black Hole

Snapshot image of GRMHD simulation (SANE) of Kerr BH with a=0.94

Changing viewing angle (theta & phi) (logarithmic scale)

Movie: Z. Younsi by BHOSS code 15

Fitting GRRT images to EHT data

- Fourier transformed synthetic images (visibility data) and fit to observed data
- Re-scale flux, stretch (M/D), and rotate image (P.A.) (allowed when optically thin)

Input Snapshot

Two independent codes: MCMC (Themis) & evolutionary algorithm (GENA)

Event Horizon Telescope

Best Fitting Images

- Degeneracies are present in the physical conditions and scenarios.
- Good and bad: robustness conclusions (EHT observed *image is BH shadow*) and more accurate observations to determine black-hole spin.

MAD, $a_* = 0.94$, $R_{high} = 10$

Simulated EHT observations

Distribution of Best-Fit Black Hole Angular Size

- Distribution of M/D from fitting Image Library snapshots to 2017 April 6th EHT data
- Results by Themis & GENA pipelines are qualitatively similar
- The distribution peaks close to M/D ~ 3.6 μ as with a width of ~0.5 μ as
- The models are broadly consistent with stellar mass estimate

• $M = 6.5 \times 10^9 M_{sun}$ (using D = 16.8 Mpc)

Event Horizon Telescope

Other Constraint

Apply three additional constraints:

- 1. Close to radiative equilibrium
 - Radiative efficiency < classical thin disk model radiative efficiency
- 2. Must not overproduce X-rays (in SED)

Event Horizon Telescope

• 2-10 keV luminosity: $L_x = 4.4 \pm 0.1 \times 10^{40}$ erg/s (NuSTAR & Chandra obs.)

3. Must produce jet power > minimal jet power = 10^{42} erg/sec

Results: SANE model

Constraint: (data fitting, radiative efficiency, X-ray, jet power)

a/Rhigh	1	10
-0.94	╺╶╉╴╉╴╋╴	╉╴╉╴╉╴╋
-0.5	╉╴╉╴╸╺	╉╸╉╸ ╼
0	╉╴╋╴╋╺	╉╸╉╸╋╸╸
0.5	╉╴╋╴╋╺	╉╴╋╴╸
0.94	╋╸╉╴╸	╋╼╋╼

Event Horizon Telescope

+: passed, - : failed

Constraint: (data fitting, radiative efficiency, X-ray, jet power)

a/Rhigh	1	10	
-0.94	╼ ╼ ╋╸╋╸	╺╶╉╴╉╴╋	
-0.5	╋╼╋╼	╉╴╉╴╋╴╸	-
0	╉╸╸╉╸╺	╉╸╉╸╋╸━	
0.5	╉╸╸╉╸╺	╉╸╉╸╉╸╉╸	
0.94	╉╴╸╺╉╴	╉╸╉╸╉╸	

Event Horizon Telescope

Results: MAD model

+: passed, - : failed

GRRT Image at 230 GHz for M87

GRRT

- MAD, a=+0.5
- i=163 deg
- each frame corresponds to 1M (~0.35 day)

GRRT+blurred

Library of polarized black hole shadow images for M87 (72k images)

(EHT Paper VIII)

Magnetic Field Configuration

- Consider simple equatorial plane emission
- Different magnetic field configuration (toroidal, radial, and vertical)
- Vertical magnetic field can produce similar azimuthal EVPA pattern observed by EHT

b)

c)

 \odot

Model Constraint from Polarimetry

- 1. image-integrated net linear polarisation: $1\% < |m|_{net} < 3.7\%$ (EHT pol. image)
- 2. image-integrated net circular polarization: $|v|_{net} < 0.8\%$ (ALMA-only data)
- 3. image averaged linear polarization: $5.7\% < \langle m \rangle < 10.7\%$ (EHT 20µas resolution)
- 4. amplitude & phase of complex β_2 coefficient $0.04 < |\beta_2| < 0.07$, -163 deg $< ang[\beta_2] < -129$ deg

Scoring Results

 \mathcal{A}

Scoring Results

- Scoring results prefer MAD than SANE.
- SANE & MAD a=0 model would be ruled out from jet power constraint (same as Paper V)

Event Horizon Telescope

Constraint of Axion-Photon coupling

- \bullet
- Axion cloud makes birefringence of polarised emissions \Rightarrow oscillation of EVPA \bullet
- lacksquarephoton coupling.

Near SMBH, axion cloud is produced by superradiance (gravitational bound state).

Polarised ring emission of BH shadow in M87 would be affected it \Rightarrow constraint of axion-

Which Gravitational Theory?

- VLBI observation of EHT has provided the first images of the BH shadow in M87* and will be soon provide it in our galactic centre, Sgr A*.
- If the observations are sufficiently accurate, it will provide
- 1. the evidence for the existence of an event horizon
- 2. Testing the no-hair theorem in GR
- 3. Testing of GR itself against a number of alternative theories of gravity.

modeling of shadow image

We investigate alternatives of Kerr black hole through realistic theoretical

Deviation from GR from EHT Shadow Image

Spherically symmetric spacetime around a black hole

$$r_{\rm sh} = 3\sqrt{3}\left(1 + \frac{1}{9}\zeta\right)$$

Event Horizon Telescope

Weak-field test: < ~10⁻⁵

The Diameter of the black hole shadow: sensitive to the 2nd order deviation

Psaltis et al. (2020)

Deviation from GR from EHT Shadow Image

Using two parameterized metric (JP, MGBK)

 α_{13}

parameter,

deviation

-6

0.0

$$r_{\rm sh,JP} = 3\sqrt{3} \left[1 + \frac{1}{27} \alpha_{13} - \frac{1}{486} \alpha_{13}^2 + \mathcal{O}(\alpha_{13}^3) \right]$$

$$r_{\rm sh,MGBK} = 3\sqrt{3} \left[1 + \frac{1}{27} \gamma_{1,2} + \mathcal{O}(\gamma_{1,2}^3) \right]$$

Shadow size is within 17% of 2017 EHT observation

$$-3.6 < \alpha_{13} < 5.9$$

$$-5.0 < \gamma_{1,2} < 4.9$$

JP: Johannsen-Psaltis metric MGBK: Modified Gravity Bumpy Kerr metric

Event Horizon Telescope

Metric	$\bar{\beta} - \bar{\gamma} (1 \text{ PN})$	ζ (2 PN)
Kerr	0	0
JP	0	α_{13}
MGBK	$-\gamma_{1,2}/2-\gamma_{4,2}\to 0$	$-\gamma_{1,2}-4\gamma_{4,2}\to\gamma_{1,2}$

Psaltis et al. (2020)

- 1. black holes within GR that include additional fields
- quantum effects
 - classical modification to GR as well as the effect of quantum gravity.
- 3. black hole "mimickers," i.e., exotic compact objects (with or without surface), both within GR or in alternative theories
 - w.o. event horizon: e.g., naked singularity, supersupinars, wormhole
 - w.o. event horizon & w.o. surface: e.g., boson star
 - w.o. event horizon & w. surface: Gravastar

Most of alternatives represent a shadow similar to a Kerr black hole

Event Horizon Telescope

• e.g., electromagnetic charge, NUT charge, cosmological constant, dark matter halo, hair etc.

2. black hole solutions from alternative theories of gravity or incorporating

Shadow Industry: Different Spacetime

Variety of BH shadow boundary curve in different theory of gravity

Event Horizon Telescope

Constraint of Black Hole Cha

- Black Hole shadow size depends on BH physic charge (electric charge, scalar charge etc)
- Using EHT 2017 M87 image, give the constrain on physical charges of large variety of BH

	Spacetime	Rotation	Singularity	Spacetime
	KN [73]	Yes	Yes	EM fields
3	Kerr [72]	Yes	Yes	vacuum
	RN [62]	No	Yes	EM fields
	RN* [62]	No	Yes	EM fields
_	Schwarzschild [62]	No	Yes	vacuum
	Rot. Bardeen [75]	Yes	No	matter
Jui	Bardeen [63]	No	No	matter
	Rot. Hayward [75]	Yes	No	matter
	Frolov [65]	No	No	EM fields, m
	Hayward [64]	No	No	matter
	JNW* [71]	No	Yes	scalar field
Т	KS [66]	No	Yes	vacuum
J	Sen [†] [74]	Yes	Yes	EM, dilaton,
	EMd-1 [†] [67,68]	No	Yes	EM, dilaton f
	EMd-2 [†] [70]	No	Yes	EM, EM, dila

Kocherlakota et al. (2021)

conten

Testing BH Alternatives

Realistic shadow imaging (GRMHD simulation of accretion flows onto central object+GRRT imaging) for BH alternatives

- Dilaton BH (alternative theories of gravity), Mizuno+ (2018)
- Boson Star (w.o. event horizon & surface), Olivares, YM+ (2020)
- Gravastar (w.o. event horizon, w. surface), Olivares, YM+ (2021 in prep)

Considered Future EHT array (including 345GHz & space-VLBI) (Fromm, YM+ 2021)

Event Horizon Telescope

Kerr BH (a=0.9375)

Kerr BH (a=0.6)

Dilation BH (b=0.5)

- Boson star
- @230GHz, i=60 deg, for Sgr A*

next general Event Horizon Telescope

Phase I: 2019-2023 (Array Design Phase) Phase II: 2023- (Constructions of several new sites)

Event Horizon Telescope

Black Hole Photon Ring

Johnson et al. (2019)

Black Hole Photon Ring

short baseline: complex structure reflected disk/jet emission long baseline (>20G λ): dominated by photon ring (n=1,2,...)

LEO: low Earth Orbit: < 2000 km MEO: Medium Earth Orbit: 2000-36,000 km GEO: Geostationary orbit: 36,000 km

- Sgr A* is more complicated due to time variability & scattering during EHT observation period (~6h)
- Image snapshot => Movie

GRMHD + GRRT + scattering (SANE, a=0.6, i=60 deg)

Event Horizon Telescope

Movie of Sgr A*

Fromm, YM et al. (21)

M87 Jet Modeling at 86GHz

- 3D GRMHD simulations of MAD accretion flows
 + GRRT calculations (thermal + non-thermal eDF)
- MAD (a=0.94) fits SED & jet morphology at 86GHz $\log_{10} S \left[\text{Jy/pixel} \right]$ -4.8 -5.4 -7.2-6.6 -6.0 -4.2 $a_{\star}=0.50$ $a_{\star}=0.9374$ 86GHz Image $a_{\star}=0.50$ $a_{\star} = 0.9374$ GMVA

Event Horizon Telescope

 $1 \mathrm{mas}$

Cruz-Osorio, Fromm, YM et al. (21)

1 mas

Summary

- EHT has see a black hole shadow in M87 which is signature of light bending in Kerr BH metric and absorption by the event horizon
- From theoretical modeling, size, shape, & structure fit prediction of GR
- New polarized light is along bright ring structure of M87
- From model comparison, MAD accretion model is favoured than SANE
- Upcoming: Galactic center (Sgr A*) images
- In future, more and shaper images: +epoches (movies), +higher frequency, +new antennas
- New results will provide the possibility of testing theory of gravity via BH shadow images in more accurately.

Thank you for listening

M87 Black Hole – Event Horizon Telescope