TESTING GENERAL RELATIVITY WITH BLACK HOLE X-RAY DATA A PROGRESS REPORT

COSIMO BAMBI

FUDAN UNIVERSITY

Supermassive Black Hole and Fundamental Physics ITP-CAS, Beijing (26 September 2021)

- 1. Testing Black Holes with X-ray Data
- 2. Results
- 3. Conclusions

TESTING BLACK HOLES WITH X-RAY DATA

DISK-CORONA MODEL

- RELXILL_NK (Bambi et al. 2017; Abdikamalov et al. 2019) Reflection spectrum of a thin accretion disk
- NKBB (Zhou et al. 2019) Thermal spectrum of a thin accretion disk

Assumptions:

Kerr spacetime

- Geodesic motion (Weak Equivalence Principle)
- Atomic physics as in our laboratories on Earth (Local Lorentz Invariance and Local Position Invariance)

X-RAY REFLECTION SPECTROSCOPY

Reflection spectrum

- Top-down approach: we test a specific alternative theory of gravity against Einstein's theory of General Relativity Problems:
 - A large number of theories of gravity...
 - Usually we do not know their rotating black hole solutions...
- Bottom-up approach: parametric black hole spacetimes in which deviations from the Kerr geometry are quantified by a number of "deformation parameters"

BOTTOM-UP APPROACH

- Parametrized Post-Newtonian (PPN) formalism
- Weak field limit: $M/r \ll 1$
- Solar System experiments

$$ds^{2} = -\left(1 - \frac{2M}{r} + \beta \frac{2M^{2}}{r^{2}} + \dots\right) dt^{2}$$
$$+ \left(1 + \gamma \frac{2M}{r} + \dots\right) \left(dx^{2} + dy^{2} + dz^{2}\right)$$

 $|eta - 1| < 2.3 \cdot 10^{-4}$ (Lunar Laser Ranging experiment) $|\gamma - 1| < 2.3 \cdot 10^{-5}$ (Cassini spacecraft)

In the General Relativity (Schwarzschild metric), $\beta=\gamma=1$

There are several parametrized black hole spacetimes in the literature. Johannsen metric¹:

$$ds^{2} = -\frac{\tilde{\Sigma} \left(\Delta - a^{2}A_{2}^{2}\sin^{2}\theta\right)}{B^{2}}dt^{2} + \frac{\tilde{\Sigma}}{\Delta A_{5}}dr^{2} + \tilde{\Sigma}d\theta^{2}$$
$$-\frac{2a\left[\left(r^{2} + a^{2}\right)A_{1}A_{2} - \Delta\right]\tilde{\Sigma}\sin^{2}\theta}{B^{2}}dtd\phi$$
$$+\frac{\left[\left(r^{2} + a^{2}\right)^{2}A_{1}^{2} - a^{2}\Delta\sin^{2}\theta\right]\tilde{\Sigma}\sin^{2}\theta}{B^{2}}d\phi^{2},$$
$$\tilde{\Sigma} = r^{2} + a^{2}\cos^{2}\theta, \quad \Delta = r^{2} - 2Mr + a^{2},$$
$$B = \left(r^{2} + a^{2}\right)A_{1} - a^{2}A_{2}\sin^{2}\theta$$

¹Johannsen, PRD 88, 044002 (2013)

The functions f, A_1 , A_2 , and A_5 are defined as

$$f = \sum_{n=3}^{\infty} \epsilon_n \frac{M^n}{r^{n-2}}, \quad A_1 = 1 + \sum_{n=3}^{\infty} \alpha_{1n} \left(\frac{M}{r}\right)^n,$$
$$A_2 = 1 + \sum_{n=2}^{\infty} \alpha_{2n} \left(\frac{M}{r}\right)^n, \quad A_5 = 1 + \sum_{n=2}^{\infty} \alpha_{5n} \left(\frac{M}{r}\right)^n$$

There are 4 infinite sets of "deformation parameters":

$$\{\epsilon_n\}, \{\alpha_{1n}\}, \{\alpha_{2n}\}, \{\alpha_{5n}\}$$

If all deformation parameters vanish, we recover the Kerr solution

A public version of RELXILL_NK and its manual can be found at:

Johannsen metric with the deformation parameters $\alpha_{\rm 13}$ and $\alpha_{\rm 22}$

Impact of the deformation parameter $\alpha_{\rm 13}$

Impact of the deformation parameter α_{22}

Impact of the deformation parameter α_{13}

Sources Analyzed (BHBs)

Sources analyzed with **RELXILL_NK** and **NKBB**

- **4U 1630-472**: Tripathi et al., ApJ 913, 79 (2021)
- Cygnus X-1; Liu et al., PRD 99, 123007 (2019); Zhang et al., PRD 103, 024055 (2021)
- **EXO 1846–031**: Tripathi et al., ApJ 913, 79 (2021)
- GRS 1716-249: Zhang et al., arXiv:2106.03086
- GRS 1739-278: Tripathi et al., ApJ 913, 79 (2021)
- GRS 1915+105; Zhang et al., ApJ 875, 41 (2019); ApJ 884, 147 (2019); Tripathi et al., arXiv:2106.10982
- GS 1354-645: Xu et al., ApJ 865, 134 (2018)
- **GX 339-4**: Wang et al., JCAP 05 (2020) 026; Tripathi et al., ApJ 907, 31 (2021)
- LMC X-1: Tripathi et al., ApJ 897, 84 (2020)
- Swift J1658-4242: Tripathi et al., ApJ 913, 79 (2021)

Sources analyzed with **RELXILL_NK**

- 1H0419-577: Tripathi et al., ApJ 874, 135 (2019)
- 1H0707-495: Cao et al., PRL 120, 051101 (2018)
- Ark 120: Tripathi et al., ApJ 874, 135 (2019)
- Ark 564: Tripathi et al., PRD 98, 023018 (2018)
- Fairall 9: Liu et al., ApJ 896, 160 (2020)
- MCG-6-30-15: Tripathi et al., ApJ 875, 56 (2019)
- Mrk 335: Choudhury et al., ApJ 879, 80 (2019)
- PKS 0558-504: Tripathi et al., PRD 98, 023018 (2018)
- Swift J0501.9-3239: Tripathi et al., PRD 98, 023018 (2018)
- **Ton S180**: Tripathi et al., PRD 98, 023018 (2018)

TESTS WITH BHBS WITH NUSTAR DATA

Tripathi et al. ApJ 907, 31 (2021)
Tripathi et al. ApJ 913, 79 (2021)

GX 3<u>39-</u>4

Results of MCMC analysis (RELXILL_NK + NKBB)

EXO 1846-031

Results of MCMC analysis (RELXILL_NK)

LMC X-1

Constraints on a_* and α_{13}

CONSTRAINTS FROM STELLAR-MASS BLACK HOLES

Constraints on the Johannsen deformation parameter $\alpha_{\rm 13}$

Observations

Mission	Observation ID	Exposure (ks)
NuSTAR	60001047002	23
	60001047003	127
	60001047005	30
XMM-Newton	0693781201	134
	0693781301	134
	0693781401	49

Light curves of *NuSTAR*/FPMA, *NuSTAR*/FPMB and *XMM-Newton*/EPIC-Pn

Constraints on a_* and α_{13}

Constraints on a_* and α_{22}

Constraints on a_* and ϵ_3

CONCLUSIONS

- RELXILL_NK (with public version)
- NKBB
- Observational constraints on some deformation parameters

FUTURE WORK

Developing RELXILL_NK

- 1. Atomic physics calculations
- 2. Accretion disk model
- 3. Corona model
- 4. Minor relativistic effects
- Testing more deviations from standard predictions
- Testing WEP, LLI, and LPI

Source Selection for X-ray Reflection Spectroscopy

- 1. Very high spin ($a_* > 0.9$)
- 2. No absorbers
- 3. High resolution at the iron line + Data up to 50-100 keV (e.g. *XMM-Newton + NuSTAR*)
- 4. Prominent iron line
- 5. $L \sim 0.05 0.30 L_{\rm Edd}$ ($R_{\rm in} = R_{\rm ISCO}$)
- 6. Constant flux
- 7. Sources with known coronal geometry (?)

THANK YOU!

Equations of motion for the proton and electron fluids:

$$\begin{array}{lll} i) & m_p \dot{v}_p & = & -\frac{G_N M m_p}{r^2} + \frac{\sigma_{\gamma p} L}{4\pi r^2 c} + \frac{eQ}{r^2} \\ ii) & m_e \dot{v}_e & = & -\frac{G_N M m_e}{r^2} + \frac{\sigma_{\gamma e} L}{4\pi r^2 c} - \frac{eQ}{r^2} \end{array}$$

Equilibrium electric charge $\Rightarrow \dot{v}_p = \dot{v}_e$

$$\begin{array}{ll} m_{e}\,i) - m_{p}\,ii) \Rightarrow & m_{p}m_{e}\dot{v}_{p} - m_{p}m_{e}\dot{v}_{e} = \frac{\sigma_{\gamma e}L}{4\pi r^{2}c} + \frac{2eQ}{r^{2}} \\ \Rightarrow -Q = \frac{\sigma_{\gamma e}L}{8\pi ce} \leq \frac{\sigma_{\gamma e}L_{\rm Edd}}{8\pi ce} \sim 10^{21} \left(\frac{M}{M_{\odot}}\right)e \end{array}$$

CORONAL MODELS

Spectra of the best-fit models with the corresponding components and data to best-fit model ratios for a variable ϵ_3

