源自弦景观的有效Quintessence势

薛迅

华东师范大学

合作者:翟韩豫,申佳音

6月29日, 第九届海峡两岸粒子物理和宇宙学研讨会

Outline

- 1) The String Swampland and String Landscape
- 2) The origin and sign of Large Scale Lorentz Violation
- 3) The Cosmology with large scale Lorentz
 Violation in swampland and string landscape
- 4) Summary

- The possible string vacua compactification choice can be of order 10^500. Among them, inequivalent ones constitute the string landscape.
- it is likely that any consistent looking lower dimensional effective field theory (EFT) coupled to gravity can arise in some way from a string theory compactification
- the set of all EFT which do not admit a string theory UV completion as the swampland.
- The generic AdS vacuum is SUSY preserving.
- To account the inflation and accelerating expansion one needs to lift the AdS to dS vacuum.

The uplifting the AdS type of vacua to dS ones comes from \overline{D}_3 branes tension in a sufficiently warped background, in the presence of quantum corrections, by carefully adding \overline{D}_3 branes into the compactification. -KKLT construction Kachru, PRD 03

Shortage: no-go theorems, restrictions on ingredients used in string theory, typically specific combinations of fluxes, D-branes, orientifolds

Figure 7. The scalar potential for a metastable dS.

The second criterion of swampland conjecture excludes the EFT with a meta-stable dS vacuum as theory with UV completion. Metastable dS belongs to the swampland.

Quintessence model can satisfy the second criterion.

Figure 8. The scalar potential for an unstable dS.

- dS Swampland Conjecture: Obied, Ooguri, Spodyneiko, Vafa '18
- In the dS regime, there exists always a scalar field direction where the potential is sliding with a slope bigger than the gravitational strength
- This excludes all dS stationary solutions (dS local minima, maxima(refined), saddle points), implies any dS state should run away fast enough.
- The dark energy of our Universe can not be a C.C, but is the potential energy of a sliding scalar field Q=quintessence
- Refined dS swampland conjecture: Garg, Krishnan '18 Ooguri, Palti, Shiu, Vafa '18
- All unstable dS stationary points (Higgs & pion maxima) are compatible with the refined dS SC

The Λ CDM model

Einstein equation with cosmological constant

$$S_E = \frac{1}{16\pi G} \int d^4 x \sqrt{-g} \left(R - 2\Lambda \right)$$

$$R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} + \Lambda g_{\mu\nu} = 8\pi G \left(T_M \right)_{\mu\nu}$$

 Difficulty: There is huge dismatch between theoretical prediction and observation of Λ, ranging from 54 to 112 order of 10

Time

Anistropies of CMB

Comparing with preferred directions in CMB dipole, quadrupole and octopole

HST Key Project PI [Freedman Nature Astro 2017]

The Lorentz Violated EFT of Gravity

The action for a sim(2) gravity

$$S_{E} = \frac{1}{16\pi G} \int d^{4}xh \left(R^{ab}_{\ ab} + \lambda_{1}^{\ \mu} \left(A^{10}_{\ \mu} - A^{31}_{\ \mu} \right) + \lambda_{2}^{\ \mu} \left(A^{20}_{\ \mu} + A^{23}_{\ \mu} \right) \right)$$

• The Lagrange-multipliers term can be regarded as an effective angular momentum distribution C_{Meff}

$$\mathcal{D}_{v}\left(h\left(h_{a}^{v}h_{b}^{\mu}-h_{a}^{\mu}h_{b}^{v}\right)\right)=16\pi G\left(C_{M}+C_{M\,eff}\right)_{ab}^{\mu}$$

- Lorentz violation leads to non-trivial distribution of contortion
- The non-trivial effective concribution to the energymomentum distribution by contortion is expected to be responsible for the dark partner of the matter.

$$\tilde{R}_{c}^{a} - \frac{1}{2} \delta_{c}^{a} \tilde{R} = 8\pi G \left(T_{eff} + T_{M} \right)_{c}^{a}$$

• The Bianchi Identities imply the conservation of T_{eff}

The Modified Constrain for SO(3) • For SO(3) $\Lambda_0^{\ j}(x) = 0$ $A'^{i}_{\ 0\mu} = \Lambda^{i}_{\ j}(x) A^{j}_{\ 0\mu} \Lambda_0^{\ 0}(x) + \Lambda^{i}_{\ j}(x) \partial_{\mu} \Lambda_0^{\ j}(x)$ $= \Lambda^{i}_{\ j}(x) A^{j}_{\ 0\mu}$

The Modified Constrain for SO(3) can be

$$S_{E} = \frac{c^{4}}{16\pi G} \int d^{4}xh \left(R - 2\Lambda_{0} + \lambda^{u} \left(\left(A^{0}_{1u} \right)^{2} + \left(A^{0}_{2u} \right)^{2} + \left(A^{0}_{3u} \right)^{2} - f_{u}^{2} \right) \right)$$

• Where f_{μ} can be regarded as the measurement of Lorentz violation.

Accelerating Expansion of the Universe

To construct the FRW like solution of the model

$$ds^{2} = dt^{2} - a(t)^{2} \left(\frac{dr^{2}}{1 - kr^{2}} + r^{2} d\theta^{2} + r^{2} \sin^{2} \theta d\phi^{2} \right)$$

The naïve commoving tetrad can be chosen as

$$h^{0} = \mathrm{d}t, h^{1} = \frac{a(t)}{\sqrt{1 - kr^{2}}} \mathrm{d}r, h^{2} = ra(t)\mathrm{d}\theta, h^{3} = r\sin\theta a(t)\mathrm{d}\varphi$$

• And

$$h_0 = \frac{\partial}{\partial t}, h_1 = \frac{\sqrt{1 - kr^2}}{a(t)} \frac{\partial}{\partial r}, h_2 = \frac{1}{ra(t)} \frac{\partial}{\partial \theta}, h_3 = \frac{1}{r\sin\theta a(t)} \frac{\partial}{\partial \varphi}$$

Accelerating Expansion of the Universe

The field eqn for the tetrad field by

$$G^{a}_{\ b} \equiv R^{a}_{\ b} - \frac{1}{2}R\delta^{a}_{\ b} + \Lambda_{0}\delta^{a}_{\ b} = \frac{8\pi G}{c^{4}}T^{a}_{\ b}$$

 $rac{\delta S}{\delta h^a{}_\mu}$

Cosmic solution of contortion

- The perfect fluid of cosmic media demands $G_1^1 = G_2^2 = G_3^3$
- With decomposition of connections, $A^{a}_{\ b\mu} = \Gamma^{a}_{\ b\mu} + K^{a}_{\ b\mu}$ a simple solution can be chosen as

$$K^{0}_{11} = K^{0}_{22} = K^{0}_{33} = \mathcal{K}(t)$$

- With other contortion components vanish.
- And the relation with $f_{\mu}(x)$ is

$$(f_t, f_r, f_{\theta}, f_{\varphi}) = (a(t)\mathcal{K}(t) + \dot{a}(t)) \cdot \left(0, \frac{1}{\sqrt{1 - kr^2}}, r, r\sin\theta\right)$$

The degree of freedom of f_µ(x) is actually 4, which hide in the choice of frames by Lorentz boost.

Denoting G^a_c the Einstein tensor of Levi-Civita Connection

 $G^{a}_{\ c} = \tilde{G}^{a}_{\ c} + 2\left(\tilde{\nabla}_{[c}K^{ab}_{\ b]} + K^{a}_{\ e[c}K^{eb}_{\ b]} - \frac{1}{2}\left(\tilde{\nabla}_{d}K^{db}_{\ b} + K^{d}_{\ e[d}K^{eb}_{\ b]}\right)\delta^{a}_{\ c}\right) + \Lambda_{0}\delta^{a}_{\ c}$

The gravitation field equation

$$\tilde{R}^{a}_{\ c} - \frac{1}{2} \tilde{R} \delta^{a}_{\ c} = 8\pi G \left(T + T_{\Lambda} \right)^{a}_{\ c}, \ T_{\Lambda}^{\ a}_{\ c} = \frac{1}{8\pi G} \Lambda^{a}_{\ c} = \frac{1}{8\pi G} \left(\tilde{G}^{a}_{\ c} - G^{a}_{\ c} \right)$$

The gravitation field equations for the naïve tetrad of RW metric of k = 0

$$3\left(\mathscr{H} + \frac{\dot{a}}{a}\right)^{2} = \frac{8\pi G}{c^{4}}\left(\rho + \Lambda_{0}\right)$$
$$\left(\mathscr{H} + \frac{\dot{a}}{a}\right)^{2} + 2\left(\mathscr{H} + \frac{\dot{a}\mathscr{H}}{a} + \frac{\ddot{a}}{a}\right) = \frac{8\pi G}{c^{4}}\left(-p + \Lambda_{0}\right)$$

And

$$\begin{bmatrix} T_{\Lambda} \end{bmatrix}_{c}^{a} = Diag(\rho_{\Lambda}, -p_{\Lambda}, -p_{\Lambda}, -p_{\Lambda})$$

$$\rho_{\Lambda} = -\frac{c^{4}}{8\pi G} \left(3\mathscr{H}^{2} + 6\mathscr{H}\frac{\dot{a}}{a} - \Lambda_{0} \right)$$

$$p_{\Lambda} = \frac{c^{4}}{8\pi G} \left(\mathscr{H}^{2} + 4\mathscr{H}\frac{\dot{a}}{a} + 2\mathscr{H} - \Lambda_{0} \right)$$

- Denote Λ_0 as the bare cosmological constant in our Lorentz violating model from vacuum energy density, Λ as the observed one and take the geometrical unit $\frac{8\pi G}{c^4} = 1$ and $x = \frac{\Lambda_0}{\Lambda}$ • the modified Friedmann Equation

$$\left(\mathscr{K} + \frac{\dot{a}}{a}\right)^{2} = \frac{1}{3}\left(\rho + \Lambda_{0}\right)$$
$$\ddot{a} = -\frac{a}{2}\left(p + \frac{\rho}{3}\right) + \frac{1}{3}\left(a\Lambda_{0} - 3\frac{d}{dt}\left(a\mathscr{K}\right)\right)$$

The Friedmann Eqns in ΛCDM

$$\left(\frac{\dot{a}}{a}\right)^2 - \frac{\Lambda}{3} = \frac{\rho}{3}$$
$$\ddot{a} = -\frac{a}{2}\left(p + \frac{\rho}{3}\right) + \frac{1}{3}a\Lambda$$

Accelerating expansion condition:

$$\frac{a}{2}\left(p+\frac{\rho}{3}-\frac{2}{3}\Lambda_0\right)+\frac{d}{dt}\left(a\mathcal{K}\right)<0$$

the modified Friedmann Equation with the Eq of States for cosmic media p=wp

 $\dot{H}(t) + \dot{\mathscr{K}}(t) + H(t)\left(H(t) + \mathscr{K}(t)\right) + \frac{3w+1}{2}\left(H(t) + \mathscr{K}(t)\right)^2 - \frac{(w+1)}{2}\Lambda_0 = 0$

- And w≈0 for matter dominated period
- Define the Effective Cosmological Constant which really responsible to the accelerating expansion

$$\Lambda_{eff}(t) = \Lambda_0 - 3\left(\mathscr{H}(t)^2 + 2\mathscr{H}(t)\frac{\dot{a}(t)}{a(t)}\right)$$

Initial conditions: $\mathcal{K}(t_0)^2 + 2\mathcal{K}(t_0)\frac{\dot{a}(t_0)}{a(t_0)} = \frac{\Lambda_0}{3} - \frac{\Lambda}{3}$

$$\mathcal{K}(t_0) = H_0 \left(\pm \sqrt{1 - \frac{\Lambda - \Lambda_0}{3H_0}} - 1 \right) \to \Lambda_0 \ge -\left(3H_0 - \Lambda\right) \approx -\frac{2}{5}\Lambda$$

Three cases of approximation
Case A: $\frac{d}{dt}(a\mathcal{K}) = -\frac{1}{3}a(\Lambda - \Lambda_0)$ Or

$$H(t)\mathscr{K}(t) + \mathscr{K}(t) = \frac{1}{3}(\Lambda_0 - \Lambda)$$

• Case B:

$$\mathscr{K}(t) + (3w+2)H(t)\mathscr{K}(t) + \frac{3w+1}{2}\mathscr{K}^2(t) = \frac{w+1}{2}(\Lambda_0 - \Lambda)$$

• Case C:

$$\begin{split} \left[T_{\Lambda}\right]_{c}^{a} &= Diag(\rho_{\Lambda}, -p_{\Lambda}, -p_{\Lambda}, -p_{\Lambda}) \\ p_{\Lambda} &= w_{0}\rho_{\Lambda} \\ (3w_{0}+1)\mathscr{K}^{2} + (6w_{0}+4)H\mathscr{K} + 2\mathscr{K} - (w_{0}+1)\Lambda_{0} = 0 \\ \dot{H} + \mathscr{K} + H(H + \mathscr{K}) + \frac{3w+1}{2}(H + \mathscr{K})^{2} - \frac{(w+1)}{2}\Lambda_{0} = 0 \\ \mathscr{K}(t_{0}) &= H_{0}\left(\pm\sqrt{1 - \frac{\Lambda - \Lambda_{0}}{3H_{0}^{2}}} - 1\right), \quad H_{0} = H(t_{0}) \end{split}$$

Phenomenological, the Λ_{eff} can be regarded as the energy density produced by some auxiliary fields which responsible for the accelerating expansion such as quintessence field etc. e.g.

$$\begin{split} S_{q} &= \int d^{4}x \sqrt{-g} \left[\frac{1}{2} M_{pl}^{2} R - \frac{1}{2} g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi - V(\phi) \right] \\ \ddot{\phi} &+ 3H \dot{\phi} + V_{,\phi} = 0 \\ \Lambda_{eff} &= \frac{\dot{\phi}^{2}}{2} + V\left(\phi(t)\right) = -\frac{\dot{\Lambda}_{eff}}{6H} + V\left(\phi(t)\right) \\ \dot{\Lambda}_{eff} &= \dot{\phi} \ddot{\phi} + \dot{\phi} V_{,\phi} \left(\phi(t)\right) = -3H \dot{\phi}^{2} \\ V\left(\phi(t)\right) &= \Lambda_{eff} + \frac{\dot{\Lambda}_{eff}}{6H} \end{split}$$

• the cirtical value for Λ_0 which symbolizes the transformation from a monotonically quintessence like $V(\phi(t))$ to the metastable dS potential can be solved for all of the case of approximations. The critical value Λ_{0-crit} centers around $\Lambda_{0-crit} = 0$. It can be conjectured the deviation of Λ_{0-crit} from 0 is caused by the approximations. In a more elaborated model, it should have $\Lambda_{0-crit} = 0$.

	The initial value $\mathscr{K}ig(t_0^{}ig)$	The critical value for Λ_0
CaseA	$\mathscr{\mathcal{H}}(t_0) = H_0\left(\sqrt{1 - \frac{\Lambda - \Lambda_0}{3{H_0}^2}} - 1\right)$	-0.05/\
	$\mathscr{F}(t_0) = -H_0\left(\sqrt{1 - \frac{\Lambda - \Lambda_0}{3H_0^2}} + 1\right)$	-0.187٨
CaseB	$\mathscr{F}(t_0) = H_0\left(\sqrt{1 - \frac{\Lambda - \Lambda_0}{3H_0^2}} - 1\right)$	-0.066A
	$\mathscr{K}(t_0) = -H_0\left(\sqrt{1 - \frac{\Lambda - \Lambda_0}{3H_0^2}} + 1\right)$	-0.2144Λ
CaseC(w ₀ =-1)	$\mathscr{H}(t_0) = H_0\left(\sqrt{1 - \frac{\Lambda - \Lambda_0}{3{H_0}^2}} - 1\right)$	0.00001
	$\mathscr{F}(t_0) = -H_0\left(\sqrt{1 - \frac{\Lambda - \Lambda_0}{3H_0^2}} + 1\right)$	0.00001
CaseC(w ₀ =-8/9)	$\mathscr{H}(t_0) = H_0\left(\sqrt{1 - \frac{\Lambda - \Lambda_0}{3{H_0}^2}} - 1\right)$	0.119٨
	$\mathscr{K}(t_0) = -H_0\left(\sqrt{1 - \frac{\Lambda - \Lambda_0}{3H_0^2}} + 1\right)$	0.075∧

For Case C, when w₀ > -8/9 there doesn't exist a solution of the critical value for Λ₀ which signs the transformation from a monotonically quintessence potential to a metastable dS potential

CaseC(w ₀ =-7/9)	$\mathscr{H}(t_0) = H_0\left(\sqrt{1 - \frac{\Lambda - \Lambda_0}{3{H_0}^2}} - 1\right)$	Monotonic for all Λ_0
	$\mathscr{H}(t_0) = -H_0\left(\sqrt{1 - \frac{\Lambda - \Lambda_0}{3H_0^2}} + 1\right)$	0.152Λ
CaseC(w ₀ =-1/2)	$\mathscr{F}(t_0) = H_0\left(\sqrt{1 - \frac{\Lambda - \Lambda_0}{3{H_0}^2}} - 1\right)$	Monotonic for all Λ_0
	$\mathscr{\mathcal{K}}(t_0) = -H_0\left(\sqrt{1 - \frac{\Lambda - \Lambda_0}{3H_0^2}} + 1\right)$	0.321
CaseC(w ₀ =-1/3)	$\mathscr{\mathcal{K}}(t_0) = H_0\left(\sqrt{1 - \frac{\Lambda - \Lambda_0}{3{H_0}^2}} - 1\right)$	Monotonic for all Λ_0
	$\mathscr{H}(t_0) = -H_0\left(\sqrt{1 - \frac{\Lambda - \Lambda_0}{3H_0^2}} + 1\right)$	0.397∧

• The transformation from quintessence to dS

•
$$\mathscr{K}(t_0) = -H_0\left(\sqrt{1 - \frac{\Lambda - \Lambda_0}{3H_0^2}} + 1\right)$$
 and $w_0 = -1, -7/9$ for Case C

- Actually Case C approximation is not a good one from the comparison between Hubble constant vs t and the luminosity distance vs redshift z.
- The reason may be we use a fixed w_0 in the equation of state of dark partner part. Ignore the case w_0>-8/9 (excluded by observation of luminosity distance with redshift relation), we can make the conclusion:
- Quintessence potential is generated from string landscape AdS vacuum effectively.
- The critical value of cosmological constant separating quintessence from metastable dS is approximately zero

- The formula for the redshift remains unchanged as in the Lorentzian invariant case. $1+z=\frac{a_0}{a}$
- The dependence of luminosity distance d_L with redshift and Hubble constant.

$$H(z) = \left(\frac{\mathrm{d}}{\mathrm{d}z}\frac{d_L}{1+z}\right)^{-1}, \qquad \frac{\mathrm{d}t}{\mathrm{d}z} = -\frac{1}{1+z}\frac{\mathrm{d}}{\mathrm{d}z}\left(\frac{d_L}{1+z}\right)$$

The distance modulus is defined as

 $\mu = 25 + 5\log_{10}\left(d_L / Mpc\right)$

• Comparation of distance magnitudes. $\Lambda_{\rm 0}=-0.4\Lambda$

•
$$\mathscr{K}(t_0) = H_0\left(\sqrt{1 - \frac{\Lambda - \Lambda_0}{3{H_0}^2}} - 1\right)$$
 and $w_0 = -0.88$ for Case C

• Comparation of distance magnitudes vs $z, \Lambda_0 = -0.4\Lambda$

•
$$\mathscr{K}(t_0) = -H_0\left(\sqrt{1 - \frac{\Lambda - \Lambda_0}{3H_0^2}} + 1\right)$$
 and $w_0 = -8/9$ for Case C

32

Summary

- For string landscape with $\Lambda_0 > -(3H_0 \Lambda) \approx -\frac{2}{5}\Lambda$, the effective cosmological constant naturally give a quintessence like potential which satisfies the dS Swampland conjecture
- The uplifting of AdS to a positive effective consmological constant by frozen large scale Lorentz violation mechanism avoids the meta-stable dS swampland puzzle and have a quantum gravity origin
- For string swampland with positive cosmological constant for most reasonably approximation, the effective cosmological constant behaves like a metastable dS potential rather than the quintessence like one when the large scale Lorentz violation is taken into account.
- the scenario prefers approximately zero cosmological constant $\Lambda_{0-crit}=0$ as a separation of effective quintessence from meta-stable dS

The large scale long propagation of spin-orbit coupling of particles with non-zero helicity may cause the particle's orbit away from the geodesic line and the delay or advance of arriving time with the helicities of particles?

THANKS!