Interactions between two heavy mesons within chiral perturbation theory

Zhan-Wei LIU Lanzhou University

Collaborators:

Ning LI, Xiang LIU, Bo WANG, Hao XU, Shi-Lin ZHU

CONTENTS

1. Introduction

2. Effective potentials between two heavy mesons

3. Possible molecular states

Introduction

■ Traditional quark model: Meson $(\bar{q}q)$, Baryon (qqq)

Discovery of doubly heavy baryon: Ξ_{cc}

 Ξ_{cc} was discovered by SELEX collaboration, and

has been confirmed by LHCb group but with different mass in 2017

- Traditional quark model: Meson $(\bar{q}q)$, Baryon (qqq)
 - Discovery of doubly heavy baryon: Ξ_{cc}
 - Ξ_{cc} was discovered by SELEX collaboration, and
 - has been confirmed by LHCb group but with different mass in 2017
- Hadron-hadron interaction are important for the hadron spectrum

• Traditional quark model: Meson $(\bar{q}q)$, Baryon (qqq)

Discovery of doubly heavy baryon: Ξ_{cc}

 Ξ_{cc} was discovered by SELEX collaboration, and

has been confirmed by LHCb group but with different mass in 2017

- Hadron-hadron interaction are important for the hadron spectrum
 - threshold effects

 $D_s(2317)$: contribution of DK continuum

■ Traditional quark model: Meson $(\bar{q}q)$, Baryon (qqq)

Discovery of doubly heavy baryon: Ξ_{cc}

 Ξ_{cc} was discovered by SELEX collaboration, and

has been confirmed by LHCb group but with different mass in 2017

- Hadron-hadron interaction are important for the hadron spectrum
 - threshold effects

 $D_s(2317)$: contribution of DK continuum

molecular states

Deuteron: bound state of proton and neutron

 P_c states reported at LHCb recently; $Z_b(10610)$, $Z_b(10650)$

• Traditional quark model: Meson $(\bar{q}q)$, Baryon (qqq)

Discovery of doubly heavy baryon: Ξ_{cc}

 Ξ_{cc} was discovered by SELEX collaboration, and

has been confirmed by LHCb group but with different mass in 2017

- Hadron-hadron interaction are important for the hadron spectrum
 - threshold effects

 $D_s(2317)$: contribution of DK continuum

molecular states

Deuteron: bound state of proton and neutron

 P_c states reported at LHCb recently; $Z_b(10610)$, $Z_b(10650)$

other exotic states

X, Y, Z states, debate with different interpretations: molecules? tetraquark? ordinary charmonium? two diquark? kinetic effects?

Hadron interactions at low energy

- interactions cannot be perturbatively solved at low energy because of large strong coupling α_s
- Different models and approaches
 - lattice QCD simulation
 - QCD sum rule
 - one-boson-exchange model
 - chiral perturbation theory
 - Hamiltonian effective field theory
 - diquark model
 - ...

Study of Interactions within chiral perturbation theory (ChPT)

- ChPT with respect on symmetries of QCD
- Power counting
 - NOT in power series: α_s , α_s^2 , α_s^3 , ...
 - expanded with small momentum
 - systematically study, order by order, error controlled
 - check of standard model
- Natual extension

2-body force, 3-body force,...

Wide applications

Nucleon-nucleon interaction

ChPT with heavy hadrons involved

Dealing systems with light mesons
 ChPT results can be expanded as power series of

$$m_{\phi}/\Lambda_{\chi}$$
, q/Λ_{χ} , ...

Power Counting Breaking (PCB) in systems with heavy hadrons involved

large masses of heavy hadrons make q^μ is never small again power counting can be recovered with the help of residual momentum \tilde{q}^μ $\tilde{q}^\mu = q^\mu - m(1,\vec{0}).$

Solutions for systems with one heavy hadron

- Heavy hadron effective field theory (EFT)
 nonrelativistic reduction at Lagrangian level, breaking of analyticity.

 Simple and still correct if not analytically extending results too far away
- Infrared regularization
 relativistic Lagrangian, drop PCB terms at regularization
 good power counting and analyticity
- Extended on-mass-shell scheme
 relativistic Lagrangian, drop PCB terms at final results
 good power counting and analyticity

Results with three different schemes will be same if

- being summarized at ALL orders, or
- the mass of heavy hadron becomes infinite.

ChPT with few hadrons involved—new trouble

The amplitude of following 2-Particle-Reducible diagram contains ¹

$$\mathcal{I} \equiv i \int d\vec{P} \frac{i}{\vec{P} + \vec{P}^0 - \vec{P}^2/(2m_N) + i\varepsilon} \frac{i}{-\vec{P} + \vec{P}^0 - \vec{P}^2/(2m_N) + i\varepsilon} \approx \frac{-\pi}{\vec{P}^2/(2m_N) + i\varepsilon}.$$
(1)

naïve power counting scheme

 $ightarrow \mathcal{I} \sim \mathit{O}(1/|ec{P}|)$

• eq. (1)

 $ightarrow \mathcal{I} \sim \mathit{O}(\mathit{m_N}/|\vec{P}|^2)$

${\cal I}$ is actually enhanced by a large factor $m_N/|\vec{P}|$.

Solid line for nucleon, dashed line for pion.

(P represents the residual momentum)

Box Diagram.

¹we have not listed the parts preserving power counting

Weinberg scheme

- not directly calculate physical observables with perturbation theory
- systematically study effective potentials first (without 2PR contribution)
- solve the dynamical equation to get the physical observables (equivalent to recover the 2PR contributions)

Effective potentials between two heavy mesons

With Heavy Meson EFT, we study the systems made up of

- DD
- *D***D*
- D* D*

Similar for $B^{(*)}B^{(*)}$ and corresponding anti-meson pair system.

We have not studied systems like $D\bar{D}$ because there exist annihilation effects.

Lagrangians

Leading order vertice

contact terms:
$$D^{(*)}D^{(*)}D^{(*)}D^{(*)}$$
 vertice $D^{(*)}D^{(*)}\pi$, $D^{(*)}D^{(*)}\pi\pi$ vertice

Next-to-leading order vertice
 they absorb divergences, provide finite higher-order corrections

$$\begin{split} \mathcal{L}_{4H}^{(0)} &= D_a \operatorname{Tr} \left[H \gamma_\mu \bar{H} \right] \operatorname{Tr} \left[H \gamma^\mu \bar{H} \right] + D_b \operatorname{Tr} \left[H \gamma_\mu \gamma_5 \bar{H} \right] \operatorname{Tr} \left[H \gamma^\mu \gamma_5 \bar{H} \right] \\ &+ E_a \operatorname{Tr} \left[H \gamma_\mu \lambda^a \bar{H} \right] \operatorname{Tr} \left[H \gamma^\mu \lambda_a \bar{H} \right] + E_b \operatorname{Tr} \left[H \gamma_\mu \gamma_5 \lambda^a \bar{H} \right] \operatorname{Tr} \left[H \gamma^\mu \gamma_5 \lambda_a \bar{H} \right], \\ \mathcal{L}_{H\phi}^{(1)} &= - \langle (i v \cdot \partial H) \bar{H} \rangle - \langle H v \cdot \Gamma \bar{H} \rangle + g \langle H \psi \gamma_5 \bar{H} \rangle - \frac{1}{8} \Delta \langle H \sigma^{\mu\nu} \bar{H} \sigma_{\mu\nu} \rangle, \end{split}$$

Lagrangians

Leading order vertice

contact terms: $D^{(*)}D^{(*)}D^{(*)}D^{(*)}$ vertice $D^{(*)}D^{(*)}\pi$, $D^{(*)}D^{(*)}\pi\pi$ vertice

Next-to-leading order vertice

they absorb divergences, provide finite higher-order corrections

$$\begin{split} \mathcal{L}_{4H}^{(2)} &= D_a^h \operatorname{Tr} \left[H \gamma_\mu \bar{H} \right] \operatorname{Tr} \left[H \gamma^\mu \bar{H} \right] \operatorname{Tr} \left(\chi_+ \right) + \dots \\ &+ D_a^d \operatorname{Tr} \left[H \gamma_\mu \tilde{\chi}_+ \bar{H} \right] \operatorname{Tr} \left[H \gamma^\mu \bar{H} \right] + \dots \\ &+ D_1^q \operatorname{Tr} \left[\left(D^\mu H \right) \gamma_\mu \gamma_5 \left(D^\nu \bar{H} \right) \right] \operatorname{Tr} \left[H \gamma_\nu \gamma_5 \bar{H} \right] + \dots \end{split}$$

- Leading order
 contact, one-pion exchange
- Next-to-leading order two-pion exchange, renormalization to $D^{(*)}D^{(*)}\pi$ coupling, loop corrections to contact term, tree diagrams with NL vertice

- Leading order contact, one-pion exchange
- Next-to-leading order two-pion exchange, renormalization to $D^{(*)}D^{(*)}\pi$ coupling, loop corrections to contact term, tree diagrams with NL vertice

- Leading order contact, one-pion exchange
- Next-to-leading order two-pion exchange, renormalization to $D^{(*)}D^{(*)}\pi$ coupling, loop corrections to contact term, tree diagrams with NL vertice

- Leading order contact, one-pion exchange
- Next-to-leading order two-pion exchange, renormalization to $D^{(*)}D^{(*)}\pi$ coupling, loop corrections to contact term, tree diagrams with NL vertice

Regularization and renormalization

We calculate diagrams with dimension regularization and modified minimal subtraction scheme.

We have checked that the potentials are finite after the renormalization of the wavefunctions and vertice.

Determination of low-energy constants

- fit to experimental data
- first principle of QCD
- fit to data of Lattice QCD
- phenomenological models

Determination of low-energy constants

- fit to experimental data
- first principle of QCD
- fit to data of Lattice QCD
- phenomenological models

Determination of low-energy constants

- fit to experimental data
- first principle of QCD
- fit to data of Lattice QCD
- phenomenological models

Effective potentials in momentum space

Possible molecular states

Search for new states

- Potentials \rightarrow partial waves, dynamical equation (momentum space) \rightarrow T matrices \rightarrow poles
- Potentials→ Fourier transform, dynamical equation (coordinate space)
 - ightarrow eigenvalues of bound states for different partial waves

Taking DD^* as an example

- I = 0: bound state with around E = 21 MeV.
 I = 1: no bound state
- \blacksquare Comparison with one-boson-exchange model ρ contribution is covered not only by the two-pion-exchange part but also by contact terms. 2

²Similar results as those in Phys. Rev. D 88, 114008 (2013).

$\bar{B}^{(*)}\bar{B}^{(*)}$ systems

We use similar approaches to study the system of $\bar{B}^{(*)}\bar{B}^{(*)}$ in S wave

•
$$\bar{B}\bar{B}$$
: $I(J^P) = 1(0^+)$

•
$$\bar{B}\bar{B}^*$$
: $I(J^P) = 1(1^+),$ $I(J^P) = 0(1^+)$

•
$$\bar{B}^*\bar{B}^*$$
: $I(J^P) = 1(0^+)$, $I(J^P) = 1(2^+)$, $I(J^P) = 0(1^+)$

$\bar{B}^{(*)}\bar{B}^{(*)}$ systems

We use similar approaches to study the system of $\bar{B}^{(*)}\bar{B}^{(*)}$ in S wave

•
$$\bar{B}\bar{B}$$
: $I(J^P) = 1(0^+)$

•
$$\bar{B}\bar{B}^*$$
: $I(J^P) = 1(1^+),$ $I(J^P) = 0(1^+)$

•
$$\bar{B}^*\bar{B}^*$$
: $I(J^P) = 1(0^+)$, $I(J^P) = 1(2^+)$, $I(J^P) = 0(1^+)$

Example:

potentials for $\bar{B}^*\bar{B}^*$ with $I(J^P)=0(1^+)$ in momentum space

Example:

potentials for $\bar{B}^*\bar{B}^*$ with $I(J^P)=0(1^+)$ in coordinate space

Results for $\bar{B}^{(*)}\bar{B}^{(*)}$ systems

we find two bound states in the channels of O(1+) $\bar{B}\bar{B}^*$ and $\bar{B}^*\bar{B}^*$

■ binding energies: $\Delta E_{\bar{B}\bar{B}^*} \simeq -12.6^{+9.2}_{-12.9}$ MeV, $\Delta E_{\bar{B}^*\bar{B}^*} \simeq -23.8^{+16.3}_{-21.5}$ MeV

masses: $m_{\bar{B}\bar{B}^*} \simeq 10591.4^{+9.2}_{-12.9}$ MeV, $m_{\bar{B}^*\bar{B}^*} \simeq 10625.5^{+16.3}_{-21.5}$ MeV

• strong decays is forbidden because of phase space they can be searched in $\bar{B}\bar{B}\gamma$ or $\bar{B}\bar{B}\gamma\gamma$

uncertainty of low-energy constants

Table 1: The binding energies of $O(1^+)$ $\bar{B}\bar{B}^*$ and $\bar{B}^*\bar{B}^*$ states obtained with different strategies in units of MeV.

Binding energy	No $\mathcal{O}(\epsilon^2)$ LECs	Strategy A	Strategy B
$\Delta E_{ar{B}ar{B}^*}$	$-12.6^{+9.2}_{-12.9}$	$-10.4_{-9.7}^{+7.2}$	$-15.9^{+9.7}_{-12.7}$
$\Delta E_{ar{B}^*ar{B}^*}$	$-23.8^{+16.3}_{-21.5}$	$-20.1_{-20.0}^{+14.5}$	$-28.2^{+18.6}_{-23.6}$

Summary

We have studied the potentials upto one-loop level between two heavy mesons within chiral perturbation theory.

By solving the Schrodinger equations, we found some bound states in some channels.

Thanks!

Thanks!

this report is mainly based on the following articles

- Phys.Rev. D99 (2019) no.3, 036007
- Phys.Rev. D99 (2019) no.1, 014027
- Phys.Rev. D89 (2014) no.7, 074015